JP2742622B2 - Silicon nitride sintered body and method for producing the same - Google Patents

Silicon nitride sintered body and method for producing the same

Info

Publication number
JP2742622B2
JP2742622B2 JP1343682A JP34368289A JP2742622B2 JP 2742622 B2 JP2742622 B2 JP 2742622B2 JP 1343682 A JP1343682 A JP 1343682A JP 34368289 A JP34368289 A JP 34368289A JP 2742622 B2 JP2742622 B2 JP 2742622B2
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
peak intensity
rare earth
earth element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1343682A
Other languages
Japanese (ja)
Other versions
JPH03199165A (en
Inventor
政宏 佐藤
英樹 内村
和憲 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP1343682A priority Critical patent/JP2742622B2/en
Publication of JPH03199165A publication Critical patent/JPH03199165A/en
Application granted granted Critical
Publication of JP2742622B2 publication Critical patent/JP2742622B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高温における抗折強度及び耐酸化性に優
れ、特にガスタービン等の熱機関に使用される窒化珪素
質焼結体及びその製造方法に関する。
Description: FIELD OF THE INVENTION The present invention relates to a silicon nitride sintered body which is excellent in flexural strength and oxidation resistance at high temperatures and is particularly used for heat engines such as gas turbines and the production thereof. About the method.

(従来技術) 従来から、窒化珪素質焼結体は、高温における強度、
硬度、熱的化学的安定性に優れた材料としてエンジニア
リングセラミックス、特に熱機関用としてその応用が進
められる。これらの用途に適用させる場合、焼結体に対
しては室温から1400℃の高温まで優れた機械的特性が要
求されているが、最近に至っては1500℃における特性の
向上も望まれている。
(Prior Art) Conventionally, a silicon nitride sintered body has a high strength at a high temperature,
Engineering ceramics as a material having excellent hardness and thermal and chemical stability are being applied, particularly for heat engines. When applied to these uses, the sintered body is required to have excellent mechanical properties from room temperature to a high temperature of 1400 ° C., but recently, improvement of the properties at 1500 ° C. is also desired.

一般に窒化珪素質焼結体の製造する方法としては、そ
れ自体が難焼結性であることから焼結助剤を添加し、ホ
ットプレス法、常圧焼成法、ガス圧力焼成法等の焼成手
段によって非酸化性雰囲気で焼成することにより得られ
ている。
Generally, as a method for producing a silicon nitride-based sintered body, a sintering aid is added due to its difficulty in sintering itself, and a sintering method such as a hot press method, a normal pressure sintering method, or a gas pressure sintering method is used. By baking in a non-oxidizing atmosphere.

一方、組成の点からは焼結助剤として希土類元素酸化
物やアルミナ、マグネシア等が最も一般的に用いられて
いるが、焼結体の高温特性を考慮した場合、アルミナや
マグネシアは焼結体の粒界相に低融点物質を生成するた
めに高温特性を劣化させることから、これら酸化物を含
まないSi3N4−RE2O3(RE:希土類元素)−SiO2の単純3
元系からなる組成が検討されている。特に、この系にお
いて焼結体中の粒界相の強度を向上させる目的で粒界に
高融点の結晶相、例えばメリライト、アパタイト、YA
M、ワラストナイト等を析出させる試みがなされてい
る。
On the other hand, from the viewpoint of composition, rare earth oxides, alumina, magnesia, etc. are most commonly used as sintering aids. These oxides do not contain Si 3 N 4 —RE 2 O 3 (RE: rare earth elements) —SiO 2
The composition of the original system is being studied. Particularly, in this system, in order to improve the strength of the grain boundary phase in the sintered body, a high melting point crystal phase such as melilite, apatite, YA
Attempts have been made to precipitate M, wollastonite and the like.

(発明が解決しようとする課題) しかしながら、粒界相にメリライトが析出すると不活
性雰囲気での高温強度は優れるが実用的条件である酸化
性雰囲気での安定性が悪く、酸化による体積変化により
強度が劣化するという問題がある。また、アパタイト、
ワラストナイト或いはYAMが析出したものはメリライト
が析出したものに比較して酸化雰囲気での安定性はやや
向上するものの1500℃における耐酸化性は大きく低下し
ほとんど使用できないのが現状であった。
(Problems to be Solved by the Invention) However, when melilite is precipitated in the grain boundary phase, the high-temperature strength in an inert atmosphere is excellent, but the stability in an oxidizing atmosphere which is a practical condition is poor, and the strength changes due to a volume change due to oxidation. Is deteriorated. Also, apatite,
In the present condition, wollastonite or YAM precipitates have a slightly improved stability in an oxidizing atmosphere as compared with those in which melilite precipitates, but their oxidation resistance at 1500 ° C. is greatly reduced, so that they can hardly be used.

(発明の目的) 本発明は、高温強度に優れるとともに1500℃における
耐酸化性に優れた窒化珪素質焼結体およびその製造方法
を提供するにある。
(Object of the Invention) An object of the present invention is to provide a silicon nitride-based sintered body having excellent high-temperature strength and excellent oxidation resistance at 1500 ° C. and a method for producing the same.

(課題を解決するための手段) 本発明者等は、上記の課題に対しSi3N4−RE2O3(RE:
希土類元素)−SiO2の単純3元系において検討を重ねた
結果、SiO2成分を多量に含むとともに粒界相にシリコン
オキシナイトライド(Si2N2O)が特定の割合で存在した
焼結体が優れた高温特性と1500℃における耐酸化性に優
れることを知見した。
(Means for solving the problem) The present inventors have solved the above problem by using Si 3 N 4 -RE 2 O 3 (RE:
As a result of repeated studies on a simple ternary system of (rare earth element) -SiO 2 , sintering containing a large amount of SiO 2 component and silicon oxynitride (Si 2 N 2 O) at a specific ratio in the grain boundary phase The body was found to have excellent high temperature properties and oxidation resistance at 1500 ° C.

即ち、本発明の窒化珪素質焼結体は、希土類元素酸化
物0.5〜2モル%と、過剰酸素(SiO2換算)10〜25モル
%と、残部がβ型窒化珪素からなり、且つ過剰酸素/希
土類元素酸化物で表されるモル比が5〜25の範囲にある
焼結体であって、該焼結体の粒界にシリコンオキシナイ
トライド(Si2N2O)からなる結晶相が存在し、X線回折
曲線におけるβ型窒化珪素(β−Si3N4)の(111)面の
ピーク強度をh1、シリコンオキシナイトライド(Si2N
2O)の(111)面のピーク強度をh2とした時、ピーク強
度比h2/h1が1.5〜1.96であり、且つ室温強度が800MPa以
上、1400℃強度が500MPa以上の特性を有することを特徴
とするものである。
That is, the silicon nitride-based sintered body of the present invention is composed of 0.5 to 2 mol% of rare earth element oxide, 10 to 25 mol% of excess oxygen (in terms of SiO 2 ), the balance being β-type silicon nitride, and / A sintered body having a molar ratio represented by a rare earth element oxide in the range of 5 to 25, wherein a crystal phase composed of silicon oxynitride (Si 2 N 2 O) is formed at a grain boundary of the sintered body. The peak intensity of the (111) plane of β-type silicon nitride (β-Si 3 N 4 ) in the X-ray diffraction curve is represented by h 1 , and the silicon oxynitride (Si 2 N
When the peak intensity of the (111) plane of the 2 O) was h 2, the peak intensity ratio h 2 / h 1 is from 1.5 to 1.96, and room-temperature strength is more than 800 MPa, 1400 ° C. strength having the above characteristics 500MPa It is characterized by the following.

また、製造方法として、希土類元素酸化物0.5〜2モ
ル%と、過剰酸素(SiO2換算)10〜25モル%と、残部が
窒化珪素からなり、且つ過剰酸素/希土類元素酸化物で
表されるモル比が5〜25である成形体を1800〜2000℃の
SiOを含む窒素ガス雰囲気下で焼成して、X線回折曲線
におけるβ型窒化珪素(β−Si3N4)の(111)面のピー
ク強度をh1、シリコンオキシナイトライド(Si2N2O)の
(111)面のピーク強度をh2とした時、ピーク強度比h2/
h1が1.5〜1.96の焼結体を作製することを特徴とするも
のである。
In addition, as a manufacturing method, rare earth element oxide is 0.5 to 2 mol%, excess oxygen (SiO 2 conversion) is 10 to 25 mol%, and the remainder is made of silicon nitride, and is represented by excess oxygen / rare earth element oxide. The molded body having a molar ratio of 5 to 25 is heated to 1800 to 2000 ° C.
It is fired in a nitrogen gas atmosphere containing SiO, and the peak intensity of the (111) plane of β-type silicon nitride (β-Si 3 N 4 ) in the X-ray diffraction curve is h 1 , and the silicon oxynitride (Si 2 N 2 when the peak intensity of the (111) plane of the O) was h 2, the peak intensity ratio h 2 /
h 1 is characterized in that to produce a sintered body of from 1.5 to 1.96.

以下本発明を詳述する。 Hereinafter, the present invention will be described in detail.

本発明の焼結体は、その組成が希土類元素酸化物0.5
〜2モル%、特に1〜1.5モル%と、過剰酸素(SiO2
算)10〜25モル%、特に10〜15モル%と、残部がβ型窒
化珪素からなり、且つ過剰酸素/希土類元素酸化物で表
されるモル比が5〜25、特に7〜15の範囲からなる点に
ある。なお、過剰酸素とは焼結体の系全体に含まれる全
酸素量から希土類元素酸化物として化学量論理的量で混
入した酸素を差し引いた酸素量で、具体的には窒化珪素
原料中の不純物酸素、または添加されたSiO2中の酸素か
ら構成され、本発明ではいずれもSiO2換算量を示すもの
である。
The sintered body of the present invention, the composition of which is rare earth element oxide 0.5
2 to 2 mol%, especially 1 to 1.5 mol%, excess oxygen (in terms of SiO 2 ) 10 to 25 mol%, particularly 10 to 15 mol%, the balance being β-type silicon nitride, and excess oxygen / rare earth element oxidation The molar ratio represented by the product is in the range of 5 to 25, particularly 7 to 15. The excess oxygen is the amount of oxygen obtained by subtracting oxygen mixed in a stoichiometric amount as a rare earth element oxide from the total amount of oxygen contained in the entire system of the sintered body, and specifically, the amount of impurities in the silicon nitride raw material. It is composed of oxygen or oxygen in added SiO 2 , and in the present invention, each of them indicates the amount in terms of SiO 2 .

本発明において焼結体の組成を前述した割合に限定し
たのは、いずれも優れた特性を得るための重要な要因で
あり、希土類元素酸化物が0.5モル%より少ないと後述
する焼成方法において焼結体の緻密化が困難であり、2
モル%を越えると1500℃における耐酸化性が劣化する。
また、過剰酸素が10モル%を下回るか25モル%を越えて
も緻密化が困難となる。さらに過剰酸素/希土類元素酸
化物モル比が5未満では高温における耐酸化性が劣化し
易く、逆に25を越えると低融点のガラスが生成されやす
く高温特性が劣化する。
In the present invention, the composition of the sintered body is limited to the above-described ratio, which is an important factor for obtaining excellent properties. If the content of the rare-earth element oxide is less than 0.5 mol%, the sintering method described later will be omitted. It is difficult to densify the aggregate,
If the amount exceeds mol%, the oxidation resistance at 1500 ° C. is deteriorated.
Also, if the excess oxygen is less than 10 mol% or exceeds 25 mol%, it becomes difficult to densify. Further, if the molar ratio of excess oxygen / rare earth element oxide is less than 5, the oxidation resistance at high temperatures tends to deteriorate, and if it exceeds 25, glass with a low melting point tends to be formed, and the high-temperature characteristics deteriorate.

また、本発明の焼結体は組織上、窒化珪素結晶粒子と
粒界相から構成され、その粒界相にSi2N2Oで表されるシ
リコンオキシナイトライド結晶が析出し、その量が焼結
体のX線回折曲線においてβ型窒化珪素の(111)面の
ピーク強度をh1、シリコンオキシナイトライドの(11
1)面のピーク強度をh2とした時、ピーク強度比h2/h1
1.5〜1.96、特に1.6〜1.96であることを特徴とする。こ
れにより、高温強度ならびに1500℃の高温における耐酸
化性を向上させることができる。なお、h1/h2で表され
るピーク強度比を前述の範囲に限定したのは、前記ピー
ク強度比が1.5より低いと1500℃の耐酸化性が劣化する
ためである。また、ピーク強度比が1.96よりも大きいと
窒化珪素の絶対量が少なくなる結果、目的の強度特性が
得られない。
Further, the sintered body of the present invention is structurally composed of silicon nitride crystal grains and a grain boundary phase, and silicon oxynitride crystals represented by Si 2 N 2 O precipitate in the grain boundary phase, and the amount thereof is reduced. In the X-ray diffraction curve of the sintered body, the peak intensity of the (111) plane of β-type silicon nitride is set to h 1 , and the peak intensity of (11) of silicon oxynitride is set to (11).
1) when the peak intensity of the face was h 2, the peak intensity ratio h 2 / h 1 is
1.5 to 1.96, particularly 1.6 to 1.96. Thereby, high-temperature strength and oxidation resistance at a high temperature of 1500 ° C. can be improved. The reason why the peak intensity ratio represented by h 1 / h 2 is limited to the above range is that if the peak intensity ratio is lower than 1.5, the oxidation resistance at 1500 ° C. is deteriorated. On the other hand, if the peak intensity ratio is larger than 1.96, the absolute amount of silicon nitride decreases, so that the intended intensity characteristics cannot be obtained.

本発明の上記焼結体の製造方法によれば、原料として
窒化珪素、希土類元素酸化物および酸化珪素を用い、こ
れらの前述した場合で調製する。この時、酸化珪素は窒
化珪素粉末中の不純物酸素が酸化珪素として存在すると
仮定し、その酸素量をSiO2換算したものも含まれる。用
いる窒化珪素としては焼結性を促進するためにBET比表
面積が3〜20m2/g、α化率95%以上であることが望まし
い。また、不純物酸素量は0.8〜1.5重量%が適当であ
る。一方、希土類元素酸化物や酸化珪素はBET比表面積
1〜10m2/gが適当である。
According to the method for producing a sintered body of the present invention, silicon nitride, a rare earth element oxide and silicon oxide are used as raw materials, and are prepared in the above-described case. At this time, it is assumed that the impurity oxygen in the silicon nitride powder is present as silicon oxide in the silicon oxide, and the amount of the oxygen converted into SiO 2 is also included. The silicon nitride used preferably has a BET specific surface area of 3 to 20 m 2 / g and a pregelatinization ratio of 95% or more in order to promote sinterability. The amount of impurity oxygen is suitably 0.8 to 1.5% by weight. On the other hand, a rare earth element oxide or silicon oxide has a BET specific surface area of preferably 1 to 10 m 2 / g.

調製された粉末は十分に混合後、適宜バインダーを添
加して造粒後、成形する。成形は周知の方法、例えばプ
レス成形、押し出し成形、射出成形、鋳込み成形等によ
り任意の形状に成形する。このようにして得られた成形
体はバインダー除去後、焼成する。
After the prepared powder is sufficiently mixed, a binder is appropriately added, and the mixture is granulated and then molded. The molding is performed into a desired shape by a known method, for example, press molding, extrusion molding, injection molding, casting molding, or the like. The molded body thus obtained is baked after removing the binder.

焼成は、1800〜2000℃、特に1800〜1900℃の非酸化性
雰囲気で焼成する。本発明によれば、成形体の組成が低
融点の酸化珪素を多量に含むことから雰囲気中にSiOを
含有させ組成の変動を抑制しつつ焼成する。また雰囲気
には高温焼成による窒化珪素の分解を抑制するためその
焼成温度における窒化珪素の分解平衡圧以上の窒素ガス
を導入することも重要である。雰囲気中のSiOは焼成炉
内にSiO2粉末等を成形体とともに配置することにより発
生させることができる。
The firing is performed in a non-oxidizing atmosphere at 1800 to 2000 ° C, particularly 1800 to 1900 ° C. According to the present invention, since the composition of the compact contains a large amount of low-melting-point silicon oxide, it is baked while containing SiO in the atmosphere to suppress fluctuations in the composition. In order to suppress the decomposition of silicon nitride due to high-temperature firing, it is also important to introduce a nitrogen gas at a temperature higher than the decomposition equilibrium pressure of silicon nitride at the firing temperature. SiO in the atmosphere can be generated by arranging SiO 2 powder or the like together with the compact in a firing furnace.

この焼成過程において、粒界には希土類元素酸化物、
窒化珪素、酸化珪素からなる液相が生成され焼結が進行
し緻密化されるが、例えば4〜10時間程度焼成した後の
冷却過程において粒界相を結晶化する。その時の冷却速
度が早いと粒界は非晶質となり易いため、本発明によれ
ば約300℃/Hr以下で徐冷することにより粒界相中に所望
の量のシリコンオキシナイトライドを析出させることが
できる。一方、α型窒化珪素はβ型窒化珪素に相変態し
つつ結晶の針状化が生じ、最終的に平均アスペクト比が
3以上の繊維状組織が形成され焼結体の高強度、高靭性
化が図られる。
During this firing process, rare earth element oxides
A liquid phase composed of silicon nitride and silicon oxide is generated, and sintering proceeds and densification occurs. For example, the grain boundary phase is crystallized in a cooling process after firing for about 4 to 10 hours. According to the present invention, a desired amount of silicon oxynitride is precipitated in the grain boundary phase by slow cooling at about 300 ° C./Hr or less, since the grain boundary tends to be amorphous if the cooling rate at that time is high. be able to. On the other hand, α-type silicon nitride undergoes phase transformation into β-type silicon nitride to form needle-like crystals, and finally a fibrous structure having an average aspect ratio of 3 or more is formed, thereby increasing the strength and toughness of the sintered body. Is achieved.

なお、前述の希土類元素酸化物としては、Y2O3が最も
一般的であるが、Yb2O3、Er2O3、Ho2O3、Dy2O3等の重希
土類元素酸化物が焼結体の特性の安定性や高特性が得ら
れることから望ましい。
As the rare earth element oxide described above, Y 2 O 3 is the most common, but heavy rare earth element oxides such as Yb 2 O 3 , Er 2 O 3 , Ho 2 O 3 , and Dy 2 O 3 are used. It is desirable because the stability of the characteristics of the sintered body and the high characteristics can be obtained.

以下、本発明を次の例で説明する。 Hereinafter, the present invention will be described with reference to the following examples.

(実施例) 原料粉末として、窒化珪素粉末(BET比表面積5m2/g、
α化率95%、不純物酸素量1.0重量%)と、各種希土類
元素酸化物あるいは酸化珪素粉末を用いて、第1表の組
成になるように調合混合後、1t/cm2でプレス成形した。
(Example) Silicon nitride powder (BET specific surface area 5 m 2 / g,
Using an oxide ratio of 95% and an impurity oxygen amount of 1.0% by weight) and various rare earth element oxides or silicon oxide powders, they were mixed and mixed so as to have the composition shown in Table 1, and then press-molded at 1 t / cm 2 .

得られた成形体をSiO2粉末を炉内に配置した50aatmの
窒素ガス雰囲気で第1表に示す焼成条件で焼成した。
The obtained compact was fired under the firing conditions shown in Table 1 in a 50 aatm nitrogen gas atmosphere in which a SiO 2 powder was placed in a furnace.

次に、得られた焼結体に対しアルキメデス法から対理
論密度比を、JISR1601に従い室温と1400℃における4点
曲げ抗折強度を、また1500℃×24時間の耐酸化性試験を
行い試験後の酸化重量増を測定した。
Next, the obtained sintered body was subjected to the Archimedian method for the theoretical density ratio, the 4-point bending strength at room temperature and 1400 ° C according to JISR1601, and the oxidation resistance test at 1500 ° C × 24 hours. Was measured for the increase in oxidation weight.

さらに、焼結体のX線回折曲線からβ型窒化珪素の2
θ=39゜付近に存在する(111)面のピーク強度h1と、S
i2N2Oの2θ=26.6゜付近に存在する(111)面のピーク
強度h2を測定し、それらのピーク強度比h2/h1を算出し
た。
Further, from the X-ray diffraction curve of the sintered body,
The peak intensity h 1 of the (111) plane existing near θ = 39 ° and S
The peak intensity h 2 of the (111) plane existing near 2θ = 26.6 ° of i 2 N 2 O was measured, and the peak intensity ratio h 2 / h 1 was calculated.

結果は第1表に示した。 The results are shown in Table 1.

第1表中、試料番号1についてそのX線回折曲線を第
1図に示した。
In Table 1, the X-ray diffraction curve of Sample No. 1 is shown in FIG.

第1表によれば、過剰酸素の量が25モル%を越えるか
または希土類元素酸化物の量が少なく、過剰酸素と希土
類元素酸化物との比が25を越える試料18、19はいずれも
Si2N2Oの結晶の生成は多く認められたが焼結性に乏しく
高温強度が大きく劣化した。また過剰酸素と希土類元素
酸化物との比が5より低い試料20はSi2N2Oの結晶の生成
が少なく、1500℃の耐酸化性が劣化した。さらに焼成温
度が低い試料21や冷却速度が速い試料23でもSi2N2Oの結
晶の生成が少なく、1500℃の耐酸化性で劣化した。
According to Table 1, Samples 18 and 19 in which the amount of excess oxygen exceeds 25 mol% or the amount of rare earth element oxide is small and the ratio of excess oxygen to rare earth element oxide exceeds 25 are both samples.
The formation of crystals of Si 2 N 2 O was often observed, but the sinterability was poor and the high temperature strength was greatly deteriorated. In Sample 20, in which the ratio of excess oxygen to the rare earth oxide was lower than 5, the generation of crystals of Si 2 N 2 O was small, and the oxidation resistance at 1500 ° C. was deteriorated. Furthermore, Sample 21 with a low firing temperature and Sample 23 with a fast cooling rate showed little generation of Si 2 N 2 O crystals, and deteriorated at 1500 ° C. oxidation resistance.

また、粒界相にアパタイトやYAMが析出した試料24、2
5では1500℃の耐酸化性が不充分であった。
Samples 24 and 2 in which apatite and YAM were precipitated in the grain boundary phase
In the case of 5, the oxidation resistance at 1500 ° C was insufficient.

これに対し、本発明の試料はいずれもSi2N2Oの結晶の
生成が多く認められ、特性上においても室温強度800MPa
以上、1400℃強度500MPa以上、1500℃の酸化重量増が0.
15以下の優れた特性を示した。
On the other hand, in all of the samples of the present invention, generation of crystals of Si 2 N 2 O was observed, and room temperature strength of 800 MPa
Above, 1400 ° C strength 500MPa or more, oxidation weight increase at 1500 ° C is 0.
It exhibited excellent properties of 15 or less.

(発明の効果) 以上詳述した通り、本発明はSiO2成分を多量に含むSi
3N4−RE2O3(RE:希土類元素)−SiO2の単純3元系にお
いて粒界に特定の割合でシリコンオキシナイトライドを
析出させることにより、1500℃における耐酸化性ならび
に高温強度に優れた焼結体を得ることができる。
(Effects of the Invention) As described in detail above, the present invention relates to a Si containing a large amount of SiO 2
3 N 4 -RE 2 O 3: by precipitating the silicon oxynitride in a specific ratio in the grain boundary in the (RE rare earth element) simple ternary -SiO 2, the oxidation resistance and high-temperature strength at 1500 ° C. An excellent sintered body can be obtained.

これにより、窒化珪素質焼結体の熱機関用部品として
の応用をさらに拡げることができ、特に熱機関の作動温
度の高温化に対し十分対応可能な材料を提供することが
できる。
This makes it possible to further expand the application of the silicon nitride-based sintered body as a heat engine component, and to provide a material that can sufficiently cope with a particularly high operating temperature of the heat engine.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の窒化珪素質焼結体のX線回折曲線の
チャート図である。
FIG. 1 is a chart of an X-ray diffraction curve of the silicon nitride sintered body of the present invention.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】希土類元素酸化物0.5〜2モル%と、過剰
酸素(SiO2換算)10〜25モル%と、残部がβ型窒化珪素
からなり、且つ過剰酸素/希土類元素酸化物で表される
モル比が5〜25の範囲にある焼結体であって、該焼結体
の粒界にシリコンオキシナイトライド(Si2N2O)からな
る結晶相が存在し、X線回折曲線における前記β型窒化
珪素(β−Si3N4)の(111)面のピーク強度をh1、前記
シリコンオキシナイトライド(Si2N2O)の(111)面の
ピーク強度をh2とした時、ピーク強度比h2/h1が1.5〜1.
96であり、且つ室温強度が800MPa以上、1400℃強度が50
0MPa以上の特性を有することを特徴とする窒化珪素質焼
結体。
1. A rare earth element oxide of 0.5 to 2 mol%, excess oxygen (SiO 2 equivalent) of 10 to 25 mol%, and a balance of β-type silicon nitride, which is represented by excess oxygen / rare earth element oxide. A sintered body having a molar ratio in the range of 5 to 25, wherein a crystal phase composed of silicon oxynitride (Si 2 N 2 O) exists at the grain boundary of the sintered body, The peak intensity of the (111) plane of the β-type silicon nitride (β-Si 3 N 4 ) was h 1 , and the peak intensity of the (111) plane of the silicon oxynitride (Si 2 N 2 O) was h 2 . when the peak intensity ratio h 2 / h 1 is 1.5 to 1.
96, and room temperature strength of 800 MPa or more, 1400 ° C strength of 50
A silicon nitride based sintered body having characteristics of 0 MPa or more.
【請求項2】希土類元素酸化物0.5〜2モル%と、過剰
酸素(SiO2換算)10〜25モル%と、残部が窒化珪素から
なり、且つ過剰酸素/希土類元素酸化物で表されるモル
比が5〜25である成形体を1800〜2000℃のSiOを含む窒
素ガス雰囲気下で焼成して、X線回折曲線におけるβ型
窒化珪素(β−Si3N4)の(111)面のピーク強度をh1
シリコンオキシナイトライド(Si2N2O)の(111)面の
ピーク強度をh2とした時、ピーク強度比h2/h1が1.5〜1.
96の焼結体を作製することを特徴とする窒化珪素質焼結
体の製造方法。
2. A rare earth element oxide of 0.5 to 2 mol%, an excess of oxygen (in terms of SiO 2 ) of 10 to 25 mol%, a balance of silicon nitride, and a molar ratio represented by excess oxygen / rare earth element oxide The compact having a ratio of 5 to 25 is fired in a nitrogen gas atmosphere containing SiO at 1800 to 2000 ° C., and the (111) plane of β-type silicon nitride (β-Si 3 N 4 ) in the X-ray diffraction curve is obtained. The peak intensity is h 1 ,
When the peak intensity of the (111) plane of silicon oxynitride (Si 2 N 2 O) is h 2 , the peak intensity ratio h 2 / h 1 is 1.5 to 1 .
A method for producing a silicon nitride-based sintered body, comprising producing 96 sintered bodies.
JP1343682A 1989-12-27 1989-12-27 Silicon nitride sintered body and method for producing the same Expired - Fee Related JP2742622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1343682A JP2742622B2 (en) 1989-12-27 1989-12-27 Silicon nitride sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1343682A JP2742622B2 (en) 1989-12-27 1989-12-27 Silicon nitride sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH03199165A JPH03199165A (en) 1991-08-30
JP2742622B2 true JP2742622B2 (en) 1998-04-22

Family

ID=18363433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1343682A Expired - Fee Related JP2742622B2 (en) 1989-12-27 1989-12-27 Silicon nitride sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP2742622B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3754271B2 (en) * 2000-04-28 2006-03-08 新日本製鐵株式会社 Butterfly valve and manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62223066A (en) * 1986-03-19 1987-10-01 工業技術院長 Manufacture of high temperature strength silicon nitride sintered body

Also Published As

Publication number Publication date
JPH03199165A (en) 1991-08-30

Similar Documents

Publication Publication Date Title
JP2742622B2 (en) Silicon nitride sintered body and method for producing the same
JP3034100B2 (en) Silicon nitride sintered body and method for producing the same
JPH0826815A (en) Rare earth compound oxide-based sintered compact and its production
JP3152790B2 (en) Method for producing silicon nitride based sintered body
JP2687632B2 (en) Method for producing silicon nitride sintered body
JPH07330436A (en) Silicon nitride heat resistant member and its production
JP3124863B2 (en) Silicon nitride sintered body and method for producing the same
JP3124867B2 (en) Silicon nitride sintered body and method for producing the same
JP2746761B2 (en) Method for producing silicon nitride-silicon carbide composite sintered body
JP2708136B2 (en) Silicon nitride sintered body and method for producing the same
JP2892186B2 (en) Method for producing silicon nitride-silicon carbide composite sintered body
JP2801455B2 (en) Silicon nitride sintered body
JP2801447B2 (en) Method for producing silicon nitride based sintered body
JP3034099B2 (en) Silicon nitride sintered body and method for producing the same
JP3124862B2 (en) Method for producing silicon nitride based sintered body
JP2694369B2 (en) Silicon nitride sintered body
JP2691285B2 (en) Silicon nitride sintered body
JP2811493B2 (en) Silicon nitride sintered body
JP2783720B2 (en) Silicon nitride sintered body and method for producing the same
JP2694368B2 (en) Method for producing silicon nitride based sintered body
JP2783702B2 (en) Silicon nitride sintered body
JP2946593B2 (en) Silicon nitride sintered body and method for producing the same
JP2687633B2 (en) Method for producing silicon nitride sintered body
JP2783711B2 (en) Silicon nitride sintered body
JP2687634B2 (en) Method for producing silicon nitride sintered body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees