JPH07330436A - Silicon nitride heat resistant member and its production - Google Patents

Silicon nitride heat resistant member and its production

Info

Publication number
JPH07330436A
JPH07330436A JP6118410A JP11841094A JPH07330436A JP H07330436 A JPH07330436 A JP H07330436A JP 6118410 A JP6118410 A JP 6118410A JP 11841094 A JP11841094 A JP 11841094A JP H07330436 A JPH07330436 A JP H07330436A
Authority
JP
Japan
Prior art keywords
silicon
firing
resistant member
periodic table
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6118410A
Other languages
Japanese (ja)
Other versions
JP3231944B2 (en
Inventor
Kenichi Tajima
健一 田島
Hideki Uchimura
英樹 内村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP11841094A priority Critical patent/JP3231944B2/en
Publication of JPH07330436A publication Critical patent/JPH07330436A/en
Application granted granted Critical
Publication of JP3231944B2 publication Critical patent/JP3231944B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a heat resistant member reduced in the generation of void on a firing skin and excellent in high temp. property with respect to the heat resistant member, which requires dimensional accuracy, by firing after heating a compact containing silicon powder and a compound of group IIIa element in periodic table to give a specific firing skin. CONSTITUTION:The heat resistant member is composed of a silicon nitride sintered compact obtained by firing after heating the compact containing at least silicon powder and the compound of the group IIIa element in a nitrogen containing atmosphere and has the firing skin, on which the max. void diameter is <=30mum. The heat resistant member is applicable for various members requiring high dimensional accuracy with heat resistance as well as for a structural material for heat engine such as a complicated shaped ceramic gas turbine parts or ceramic turborotor, which are difficult to polish a surface.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、室温から高温までの強
度特性に優れるとともに耐クリープ性に優れ、特にピス
トン、シリンダー、バルブ、カムローラ、ロッカーアー
ム、ピストンリング、ピストンピンなどの自動車用部品
や、タービンロータ、タービンブレード、ノズル、コン
バスタ、スクロール、ノズルサポート、シールリング、
スプリングリング、ディフューザ、ダクトなどのガスタ
ービンエンジン用部品等に好適に使用され、特に寸法精
度が要求されると同時に焼き肌面での強度が要求される
窒化珪素質耐熱部材およびその製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has excellent strength characteristics from room temperature to high temperature and excellent creep resistance, and is particularly useful for automobile parts such as pistons, cylinders, valves, cam rollers, rocker arms, piston rings and piston pins. , Turbine rotor, turbine blade, nozzle, combustor, scroll, nozzle support, seal ring,
TECHNICAL FIELD The present invention relates to a silicon nitride heat-resistant member that is suitably used for gas turbine engine parts such as a spring ring, a diffuser, and a duct, and is particularly required to have dimensional accuracy and strength on the burnt surface, and a manufacturing method thereof. Is.

【0002】[0002]

【従来技術】従来から、窒化珪素質焼結体は、耐熱性、
耐熱衝撃性、および耐酸化特性に優れることからエンジ
ニアリングセラミックス、特にターボローター等の熱機
関用として応用が進められている。この窒化珪素質焼結
体は、一般には窒化珪素に対してY2 3 、Al2 3
あるいはMgOなどの焼結助剤を添加することにより高
密度で高強度の特性が得られている。このような窒化珪
素質焼結体に対しては、さらにその使用条件が高温化す
るに際して、高温における強度および耐酸化特性のさら
なる改善が求められている。かかる要求に対して、これ
まで焼結助剤の検討や焼成条件等を改善する等各種の改
良が試みられている。
2. Description of the Related Art Conventionally, silicon nitride sintered bodies have
Due to its excellent thermal shock resistance and oxidation resistance, it is being applied to engineering ceramics, especially for heat engines such as turbo rotors. This silicon nitride sintered material is generally used for Y 2 O 3 , Al 2 O 3 and silicon nitride.
Alternatively, by adding a sintering aid such as MgO, high density and high strength characteristics are obtained. Further improvement in strength and oxidation resistance at high temperatures is demanded for such silicon nitride sintered bodies when the operating conditions thereof further increase. In order to meet such demands, various improvements have been attempted so far, such as examination of sintering aids and improvement of firing conditions.

【0003】その中で、従来より焼結助剤として用いら
れてきたAl2 3 、MgO等の酸化物が高温特性を劣
化させるという見地から、窒化珪素に対してY2 3
の周期律表第3a族元素(RE)および酸化珪素を添加
した単純な3元系(Si3 4 −SiO2 −RE
2 3 )の組成からなる焼結体において、その焼結体の
粒界にSi−RE−O−NからなるYAM相、アパタイ
ト相等の結晶相を析出させることにより粒界の高融点化
および安定化を図ることが提案されている。例えば、特
開昭63−100067号では、Y、Er、Tm、Y
b、Luのうちの2種以上の希土類元素を含む焼結体
の、粒界にアパタイト構造の結晶相を析出させることが
提案されている。
Among them, from the viewpoint that oxides such as Al 2 O 3 and MgO, which have been conventionally used as a sintering aid, deteriorate the high temperature characteristics, a cycle of Y 2 O 3 or the like is added to silicon nitride. A simple ternary system (Si 3 N 4 —SiO 2 —RE) to which a Group 3a element (RE) and silicon oxide are added
2 O 3 ) in a sintered body, the melting point of the grain boundary is increased by precipitating a crystal phase such as a YAM phase made of Si-RE-O-N or an apatite phase in the grain boundary of the sintered body. It has been proposed to stabilize. For example, in JP-A-63-100067, Y, Er, Tm, Y
It has been proposed to precipitate a crystal phase having an apatite structure at a grain boundary of a sintered body containing two or more rare earth elements of b and Lu.

【0004】また、上記のように窒化珪素源として、窒
化珪素粉末のみを用い焼結助剤としてY2 3 などの周
期律表第3a族元素酸化物および酸化珪素を用いた系で
は、液相焼結が進行するに伴い、焼成収縮が生じるため
に焼成後に高い寸法精度が要求される複雑形状品を製造
する場合には収縮が大きいと設定する寸法に制御するこ
とが難しく、あるいは研磨工程が複雑になるなどの問題
がある。そこで、従来より出発原料として珪素粉末を添
加し焼成前に窒素雰囲気中で珪素を窒化処理して成形体
を密度を高めた後に焼成する方法が提案されている。
Further, as described above, in a system using only silicon nitride powder as a silicon nitride source and using a Group 3a element oxide of the periodic table such as Y 2 O 3 and silicon oxide as a sintering aid, a liquid is used. When phase-sintering progresses, firing shrinkage occurs, so when manufacturing complex shaped products that require high dimensional accuracy after firing, it is difficult to control the dimensions to be set as the shrinkage is large, or the polishing process There is a problem that it becomes complicated. Therefore, conventionally, a method has been proposed in which silicon powder is added as a starting material, the silicon is subjected to a nitriding treatment in a nitrogen atmosphere before firing to increase the density of the compact, and then the compact is fired.

【0005】[0005]

【発明が解決しようとする問題点】しかしながら、従来
の珪素粉末を用いて窒化する工程を含む場合、窒化体を
焼成する温度を高く設定する必要がある。このような高
温焼成を行うと、図1のSEM写真に示すような粒界相
成分の分解により、焼結体の焼き肌面の大きなボイドが
生成されやすくなり焼き肌面の強度を著しく低下させて
いた。そのため、複雑な形状を有し、その表面を研磨で
きないような耐熱部材を珪素の窒化工程を含む方法で製
造した場合、上記のようなボイドの発生による焼結体表
面の荒れを回避することができず、焼結体の特性を低下
させていた。
However, when the conventional step of nitriding using silicon powder is included, it is necessary to set the firing temperature of the nitride to be high. When such high temperature firing is performed, large voids on the burnt surface of the sintered body are likely to be generated due to decomposition of the grain boundary phase components as shown in the SEM photograph of FIG. 1, and the strength of the burnt surface is significantly reduced. Was there. Therefore, when a heat-resistant member having a complicated shape and whose surface cannot be polished is manufactured by a method including a silicon nitriding step, it is possible to avoid the surface roughness of the sintered body due to the occurrence of voids as described above. However, the characteristics of the sintered body were deteriorated.

【0006】また、従来より提案されている各種の希土
類元素を含む焼結体は、高温強度に対してある程度の特
性を有するものの、高温状態での耐酸化特性や、特に高
負荷が付与された状態でのクリープ特性が低く、実用化
を阻害する大きな要因となっていた。例えば、特開昭6
3−100067号に記載のように2種以上の希土類元
素で複合酸化物を形成させると共融点が低下するため、
高温での耐クリープ特性も低いものであった。
[0006] Further, although conventionally proposed sintered bodies containing various rare earth elements have a certain level of characteristics with respect to high-temperature strength, they are endowed with oxidation resistance at high temperatures and particularly high load. The creep property in the state was low, which was a major factor that hindered its practical use. For example, JP-A-6
As described in JP-A No. 3-100067, when a complex oxide is formed with two or more kinds of rare earth elements, the eutectic point decreases,
The creep resistance at high temperature was also low.

【0007】従って、本発明は、寸法精度が要求され、
しかも焼結体の表面を研磨することが困難な耐熱部材に
おいて、ボイドの発生が低減された高温特性に優れた耐
熱部材を提供することを目的とするものである。
Therefore, the present invention requires dimensional accuracy,
Moreover, it is an object of the present invention to provide a heat-resistant member having excellent high-temperature characteristics with reduced generation of voids in the heat-resistant member in which it is difficult to polish the surface of the sintered body.

【0008】[0008]

【問題点を解決するための手段】本発明者等は、成形体
中に含まれる珪素を窒化した窒化体を高温で焼成する際
のボイドの発生が粒界相成分の分解時のガスの放出によ
るものであることが判明し、これに基づき検討を行った
結果、焼結体の粒界を高融点化することが重要であると
いう知見を得た。そこで、粒界の高融点化について具体
的に検討したところ、焼結助剤として添加される周期律
表第3a族元素酸化物中にLuを含有させ、焼結体の粒
界を制御することが効果的であり、これによりボイドが
小さい焼結体を得ることができ、焼き肌面を有する焼結
体においても優れた高温強度、高温耐酸化性、耐クリー
プ特性が発揮されることを見いだしたものである。
DISCLOSURE OF THE INVENTION The inventors of the present invention have found that when a nitride obtained by nitriding silicon contained in a compact is fired at a high temperature, generation of voids causes release of gas during decomposition of grain boundary phase components. It was found that it was due to this, and as a result of investigation based on this, it was found that it is important to raise the melting point of the grain boundary of the sintered body. Therefore, as a result of a specific study on increasing the melting point of the grain boundary, it was found that Lu is contained in the oxide of Group 3a element of the periodic table, which is added as a sintering aid, to control the grain boundary of the sintered body. Found that a sintered body with small voids can be obtained, and excellent high-temperature strength, high-temperature oxidation resistance, and creep resistance can be exhibited even in a sintered body having a burnt surface. It is a thing.

【0009】即ち、本発明の窒化珪素質耐熱部材は、少
なくとも珪素粉末と周期律表第3a族元素化合物を含む
成形体を窒素を含む雰囲気で熱処理して前記珪素を窒化
した後、焼成することにより得られた窒化珪素質焼結体
からなる耐熱部材であって、該耐熱部材が焼き肌面を有
し、該焼き肌面における最大ボイド径が30μm以下で
あることを特徴とするものであり、より具体的には前記
周期律表第3a族元素化合物がLu(ルテチウム)化合
物を含み、且つ焼結体表面の粒界に周期律表第3a族元
素、珪素および酸素からなる結晶相が存在することを特
徴とするものである。
That is, in the silicon nitride heat-resistant member of the present invention, a molded body containing at least silicon powder and a compound of Group 3a element of the periodic table is heat-treated in an atmosphere containing nitrogen to nitride the silicon, and then fired. A heat-resistant member comprising a silicon nitride sintered body obtained by the above, wherein the heat-resistant member has a burnt surface, and the maximum void diameter on the burnt surface is 30 μm or less. More specifically, the Group 3a element compound of the Periodic Table contains a Lu (lutetium) compound, and a crystal phase composed of the Group 3a element of the Periodic Table, silicon and oxygen is present at the grain boundary on the surface of the sintered body. It is characterized by doing.

【0010】さらに、上記の耐熱部材を製造する方法と
して、少なくともLu(ルテチウム)を含む周期律表第
3a族元素酸化物を1〜7モル%、酸化珪素を1〜15
モル%、残部が珪素、あるいは珪素と窒化珪素からな
り、前記周期律表第3a族元素酸化物のうち50%以上
がLuの酸化物である成形体を800〜1500℃の窒
素含有雰囲気中で熱処理して前記珪素を窒化した後、さ
らに窒素およびSiOガスを含有する非酸化性雰囲気中
で焼成し、少なくとも焼結体表面の粒界に周期律表第3
a族元素、珪素および酸素からなる結晶相を析出させた
ことを特徴とするものである。
Furthermore, as a method for producing the above heat-resistant member, 1 to 7 mol% of an oxide of a Group 3a element of the periodic table containing at least Lu (lutetium) and 1 to 15 of silicon oxide are used.
In a nitrogen-containing atmosphere at 800 to 1500 ° C., a molded body composed of mol%, the balance being silicon, or silicon and silicon nitride, and 50% or more of the oxide of Group 3a element of the periodic table being an oxide of Lu is formed. After the heat treatment to nitride the silicon, the silicon is further fired in a non-oxidizing atmosphere containing nitrogen and SiO gas, and at least the grain boundaries on the surface of the sintered body have a periodic table third.
It is characterized in that a crystal phase composed of a group a element, silicon and oxygen is deposited.

【0011】以下、本発明を詳述する。本発明における
耐熱部材は、窒化珪素質焼結体からなるものであるが、
特に本発明によれば、寸法精度が要求される部材に適用
するため、焼成時の収縮が小さくなるような方法により
作製されたものである。このような焼成収縮を低減する
手法としては、出発原料中に珪素粉末を焼結助剤ととも
に添加し、これを窒化させて窒化珪素を形成させること
で体積膨張させ焼成前の成形体の密度を高める方法があ
る。
The present invention will be described in detail below. The heat resistant member in the present invention is made of a silicon nitride sintered material,
In particular, according to the present invention, since it is applied to a member that requires dimensional accuracy, it is manufactured by a method that reduces shrinkage during firing. As a method of reducing such firing shrinkage, silicon powder is added to the starting material together with a sintering aid, and this is nitrided to form silicon nitride, thereby causing volume expansion and increasing the density of the compact before firing. There is a way to increase.

【0012】本発明の耐熱部材は、上記のように少なく
とも珪素粉末と周期律表第3a族元素化合物を含む成形
体を窒素を含む雰囲気で熱処理して珪素を窒化した後、
焼成することにより得られた窒化珪素質焼結体からなる
ものである。
As described above, the heat-resistant member of the present invention heat-treats a compact containing at least silicon powder and a compound of Group 3a of the periodic table in an atmosphere containing nitrogen to nitride silicon,
It is made of a silicon nitride sintered body obtained by firing.

【0013】このような珪素の窒化工程を含む製造過程
では、焼成前の成形体中の窒化珪素のうち、珪素が窒化
した部分は粗粒となるため、窒化珪素粉末を焼成する場
合に比較して高温で焼成する必要があり、結果として図
1に示すような粒界相成分の分解時のガスの放出による
ボイドが必然的に生じる。
In the manufacturing process including such a silicon nitriding step, the silicon nitride portion of the silicon nitride in the green body before firing becomes coarse grains, so that it is compared with the case of firing silicon nitride powder. Therefore, it is necessary to perform firing at a high temperature, and as a result, voids are inevitably generated due to the release of gas when the grain boundary phase components are decomposed as shown in FIG.

【0014】これに対して、本発明の耐熱部材は、その
表面に焼成後、何ら研磨を行わない、いわゆる焼き肌面
が存在するものの、その焼き肌面における最大ボイド径
が30μm以下、特に10μm以下であることが大きな
特徴である。この焼結体の焼き肌面には必然的にボイド
が存在するが、本発明によれば、そのボイドの最大径を
小さくすることにより焼き肌面の強度を大幅に向上でき
る。よって、この最大ボイド径が30μmより大きい
と、これが破壊源となり部材の機械的特性を低下させて
しまうのである。
On the other hand, the heat-resistant member of the present invention has a so-called burnt surface on which the surface is not polished after firing, but the maximum void diameter on the burnt surface is 30 μm or less, particularly 10 μm. The main features are as follows. Voids inevitably exist on the burnt surface of this sintered body, but according to the present invention, the strength of the burnt surface can be greatly improved by reducing the maximum diameter of the void. Therefore, if the maximum void diameter is larger than 30 μm, it becomes a fracture source and deteriorates the mechanical characteristics of the member.

【0015】また、本発明の耐熱部材によれば、焼結体
中に焼結助剤として含まれる周期律表第3a族元素化合
物中にLu化合物を含むことが望ましい。これは、Lu
がLu以外の周期律表第3a族元素に比較して粒界の融
点を高める作用をなし、粒界成分の分解を抑制すること
によりボイド径を小さくするためであり、Lu以外の周
期律表第3a族元素化合物のみからなる場合には、焼き
肌面における最大ボイド径を30μm以下に制御するこ
とが困難となるためである。
Further, according to the heat-resistant member of the present invention, it is desirable that a Lu compound is contained in the group 3a element compound of the periodic table contained as a sintering aid in the sintered body. This is Lu
In order to reduce the void diameter by suppressing the decomposition of the grain boundary component by increasing the melting point of the grain boundary as compared with elements of Group 3a of the periodic table other than Lu. This is because it becomes difficult to control the maximum void diameter on the burnt surface to 30 μm or less when the compound is made of only the Group 3a element compound.

【0016】さらに、耐熱部材を構成する窒化珪素質焼
結体は、窒化珪素結晶からなる平均粒径が1〜30μm
の主結晶粒子と、粒子間に存在する粒界相により構成さ
れるものであるが、本発明によれば、焼結体表面の粒界
にLuを含む周期律表第3a族元素、珪素および酸素か
らなる結晶が存在することが望ましい。周期律表第3a
族元素(以下、化学式中では総称して「RE」と表現す
る。)、珪素および酸素からなる結晶としては、RE2
Si2 7 で表されるダイシリケート相やRE2 SiO
5 で表されるモノシリケート相などがある。このような
Luを含む上記結晶相は高融点を有するために、焼結過
程でも分解揮散することがなく、ボイドの発生を低減で
きるのである。このような結晶相は、焼結体表面から1
0μm以上の領域に存在することが望ましい。
Further, the silicon nitride-based sintered body constituting the heat-resistant member has an average particle size of 1 to 30 μm made of silicon nitride crystals.
According to the present invention, the main crystal grains of No. 3 and the grain boundary phase existing between the grains are included. The presence of crystals of oxygen is desirable. Periodic table 3a
A crystal composed of a group element (hereinafter collectively referred to as “RE” in the chemical formula), silicon and oxygen is RE 2
A disilicate phase represented by Si 2 O 7 or RE 2 SiO
There is a monosilicate phase represented by 5 . Since the above crystal phase containing Lu has a high melting point, it does not decompose and volatilize even during the sintering process, and the generation of voids can be reduced. Such a crystal phase is 1 from the surface of the sintered body.
It is desirable that it exists in a region of 0 μm or more.

【0017】なお、焼結体の粒界の結晶相としては、表
面付近の結晶相を上記のように限定する以外、焼結体内
部は、表面と同様な結晶相であっても、それ以外のシリ
コンオキシナイトライド相、YAM相、アパタイト相、
ワラストナイト相などの結晶により構成されていてもよ
い。
As the crystal phase of the grain boundary of the sintered body, the crystal phase in the vicinity of the surface is limited as described above. Silicon oxynitride phase, YAM phase, apatite phase,
It may be composed of crystals such as wollastonite phase.

【0018】次に、本発明の耐熱部材を製造する具体的
な方法としては、出発原料として珪素、または珪素と窒
化珪素を主成分とするものであり、これに添加物成分と
して、周期律表第3a族元素酸化物および酸化珪素を含
むものである。ここでいう酸化珪素とは、酸化珪素粉末
として添加されたもの以外に窒化珪素や珪素粉末などに
不可避的に含まれる不純物酸素のように最終焼結体中に
残存する酸素分をSiO2 換算したものも含まれる。
Next, as a concrete method for producing the heat-resistant member of the present invention, silicon or silicon and silicon nitride as a main component is used as a starting material, and the periodic table is used as an additive component. It contains a Group 3a element oxide and silicon oxide. The silicon oxide herein, and the oxygen partial remaining in the final sintered body as an impurity oxygen contained like unavoidably silicon nitride and silicon powder in addition to those added as silicon oxide powder SiO 2 converted Things are also included.

【0019】出発原料の具体的組成としては、Lu2
3 を含む周期律表第3a族元素酸化物を1〜7モル%、
特に3〜5モル%、酸化珪素を1〜15モル%、特に6
〜12モル%、残部が珪素粉末、あるいは珪素粉末と窒
化珪素粉末からなる。これは、周期律表第3a族元素酸
化物量が1モル%未満では焼結性が低下し、緻密な焼結
体を得ることができず、7モル%を越えると焼き肌面の
ボイドが大きくなり、焼き肌面強度が劣化するためであ
る。また、酸化珪素量が1モル%より少ないと粒界に窒
化珪素と周期律表第3a族元素酸化物との化合物である
メリライトなどの高温耐酸化性を劣化させる化合物が生
成されやすくなるため好ましくなく、15モル%を越え
ると粒界相の体積が増加し高温特性が劣化するためであ
る。
The specific composition of the starting material is Lu 2 O.
1 to 7 mol% of a Group 3a element oxide of the periodic table containing 3 ,
Especially 3 to 5 mol%, 1 to 15 mol% of silicon oxide, especially 6
.About.12 mol%, the balance being silicon powder, or silicon powder and silicon nitride powder. This is because if the amount of the Group 3a element oxide of the periodic table is less than 1 mol%, the sinterability is deteriorated, and a dense sintered body cannot be obtained. If it exceeds 7 mol%, the voids on the burnt surface are large. This is because the burnt surface strength deteriorates. Further, when the amount of silicon oxide is less than 1 mol%, a compound which deteriorates high temperature oxidation resistance such as melilite which is a compound of silicon nitride and an oxide of a Group 3a element of the periodic table is easily generated at the grain boundary, which is preferable. This is because, if it exceeds 15 mol%, the volume of the grain boundary phase increases and the high temperature characteristics deteriorate.

【0020】また本発明によれば、周期律表第3a族元
素酸化物はLu2 3 のみからなりLu2 3 以外の周
期律表第3a族元素酸化物は存在しないことが最もよい
が、幾分か混入する場合がある。その場合、Lu2 3
以外の周期律表第3a族元素酸化物が周期律表第3a族
元素酸化物全量に対して50モル%以下、特に30モル
%以下、さらに望ましくは10モル%以下であることが
よい。なお、Lu以外の周期律表第3a族元素酸化物と
しては、Y、Yb、Er、Dy、Ho、Tb、Tm、S
cなどの酸化物が挙げられる。
[0020] According to the present invention, the periodic table group 3a element oxide is the best that there is no periodic table group 3a element oxide other than Lu 2 O 3 consists only Lu 2 O 3 but There may be some mixing. In that case, Lu 2 O 3
The content of the group 3a element oxide of the periodic table other than is 50 mol% or less, particularly 30 mol% or less, and more preferably 10 mol% or less with respect to the total amount of the group 3a element oxide of the periodic table. In addition, as oxides of Group 3a elements of the periodic table other than Lu, Y, Yb, Er, Dy, Ho, Tb, Tm and S are used.
Examples thereof include oxides such as c.

【0021】さらに、本発明によれば、焼成後の焼結体
の表面の粒界にLuを含む周期律表第3a族元素、珪素
および酸素からなる結晶を析出させるために、少なくと
も焼成前の成形体表面の前記周期律表第3a族元素酸化
物(RE2 3 )に対する酸化珪素(SiO2 )の比
(SiO2 /RE2 3 )を1.8以上、特に2.0以
上になるように制御することが望ましい。これは、粒界
の組成を決定する大きな要因であり、この比率が1.8
より小さいとLuを含む周期律表第3a族元素、珪素お
よび酸素からなる結晶の析出が望めず、焼き肌面の耐酸
化性を著しく劣化させる要因になるためである。
Further, according to the present invention, in order to precipitate crystals of the Group 3a element of the periodic table containing Lu, silicon and oxygen at the grain boundaries on the surface of the sintered body after firing, at least before firing. The ratio (SiO 2 / RE 2 O 3 ) of silicon oxide (SiO 2 ) to the oxide (RE 2 O 3 ) of the Group 3a element of the periodic table on the surface of the molded body is 1.8 or more, particularly 2.0 or more. It is desirable to control so that This is a major factor that determines the composition of grain boundaries, and this ratio is 1.8.
This is because if it is smaller than this, precipitation of crystals of the Group 3a element of the periodic table containing Lu, silicon and oxygen cannot be expected, which is a factor that significantly deteriorates the oxidation resistance of the burnt surface.

【0022】また、出発原料においては、添加成分とし
てLu2 3 、あるいはLu2 3とLu2 3 以外の
周期律表第3a族元素酸化物の1種以上と酸化珪素から
なる化合物,または窒化珪素とLu2 3 、あるいはL
2 3 とLu2 3 以外の周期律表第3a族元素酸化
物の1種以上と酸化珪素とからなる化合物粉末を用いる
こともできる。
In addition, in the starting material, as a additive component, Lu 2 O 3 , or a compound consisting of Lu 2 O 3 and one or more oxides of Group 3a elements of the periodic table other than Lu 2 O 3 and silicon oxide, Or silicon nitride and Lu 2 O 3 , or L
It is also possible to use a compound powder made of silicon oxide and one or more oxides of Group 3a element of the periodic table other than u 2 O 3 and Lu 2 O 3 .

【0023】さらに、用いる珪素粉末は、窒化を容易に
するためにその平均粒径が10μm以下、特に3μm以
下の微粒のものが望ましい。窒化珪素粉末は、焼結性を
改善するために配合されるものであるが、同時に焼成変
形量が増加するため、窒化珪素粉末の添加量は全体の7
5モル%以下であることが望ましい。その場合、用いる
粉末は、α型、β型のいずれでも使用することができ、
その粒子径は0.4〜1.2μmが適当である。なお、
窒化珪素粉末は、直接窒化法、イミド分解法などのいず
れの製法によるものでも使用できる。
Further, the silicon powder used is preferably fine particles having an average particle size of 10 μm or less, particularly 3 μm or less, in order to facilitate nitriding. Silicon nitride powder is added to improve the sinterability, but at the same time, the amount of deformation of firing increases, so the total amount of silicon nitride powder added is 7%.
It is preferably 5 mol% or less. In that case, the powder used may be either α type or β type,
The particle size is preferably 0.4 to 1.2 μm. In addition,
The silicon nitride powder can be used by any manufacturing method such as a direct nitriding method and an imide decomposition method.

【0024】また、周期律表第3a族元素酸化物として
用いられるLu2 3 は純度90%以上、特に95%以
上で、平均粒径が0.1〜10μm程度であることがよ
い。
Lu 2 O 3 used as an oxide of a Group 3a element of the periodic table preferably has a purity of 90% or more, particularly 95% or more, and an average particle size of about 0.1 to 10 μm.

【0025】酸化珪素粉末は純度99%以上の高純度で
平均粒径が0.2〜5μmであることがよく、例えば気
相法シリカが好適に使用される。
The silicon oxide powder preferably has a high purity of 99% or more and an average particle size of 0.2 to 5 μm. For example, vapor phase silica is preferably used.

【0026】また、本発明によれば、出発原料として前
記配合組成に加え、TiN、TiC,TaC、TaN、
VC、NbC、WC、WSi2 、Mo2 Cなどの周期律
表4a、5a、6a族金属やそれらの炭化物、窒化物、
珪化物、またはWO3 、SiCなどは、分散粒子やウイ
スカーとして本発明の焼結体中に存在しても特性を劣化
させるような影響が小さいことからこれらを周知技術に
基いて適量添加して、特性の改善を行うことも当然可能
である。ただし、系中にAl2 3 、MgO、CaO等
の金属酸化物が存在すると粒界相の結晶化が阻害される
とともに高温強度、高温耐酸化特性を劣化させるために
これらの酸化物は合量で1重量%以下、特に0.5重量
%以下に制御することが望ましい。
According to the present invention, TiN, TiC, TaC, TaN,
Metals such as VC, NbC, WC, WSi 2 , Mo 2 C, etc., of the periodic tables 4a, 5a, 6a and their carbides, nitrides,
Silicides, WO 3 , and SiC, which are present as dispersed particles or whiskers in the sintered body of the present invention, have a small effect of deteriorating the characteristics. Of course, it is also possible to improve the characteristics. However, the presence of metal oxides such as Al 2 O 3 , MgO, and CaO in the system hinders the crystallization of the grain boundary phase and deteriorates the high-temperature strength and high-temperature oxidation resistance, so these oxides are not combined. It is desirable to control the amount to 1% by weight or less, particularly 0.5% by weight or less.

【0027】次に、上記に従い配合された粉末を回転ミ
ル、バレルミル、振動ミルなどにより十分に混合した
後、この混合粉末を公知の成形方法、例えば、プレス成
形、鋳込み成形、押し出し成形、射出成形、排泥成形、
冷間静水圧成形等により所望の形状に成形する。
Next, the powder blended according to the above is thoroughly mixed by a rotary mill, a barrel mill, a vibration mill, etc., and the mixed powder is subjected to a known molding method such as press molding, cast molding, extrusion molding, injection molding. , Sludge molding,
Mold into a desired shape by cold isostatic pressing or the like.

【0028】次に、この成形体を窒素を含有する雰囲気
中で800〜1500℃の温度で加熱処理して成形体中
に含まれる珪素を窒化して窒化珪素を生成させる。この
窒化珪素への変換に際して寸法変化が無く、重量増加す
るために成形体の密度が向上する。この窒化処理後の成
形体の対理論密度比が60%以上となるように制御する
ことが望ましい。この窒化処理において含有される珪素
をすべて窒化させるためには上記温度範囲内において温
度を多段に上昇させつつ徐々に窒化させることが望まし
く、一定温度での窒化処理では珪素の完全な窒化ができ
ない場合がある。また、雰囲気を1〜50atmの窒素
加圧雰囲気で処理し窒化を促進することもできる。
Next, this compact is heat-treated at a temperature of 800 to 1500 ° C. in an atmosphere containing nitrogen to nitride silicon contained in the compact to generate silicon nitride. There is no dimensional change upon conversion into silicon nitride, and the weight increases, so that the density of the molded body improves. It is desirable to control such that the ratio of the theoretical density of the molded body after the nitriding treatment is 60% or more. In order to completely nitrid the silicon contained in this nitriding treatment, it is desirable to raise the temperature in multiple steps within the above temperature range while gradually nitriding, and when the nitriding treatment at a constant temperature cannot completely nitrid the silicon. There is. Further, the nitriding can be promoted by treating the atmosphere with a nitrogen pressure atmosphere of 1 to 50 atm.

【0029】次に、上記のようにして得られた高密度の
成形体を公知の焼成法、例えば、ホットプレス法、常圧
焼成法、窒素ガス加圧焼成法、さらにはこれらの焼成後
に熱間静水圧処理(HIP処理)して対理論密度比95
%以上の緻密な焼結体を得る。この時の焼成温度は高す
ぎると、焼結体表面の分解などが生じ粒径の大きいボイ
ドが発生したり、窒化珪素結晶が粒成長し強度が低下す
るため、1600〜2000℃、特に1650〜195
0℃であることが望ましい。
Next, the high-density molded body obtained as described above is subjected to a known firing method, for example, a hot pressing method, a normal pressure firing method, a nitrogen gas pressure firing method, or a heat treatment after these firing. Hydrostatic pressure treatment (HIP treatment) to theoretical density ratio 95
% To obtain a dense sintered body. If the firing temperature at this time is too high, the surface of the sintered body is decomposed to generate voids having a large grain size, or the silicon nitride crystal grains grow to lower the strength. 195
It is preferably 0 ° C.

【0030】また、上記焼成時の焼結体表面の成分の分
解揮散によるボイドの生成を効果的に抑制するには、焼
成雰囲気中でSiOガスを発生させて焼成することがよ
い。
Further, in order to effectively suppress the generation of voids due to the decomposition and volatilization of the components on the surface of the sintered body during the firing, it is preferable to generate SiO gas in the firing atmosphere and perform firing.

【0031】このSiOガスはSi3 4 とSiO2
の反応によるSi3 4 の分解を抑制する効果があり、
これによりボイドの発生を抑制できる。このSiOガス
は、例えば、焼成炉内に成形体とともにSiO2 粉末、
SiとSiO2 との混合粉末、Si3 4 とSiO2
の混合粉末などを配置することにより、容易に発生させ
ることができる。
This SiO gas has the effect of suppressing the decomposition of Si 3 N 4 due to the reaction between Si 3 N 4 and SiO 2 ,
This can suppress the generation of voids. This SiO gas is, for example, SiO 2 powder in the firing furnace together with the compact,
It can be easily generated by arranging a mixed powder of Si and SiO 2 , a mixed powder of Si 3 N 4 and SiO 2, and the like.

【0032】また、最終的に得られる焼結体の粒界相は
前述したようにLuを含む周期律表第3a族元素、珪素
および酸素からなる結晶を析出させるため、上記焼成工
程における冷却過程、または冷却段階での一時保持、あ
るいは焼成工程終了後の熱処理することが望ましい。具
体的には、焼成温度からの冷却を200℃/hr以下に
徐冷したり、焼成温度からの降温過程や焼成終了後に1
000〜1700℃で窒素雰囲気中で熱処理すればよ
い。
Further, as described above, the grain boundary phase of the finally obtained sintered body precipitates crystals of the Group 3a element of the periodic table containing Lu, silicon and oxygen as described above, so that the cooling process in the firing step is performed. Alternatively, it is desirable to temporarily hold the material in the cooling step, or to perform the heat treatment after the completion of the firing step. Specifically, the cooling from the firing temperature is gradually cooled down to 200 ° C./hr or less, or the temperature lowering process from the firing temperature or after completion of the firing 1
The heat treatment may be performed in a nitrogen atmosphere at 000 to 1700 ° C.

【0033】[0033]

【作用】寸法精度が要求される部材を製造する際、少な
くとも珪素粉末と焼結助剤を含む成形体を窒化して焼成
前の成形体の生密度を高めた後に焼成する方法が知られ
ているが、このような窒化工程を含む製造方法によれ
ば、窒化により形成される窒化珪素が粗粒として存在す
るために、系全体の焼結性が低下する。焼結性を改善す
る方法の1つとしてAl2 3 、MgOなどの焼結助剤
を添加し低融点の液相を生成させて焼成する方法がある
が、これらの焼結助剤の添加は高温特性を劣化させてし
まうため、高温特性を高めるためには焼成温度を高めて
緻密化する必要がある。
When manufacturing a member requiring dimensional accuracy, a method is known in which a compact containing at least silicon powder and a sintering aid is nitrided to increase the green density of the compact before firing and then firing. However, according to the manufacturing method including such a nitriding step, since the silicon nitride formed by nitriding exists as coarse particles, the sinterability of the entire system is deteriorated. As one of the methods for improving the sinterability, there is a method of adding a sintering aid such as Al 2 O 3 or MgO to generate a liquid phase having a low melting point and firing the mixture. Deteriorates the high temperature characteristics, and therefore, it is necessary to raise the calcination temperature and densify it in order to improve the high temperature characteristics.

【0034】このような高温焼成により製造された焼結
体の焼き肌面には、焼結体の粒界成分の分解に起因する
と考えられるボイドが必然的に発生する。このようなボ
イドを有する表面分解層は研磨等により除去すれば特性
への影響はないが、部材が複雑な形状を有する場合には
その表面を研磨することができないため、高温特性が著
しく劣化することになる。
On the burned surface of the sintered body produced by such high temperature firing, voids which are considered to be caused by the decomposition of grain boundary components of the sintered body are inevitably generated. If the surface decomposed layer having such voids is removed by polishing or the like, the characteristics are not affected, but if the member has a complicated shape, the surface cannot be polished, so that the high temperature characteristics are significantly deteriorated. It will be.

【0035】本発明によれば、珪素の窒化工程を含む寸
法精度が要求され、且つ焼き肌面を有する耐熱部材を構
成する焼結体として、焼結助剤としてLu化合物を用
い、窒化後の焼成雰囲気を窒素ガスおよびSiOガスを
含む雰囲気で焼成することにより、さらには、焼結体の
粒界にダイシリケート相やモノシリケート相などのLu
を含む周期律表第3a族元素、珪素および酸素からなる
結晶を析出させることにより、焼結体の粒界成分の高融
点化を図ることができ、且つ焼成雰囲気中にSiOガス
を含むことにより、高温焼成した場合においても粒界成
分の分解によるガスの発生を抑制することができる結
果、焼き肌面においてもボイドが小さい良好な焼き肌面
を有する耐熱部材を得ることができる。
According to the present invention, a Lu compound is used as a sintering aid as a sintered body which constitutes a heat-resistant member having a dimensional accuracy including a silicon nitriding step and having a burnt surface, and after nitriding. By firing the firing atmosphere in an atmosphere containing nitrogen gas and SiO gas, further, a Lu such as a disilicate phase or a monosilicate phase is added to the grain boundary of the sintered body.
By precipitating a crystal composed of an element of Group 3a of the periodic table containing silicon, silicon and oxygen, it is possible to increase the melting point of the grain boundary component of the sintered body, and by including SiO gas in the firing atmosphere. As a result, it is possible to suppress the generation of gas due to the decomposition of the grain boundary components even when it is fired at a high temperature, and as a result, it is possible to obtain a heat-resistant member having a good burnt surface with small voids on the burnt surface.

【0036】このように粒界成分の分解が抑制されボイ
ドの発生を抑制できる理由は、焼結助剤として用いるL
uが、ランタノイド系元素中で最もイオン半径が小さく
他の元素との結合力が大きいため、他の粒界成分である
Si3 4 やSiO2 とのガラスあるいは結晶相として
粒界全体の高融点化が達成されるためと考えられる。
The reason why the decomposition of the grain boundary component is suppressed and the generation of voids can be suppressed is L used as a sintering aid.
Since u has the smallest ionic radius among the lanthanoid-based elements and has the largest binding force with other elements, it is a glass or crystal phase with other grain boundary components such as Si 3 N 4 or SiO 2 and has a high grain boundary. It is considered that the melting point was achieved.

【0037】また、本発明における耐熱部材によれば、
焼結助剤として用いるLuが、高温でも安定した化合物
を形成するため、焼結体の高温強度、耐酸化性および耐
クリープ特性をも高めることができる。
According to the heat resistant member of the present invention,
Since Lu used as a sintering aid forms a stable compound even at high temperatures, the high temperature strength, oxidation resistance and creep resistance of the sintered body can be improved.

【0038】[0038]

【実施例】原料粉末として珪素粉末(平均粒径が3μ
m、酸素量1.1重量%、金属不純物量0.05重量
%)と、窒化珪素粉末(BET比表面積8m2 /g、α
率98%、酸素量1.2重量%、Al、Mg、Ca、F
eなどの金属不純物量0.03重量%)、純度96%の
Lu2 3 粉末(不純物としてYb2 3 、Er2 3
を主として含む))、純度99%以上のLu2 3 以外
の周期律表第3a族元素酸化物粉末を用いて表1に示す
組成になるように調合してイソプロピルアルコール中、
Si3 4 ボールを用いて96時間混合後、バインダー
添加後、1ton/cm2 の圧力で冷間静水圧成形(C
IP)した。得られた成形体を300℃で2時間脱脂し
た後、1200℃−2時間−窒素10気圧、1300℃
−2時間−窒素6気圧、1400℃−2時間−窒素2気
圧のパターンで窒化処理した。この際、重量増加率から
いずれの試料も添加された珪素がすべて窒化されたこと
を確認した。その後、得られた窒化体を炭化珪素の匣鉢
に入れ、1750〜1950℃、窒素圧10気圧下で5
時間焼成した。また、その際にSiOガスを発生させる
ためにSiとSiO2 の混合粉末成形体を適量同時入炉
した。焼成後、1700℃−2000気圧−1時間の熱
間静水圧処理を施し、さらに1400℃で24時間窒素
中で熱処理し粒界の結晶化を行った。
[Example] Silicon powder was used as a raw material powder (average particle size was 3 μm).
m, oxygen amount 1.1% by weight, metal impurity amount 0.05% by weight) and silicon nitride powder (BET specific surface area 8 m 2 / g, α
Rate 98%, oxygen content 1.2% by weight, Al, Mg, Ca, F
Lu 2 O 3 powder with a metal impurity amount such as e of 0.03% by weight) and a purity of 96% (Yb 2 O 3 and Er 2 O 3 as impurities).
)), A powder having a purity of 99% or more other than Lu 2 O 3 and having a composition shown in Table 1 using an oxide powder of a Group 3a element of the periodic table, and prepared in isopropyl alcohol,
After mixing for 96 hours using Si 3 N 4 balls, after adding a binder, cold isostatic pressing at a pressure of 1 ton / cm 2 (C
IP). After degreasing the obtained molded product at 300 ° C. for 2 hours, 1200 ° C.-2 hours-nitrogen 10 atm, 1300 ° C.
-2 hours-nitrogen 6 atm, 1400 [deg.] C.-2 hours-nitrogen 2 atm. At this time, it was confirmed from the weight increase rate that the added silicon was all nitrided in all the samples. Then, the obtained nitride is put in a silicon carbide sagger and heated at 1750 to 1950 ° C. under a nitrogen pressure of 10 atm for 5 times.
Burned for hours. At that time, in order to generate SiO gas, an appropriate amount of a mixed powder compact of Si and SiO 2 was simultaneously charged. After the firing, hot isostatic treatment was performed at 1700 ° C.-2000 atmospheres for 1 hour, and further heat treatment was performed at 1400 ° C. for 24 hours in nitrogen to crystallize the grain boundaries.

【0039】得られた焼結体に対して、寸法を測定し、
収縮率(%)(=焼成前の寸法−焼成後の寸法/焼成前
の寸法)を測定した。また、焼結体の表面部のX線回折
測定を行い、粒界結晶相を同定した。焼結体焼き肌面の
ボイド径は、表面SEM観察から1mm2 当たりに観察
される最大ボイド径を測定し、これを任意の表面の5箇
所を測定し、その平均を算出した。
The dimensions of the obtained sintered body were measured,
The shrinkage ratio (%) (= dimension before firing-dimension after firing / dimension before firing) was measured. Further, the surface portion of the sintered body was subjected to X-ray diffraction measurement to identify the grain boundary crystal phase. As the void diameter of the burned surface of the sintered body, the maximum void diameter observed per 1 mm 2 from the surface SEM observation was measured, and this was measured at 5 positions on any surface, and the average thereof was calculated.

【0040】焼結体の焼き肌面強度測定用としてJIS
R1601にて規程される試験片形状で引っ張り面のみ
を焼き肌面とした試験片に対して室温と1500℃の4
点曲げ強度を、焼結体内部よりJISR1601に準じ
た試験片を切り出し全面研磨したものに対して室温と1
500℃の4点曲げ強度をそれぞれ測定した。
JIS for measuring the strength of the burnt surface of the sintered body
For the test piece shape defined by R1601 and having only the pulling surface as the burnt surface, the room temperature and 1500 ° C
Regarding the point bending strength, a test piece according to JIS R1601 was cut out from the inside of the sintered body and the whole surface was polished.
Four-point bending strength at 500 ° C. was measured.

【0041】また、耐クリープ特性については、150
0℃、4点曲げ荷重350MPa下で破断に至るまでの
時間を最大100時間まで測定した。耐酸化性について
は、未研磨試験片を用いて1500℃空気中に100時
間暴露し、重量増加量と試料の表面積から単位表面積当
たりの重量変化を計算した。いずれの結果も表2に示し
た。
The creep resistance is 150
The time until breakage was measured at 0 ° C. under a 4-point bending load of 350 MPa up to 100 hours. Regarding the oxidation resistance, the unpolished test piece was exposed to 1500 ° C. air for 100 hours, and the weight change per unit surface area was calculated from the weight increase amount and the surface area of the sample. The results are shown in Table 2.

【0042】[0042]

【表1】 [Table 1]

【0043】[0043]

【表2】 [Table 2]

【0044】表1、2から明らかなように、焼結体の焼
き肌面の最大ボイド径が30μm以下の焼結体は、30
μmを越える試料No.1〜3、13、16に比較して、
焼き肌面強度に優れるものであった。このボイドと焼結
助剤の種類との関係についてみると、Lu2 3 を含ま
ない他の周期律表第3a族元素酸化物を単独添加した試
料No,1〜3、およびLu量の少ないNo.13は、いず
れも最大ボイド径が30μmを越え焼き肌面の特性が低
いのに対して、Luを用いることによりボイドの発生が
低減され、焼き肌面の機械的強度が改善されると共に1
500℃強度も改善されることがわかる。また、周期律
表第3a族元素酸化物の合計量が7モル%を越える場合
(試料No,16)においても大きなボイドが発生しやす
く焼き肌面強度が低いものであった。
As is clear from Tables 1 and 2, the sintered body having a maximum void diameter of 30 μm or less on the burnt surface of the sintered body is 30
Compared with samples Nos. 1 to 3, 13 and 16 exceeding μm,
It was excellent in baked surface strength. Regarding the relationship between this void and the type of sintering aid, samples No. 1 to 3 to which other oxides of Group 3a group 3a of the periodic table containing no Lu 2 O 3 were added alone, and the amount of Lu was small. In No. 13, the maximum void diameter exceeds 30 μm and the characteristics of the burnt surface are low, whereas the use of Lu reduces the occurrence of voids and improves the mechanical strength of the burnt surface. 1
It can be seen that the 500 ° C. strength is also improved. Also, when the total amount of Group 3a element oxides in the periodic table exceeds 7 mol% (Sample No. 16), large voids are easily generated and the burnt surface strength is low.

【0045】さらに、本発明試料中、粒界の結晶相につ
いて試料No.14とNo.10〜12とを比較すると粒界
にアパタイト相が存在する場合(No.14)に比較して
アパタイト相が存在しない方(No.10〜12)が高温
での耐酸化性に優れることがわかる。さらに、原料とし
て珪素粉末を含まない試料No.7では寸法変化が20%
と大きく寸法精度が要求される部材には適さないもので
あった。
Further, in the sample of the present invention, comparing the crystal phase of the grain boundary between Sample No. 14 and No. 10 to 12, the apatite phase is compared with the case where the apatite phase exists in the grain boundary (No. 14). It can be seen that the one without (No. 10 to 12) has excellent oxidation resistance at high temperature. Furthermore, in sample No. 7 containing no silicon powder as a raw material, the dimensional change is 20%.
Therefore, it was not suitable for members that required large dimensional accuracy.

【0046】[0046]

【発明の効果】以上詳述したように、本発明によれば、
寸法精度が要求される耐熱部材において、焼き肌面にお
ける室温から高温、特に1500℃まで強度劣化が小さ
く、且つ高温での耐クリープ特性を改善することができ
る。これにより、表面の研磨が難しい複雑形状のセラミ
ックガスタービン部品やセラミックターボロータ等の熱
機関用構造材料をはじめとし、各種耐熱性が要求される
とともに、複雑形状を有するとともに高い寸法精度の要
求される部材に適用することができる。
As described in detail above, according to the present invention,
In a heat resistant member that requires dimensional accuracy, strength deterioration is small from room temperature to high temperature, especially 1500 ° C. on the burnt surface, and creep resistance at high temperature can be improved. As a result, various heat resistance is required, including complicated materials such as ceramic gas turbine parts with complicated shapes whose surface is difficult to polish, ceramic turbo rotors, and other structural materials, as well as complicated shapes and high dimensional accuracy. It can be applied to a member.

【図面の簡単な説明】[Brief description of drawings]

【図1】窒化珪素質焼結体の焼き肌面におけるボイドが
発生した表面性状を示す電子顕微鏡写真である。
FIG. 1 is an electron micrograph showing a surface texture in which voids are generated on a burnt surface of a silicon nitride sintered body.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】少なくとも珪素粉末と周期律表第3a族元
素化合物を含む成形体を窒素を含む雰囲気で熱処理して
前記珪素を窒化した後、焼成することにより得られた窒
化珪素質焼結体からなる耐熱部材であって、該耐熱部材
が焼き肌面を有し、該焼き肌面における最大ボイド径が
30μm以下であることを特徴とする耐熱部材。
1. A silicon nitride sintered body obtained by subjecting a molded body containing at least silicon powder and a compound of Group 3a element of the periodic table to heat treatment in an atmosphere containing nitrogen to nitride the silicon and then firing the silicon. A heat-resistant member comprising the heat-resistant member having a burnt surface, and the maximum void diameter on the burnt surface is 30 μm or less.
【請求項2】前記周期律表第3a族元素化合物がLu
(ルテチウム)化合物を含み、且つ焼結体表面の粒界に
周期律表第3a族元素、珪素および酸素からなる結晶相
が存在する請求項1記載の耐熱部材。
2. The compound of Group 3a element of the periodic table is Lu
The heat-resistant member according to claim 1, which contains a (lutetium) compound and has a crystal phase composed of an element of Group 3a of the periodic table, silicon, and oxygen at a grain boundary on the surface of the sintered body.
【請求項3】少なくともLu(ルテチウム)を含む周期
律表第3a族元素酸化物を1〜7モル%、酸化珪素を1
〜15モル%、残部が珪素粉末、あるいは珪素粉末と窒
化珪素粉末からなり、前記周期律表第3a族元素酸化物
のうち50%以上がLuの酸化物である成形体を800
〜1500℃の窒素含有雰囲気中で熱処理して前記珪素
を窒化した後、さらに窒素およびSiOガスを含有する
非酸化性雰囲気中で焼成し、少なくとも焼結体表面の粒
界に周期律表第3a族元素、珪素および酸素からなる結
晶相を析出させたことを特徴とする窒化珪素質耐熱部材
の製造方法。
3. 1 to 7 mol% of an oxide of a Group 3a element of the periodic table containing at least Lu (lutetium) and 1 of silicon oxide.
800 to 150% by mol, the balance being silicon powder, or silicon powder and silicon nitride powder, and 50% or more of the oxide of Group 3a element of the periodic table being Lu oxide.
After nitriding the silicon by heat treatment in a nitrogen-containing atmosphere at ˜1500 ° C., firing is further performed in a non-oxidizing atmosphere containing nitrogen and SiO gas, and at least a grain boundary on the surface of the sintered body has a periodic table 3a. A method for manufacturing a silicon nitride heat-resistant member, which comprises depositing a crystal phase comprising a group element, silicon and oxygen.
JP11841094A 1994-05-31 1994-05-31 Method for manufacturing silicon nitride heat-resistant member Expired - Fee Related JP3231944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11841094A JP3231944B2 (en) 1994-05-31 1994-05-31 Method for manufacturing silicon nitride heat-resistant member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11841094A JP3231944B2 (en) 1994-05-31 1994-05-31 Method for manufacturing silicon nitride heat-resistant member

Publications (2)

Publication Number Publication Date
JPH07330436A true JPH07330436A (en) 1995-12-19
JP3231944B2 JP3231944B2 (en) 2001-11-26

Family

ID=14735961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11841094A Expired - Fee Related JP3231944B2 (en) 1994-05-31 1994-05-31 Method for manufacturing silicon nitride heat-resistant member

Country Status (1)

Country Link
JP (1) JP3231944B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001130967A (en) * 1999-10-29 2001-05-15 Ngk Spark Plug Co Ltd Silicon nitride-based sintered body, method for producing the same, ceramic heater by using the silicon nitride- based sintered body, and glow plug having the ceramic heater
JP2012106920A (en) * 2010-10-27 2012-06-07 Kyocera Corp Member for molten metal, and heater tube
JP2014129223A (en) * 2012-11-30 2014-07-10 Kyocera Corp Ceramic sintered compact and abrasion-resistant component possessing the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6410651B1 (en) 1997-07-23 2002-06-25 Pirelli Cavi E Sistemi S.P.A. Cables with a halogen-free recyclable coating comprising polypropylene and an ethylene copolymer having high structural uniformity
US6372344B1 (en) 1997-07-23 2002-04-16 Pirelli Cavi E Sistemi S.P.A. Cables with a halogen-free recyclable coating comprising polypropylene and an ethylene copolymer having high elastic recovery
US6552112B1 (en) 1997-07-23 2003-04-22 Pirelli Cavi E Sistemi S.P.A. Cable with self-extinguishing properties and flame-retardant composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001130967A (en) * 1999-10-29 2001-05-15 Ngk Spark Plug Co Ltd Silicon nitride-based sintered body, method for producing the same, ceramic heater by using the silicon nitride- based sintered body, and glow plug having the ceramic heater
JP2012106920A (en) * 2010-10-27 2012-06-07 Kyocera Corp Member for molten metal, and heater tube
JP2014129223A (en) * 2012-11-30 2014-07-10 Kyocera Corp Ceramic sintered compact and abrasion-resistant component possessing the same

Also Published As

Publication number Publication date
JP3231944B2 (en) 2001-11-26

Similar Documents

Publication Publication Date Title
JP3231944B2 (en) Method for manufacturing silicon nitride heat-resistant member
JP3270792B2 (en) Method for producing silicon nitride based sintered body
JP3152790B2 (en) Method for producing silicon nitride based sintered body
JP2000247748A (en) High-toughness silicon nitride-based sintered compact
JP3124865B2 (en) Silicon nitride sintered body and method for producing the same
JP3667145B2 (en) Silicon nitride sintered body
JP3236733B2 (en) Silicon nitride sintered body
JPH05139840A (en) Siliceous nitride sintered compact and its production
JP2892186B2 (en) Method for producing silicon nitride-silicon carbide composite sintered body
JP2746761B2 (en) Method for producing silicon nitride-silicon carbide composite sintered body
JP2801447B2 (en) Method for producing silicon nitride based sintered body
JP3207045B2 (en) Method for producing silicon nitride based sintered body
JP3236739B2 (en) Silicon nitride sintered body and method for producing the same
JP2724768B2 (en) Silicon nitride sintered body and method for producing the same
JP3034099B2 (en) Silicon nitride sintered body and method for producing the same
JP2694369B2 (en) Silicon nitride sintered body
JP3207065B2 (en) Silicon nitride sintered body
JP2789133B2 (en) Silicon nitride sintered body and method for producing the same
JP3810236B2 (en) Silicon nitride sintered body and manufacturing method thereof
JPH0840774A (en) Silicon nitride sintered product
JP3237963B2 (en) Silicon nitride sintered body and method for producing the same
JP3207044B2 (en) Silicon nitride sintered body
JPH10212167A (en) Silicon nitride-base composite sintered compact and its production
JP2783711B2 (en) Silicon nitride sintered body
JP2687633B2 (en) Method for producing silicon nitride sintered body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees