JP3124865B2 - Silicon nitride sintered body and method for producing the same - Google Patents

Silicon nitride sintered body and method for producing the same

Info

Publication number
JP3124865B2
JP3124865B2 JP05101335A JP10133593A JP3124865B2 JP 3124865 B2 JP3124865 B2 JP 3124865B2 JP 05101335 A JP05101335 A JP 05101335A JP 10133593 A JP10133593 A JP 10133593A JP 3124865 B2 JP3124865 B2 JP 3124865B2
Authority
JP
Japan
Prior art keywords
rare earth
earth element
oxide
silicon
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05101335A
Other languages
Japanese (ja)
Other versions
JPH06305840A (en
Inventor
祥二 高坂
武郎 福留
紀彰 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14297971&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3124865(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP05101335A priority Critical patent/JP3124865B2/en
Publication of JPH06305840A publication Critical patent/JPH06305840A/en
Application granted granted Critical
Publication of JP3124865B2 publication Critical patent/JP3124865B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、室温から高温までの強
度特性に優れ、かつ高い熱伝導率を有し、耐熱衝撃抵抗
に優れた、特に自動車用部品やガスタ−ビンエンジン用
部品等に使用される窒化珪素質焼結体及びその製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is applicable to parts for automobiles and gas turbine engines, which have excellent strength characteristics from room temperature to high temperature, high thermal conductivity, and excellent thermal shock resistance. The present invention relates to a silicon nitride sintered body used and a method for producing the same.

【0002】[0002]

【従来の技術】従来より、窒化珪素質焼結体は、耐熱
性、耐熱衝撃性及び耐酸化性等の特性に優れ、高強度か
つ比較的軽量であることからエンジニアリングセラミッ
クス、とりわけタ−ボロ−タ−をはじめとする各種熱機
関用部品としての応用が進められている。
2. Description of the Related Art Conventionally, silicon nitride sintered bodies have excellent properties such as heat resistance, thermal shock resistance and oxidation resistance, and are high in strength and relatively lightweight. Applications as parts for various heat engines, such as turbines, are being promoted.

【0003】一般に、前記窒化珪素質焼結体は、窒化珪
素原料粉末に対して焼結助剤として酸化アルミニウムあ
るいは酸化マグネシウム等を添加することにより高密度
化及び高強度化を実現しようとしていた。
In general, the above-mentioned silicon nitride sintered body has been intended to realize high density and high strength by adding aluminum oxide or magnesium oxide as a sintering aid to silicon nitride raw material powder.

【0004】しかしながら、近年、窒化珪素質焼結体に
対する使用条件がより高温となり、高温下での強度及び
耐酸化性の更なる改善が要求されるようになってきた。
[0004] In recent years, however, the operating conditions for silicon nitride sintered bodies have become higher, and further improvements in strength and oxidation resistance at high temperatures have been required.

【0005】そこで、係る要求に応えて高密度かつ高強
度の窒化珪素質焼結体を作製するために、窒化珪素原料
に焼結助剤としてイットリア等の希土類元素酸化物(R
23 )や酸化アルミニウム等を添加することが特公
昭52−3649号公報や特公昭58−5190号公報
等で提案されてきた。
Therefore, in order to produce a high-density and high-strength silicon nitride sintered body in response to such demands, a rare earth element oxide (R) such as yttria is added to a silicon nitride raw material as a sintering aid.
The addition of E 2 O 3 ) or aluminum oxide has been proposed in Japanese Patent Publication No. 52-3649 and Japanese Patent Publication No. 58-5190.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前述の
ように窒化珪素原料の焼結助剤として希土類元素酸化物
(RE2 3 )や酸化アルミニウム等を用いて高密度化
し、高温での高強度化を実現しようとすると、前記焼結
助剤の添加量を極力少なくして非酸化性ガス中、150
0〜1850℃もの高温下、高圧の雰囲気加圧焼成をし
なければならず、製造コストが著しく増大するという課
題があった。
However, as described above, the density is increased by using a rare earth element oxide (RE 2 O 3 ), aluminum oxide or the like as a sintering aid for the silicon nitride raw material, and the high strength at a high temperature is obtained. In order to realize the oxidation, the addition amount of the sintering aid is reduced as much as
At a high temperature of 0 to 1850 ° C., high-pressure atmospheric pressure sintering has to be performed, and there has been a problem that the manufacturing cost is significantly increased.

【0007】また、逆に、製造コストを低減するために
焼成温度を下げて低圧の雰囲気焼成を実現しようとする
と、焼結助剤の添加量を増加せざるを得ず、その結果、
所期の強度や熱衝撃抵抗が得られず実用的でないという
課題があった。
On the other hand, if the firing temperature is lowered to realize low-pressure atmosphere firing in order to reduce the manufacturing cost, the amount of the sintering aid added must be increased.
There was a problem that the desired strength and thermal shock resistance could not be obtained, and it was not practical.

【0008】[0008]

【発明の目的】本発明は、前記課題に鑑みてなされたも
ので、その目的は、低い焼成温度と低圧の雰囲気焼成を
可能とし、室温から高温まで自動車用部品やガスタ−ビ
ンエンジン用部品等として使用するに充分な機械的特
性、即ち、室温から800℃までの強度が実用的なレベ
ルで確保でき、かつ高い熱伝導率を有する耐熱衝撃抵抗
に優れた窒化珪素質焼結体及びその製造方法を提供する
ことにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and has as its object to enable low-temperature and low-pressure atmosphere firing, and to provide components for automobiles and gas turbine engines from room temperature to high temperature. Mechanical properties sufficient for use as a material, that is, a strength from room temperature to 800 ° C. can be ensured at a practical level, and a silicon nitride-based sintered body having high thermal conductivity and excellent thermal shock resistance and production thereof It is to provide a method.

【0009】[0009]

【課題を解決するための手段】本発明の窒化珪素質焼結
体及びその製造方法は、焼結体の機械的、熱的特性を向
上するために、Si6-Z AlZ Z 8-Z で表されるβ
−サイアロンの結晶相を主たる結晶相とし、その粒界相
を軽希土類元素、重希土類元素、珪素、アルミニウム、
酸素及び窒素で構成し、β−サイアロンの組成式中のz
の値を0.05〜0.35の範囲に特定し、かつ室温の
熱伝導率が15W/m・K以上となるように焼結体の主
たる結晶相と該結晶相の粒界に存在する副相を制御して
成ることを特徴とするものである。
Means for Solving the Problems The silicon nitride sintered body and the method of manufacturing the same according to the present invention are intended to improve the mechanical and thermal properties of the sintered body by using Si 6 -Z Al Z O Z N 8. Β expressed by -Z
The crystal phase of sialon as the main crystal phase and its grain boundary phase as light rare earth element, heavy rare earth element, silicon, aluminum,
Composed of oxygen and nitrogen, z in the composition formula of β-sialon
Is specified in the range of 0.05 to 0.35, and exists in the main crystal phase of the sintered body and the grain boundaries of the crystal phase so that the thermal conductivity at room temperature is 15 W / m · K or more. It is characterized by controlling the sub-phase.

【0010】その製造方法は、窒化珪素量と酸化アルミ
ニウムの合計量に対する酸化アルミニウム量のモル分率
が1.2〜8.4となるように調合した窒化珪素と、軽
希土類元素酸化物と重希土類元素酸化物と酸化珪素及び
/または全希土類元素酸化物と酸化珪素から合成したR
2 Si2 7 (RE:希土類元素)と、酸化アルミニ
ウムから成る粉末混合物を成形した後、焼結するもので
ある。
[0010] The production method comprises the steps of preparing silicon nitride prepared so that the molar fraction of the amount of aluminum oxide to the total amount of silicon nitride and aluminum oxide is 1.2 to 8.4; R synthesized from rare earth element oxide and silicon oxide and / or total rare earth element oxide and silicon oxide
A powder mixture composed of E 2 Si 2 O 7 (RE: rare earth element) and aluminum oxide is molded and then sintered.

【0011】または、珪素の窒化珪素換算量及び窒化珪
素量と酸化アルミニウムの合計量に対する酸化アルミニ
ウム量のモル分率が1.2〜8.4となるように調合し
た珪素及び窒化珪素と、軽希土類元素酸化物と重希土類
元素酸化物と酸化珪素及び/または全希土類元素酸化物
と酸化珪素から合成したRE2 Si2 7 (RE:希土
類元素)と、酸化アルミニウムから成る粉末混合物を成
形した後、800℃〜1500℃の窒素含有雰囲気中で
前記珪素を窒化処理した後、焼結することを特徴とする
ものである。
[0011] Alternatively, silicon and silicon nitride prepared so that the amount of silicon oxide in terms of silicon nitride and the mole fraction of aluminum oxide with respect to the total amount of silicon nitride and aluminum oxide are 1.2 to 8.4, A powder mixture comprising RE 2 Si 2 O 7 (RE: rare earth element) synthesized from rare earth element oxide, heavy rare earth element oxide, silicon oxide and / or all rare earth element oxide and silicon oxide, and aluminum oxide was formed. Thereafter, the silicon is nitrided in a nitrogen-containing atmosphere at 800 ° C. to 1500 ° C., and then sintered.

【0012】[0012]

【作用】前記構成によれば、粒界相を軽希土類元素酸化
物と重希土類元素酸化物を同時に用いて形成することか
ら、双方の希土類元素のイオン半径差が大であり、共晶
反応を起こして窒化珪素粒子の間隙に形成される液相の
融点を低下させ、再配列による緻密化が進行して低い温
度で緻密な焼結体が得られるようになる。
According to the above construction, since the grain boundary phase is formed by using both the light rare earth element oxide and the heavy rare earth element oxide, the difference in ionic radius between the two rare earth elements is large, and the eutectic reaction can be prevented. This raises the melting point of the liquid phase formed in the gaps between the silicon nitride particles, and the densification by rearrangement proceeds, so that a dense sintered body can be obtained at a low temperature.

【0013】また、β−サイアロンの組成式中のzの値
を0.05〜0.35の範囲となるように制御するする
ことにより、β−サイアロンの優れた特徴を維持したま
ま高い熱伝導率が実現でき、その結果、熱衝撃破壊抵抗
係数が高くなって耐熱衝撃抵抗が高くなる。
Further, by controlling the value of z in the composition formula of β-sialon to be in the range of 0.05 to 0.35, high heat conductivity can be maintained while maintaining the excellent characteristics of β-sialon. Rate can be realized, and as a result, the thermal shock fracture resistance coefficient increases and the thermal shock resistance increases.

【0014】一方、焼結過程では、軽希土類元素、重希
土類元素、珪素、アルミニウム、酸素及び窒素から構成
される液相を通して、窒化珪素粒子が溶解−再析出段階
で液相中のアルミニウム元素と酸素元素を取り込みなが
ら焼結が進行して、組成式がSi6-Z AlZ Z 8-Z
で表されるβ−サイアロンが生成される。
On the other hand, in the sintering process, silicon nitride particles pass through a liquid phase composed of a light rare earth element, a heavy rare earth element, silicon, aluminum, oxygen and nitrogen, and dissolve and re-precipitate with aluminum element in the liquid phase. Sintering proceeds while taking in the oxygen element, and the composition formula is Si 6-Z Al Z O Z N 8-Z
Β-sialon represented by

【0015】[0015]

【実施例】以下、本発明の窒化珪素質焼結体及びその製
造方法を実施例に基づき詳細に説明する。本発明に係る
窒化珪素質焼結体は、組成上はSi6-Z AlZ Z
8-Z で表されるβ−サイアロンを主成分とし、軽希土類
元素、重希土類元素、珪素、アルミニウム、酸素及び窒
素とから構成される粒界相を持っており、本発明では軽
希土類元素と重希土類元素の両方を含有することが特徴
となるものであり、前記軽希土類元素とは、原子番号5
7〜63のランタニド系元素であり、具体的にはLa、
Ce、Nd、Sm等であり、とりわけ酸化物の吸湿性が
小さいSmが望ましく、一方、重希土類元素とは、原子
番号39のYと原子番号64〜71のランタニド系元素
であり、具体的にはEr、Yb、Lu等があるが、一般
にはYが好ましい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the silicon nitride sintered body of the present invention and a method for producing the same will be described in detail with reference to embodiments. The silicon nitride based sintered body according to the present invention has a composition of Si 6-Z Al Z O Z N
Β- Sialon represented by 8-Z as a main component, has a grain boundary phase composed of light rare earth element, heavy rare earth element, silicon, aluminum, oxygen and nitrogen.In the present invention, light rare earth element and It is characterized in that it contains both heavy rare earth elements, and the light rare earth elements are atomic number 5
7 to 63 lanthanide elements, specifically La,
Ce, Nd, Sm, etc., and particularly Sm, which has a small hygroscopic property of the oxide, are desirable. On the other hand, heavy rare earth elements are Y having an atomic number of 39 and a lanthanide element having an atomic number of 64 to 71. Is Er, Yb, Lu, etc., but Y is generally preferable.

【0016】即ち、本発明では、軽希土類元素と重希土
類元素を同時に用いることが必要であり、例えば、軽希
土類元素酸化物同士、または重希土類元素元素酸化物同
士を用いた場合、各希土類元素同士のイオン半径が近似
していることから、希土類元素酸化物同士で固溶体を形
成するだけで、大幅な融点の低下は期待できない。
That is, in the present invention, it is necessary to use a light rare earth element and a heavy rare earth element simultaneously. For example, when light rare earth element oxides are used or heavy rare earth element oxides are used, each rare earth element is used. Since the ionic radii of the two are close to each other, a significant decrease in the melting point cannot be expected only by forming a solid solution between the rare earth element oxides.

【0017】従って、軽希土類元素酸化物と重希土類元
素酸化物を同時に用いることによって、共晶反応を起こ
して融点を低下させ、再配列による緻密化が進行して窒
化珪素粒子の粒成長を抑制でき、低い焼成温度で緻密か
つ高強度な焼結体を得る事ができる。
Therefore, by using the light rare earth element oxide and the heavy rare earth element oxide at the same time, a eutectic reaction is caused to lower the melting point, and the densification by rearrangement proceeds to suppress the grain growth of the silicon nitride particles. As a result, a dense and high-strength sintered body can be obtained at a low firing temperature.

【0018】尚、前記軽希土類元素酸化物と重希土類元
素酸化物の共晶組成は、50モル%近傍に存在するた
め、両者の組成比は1近傍が好ましい。
Since the eutectic composition of the light rare earth element oxide and the heavy rare earth element oxide is in the vicinity of 50 mol%, the composition ratio of both is preferably in the vicinity of 1.

【0019】また、前記焼結体中の軽希土類元素と重希
土類元素の酸化物換算量の合計が10モル%を越える
と、焼結体中に占める粒界相の体積分率が増加して高温
強度を低下させると共に熱伝導率を低下させてしまう恐
れがあるため、前記酸化物換算量の合計は1〜10モル
%、更に3〜6モル%がより望ましい。
If the total amount of the oxides of the light rare earth element and heavy rare earth element in the sintered body exceeds 10 mol%, the volume fraction of the grain boundary phase in the sintered body increases. Since the high-temperature strength and the thermal conductivity may be reduced, the total amount in terms of oxide is preferably 1 to 10 mol%, more preferably 3 to 6 mol%.

【0020】次に、β−サイアロンの組成式中のzの値
が、0.05未満では、β−サイアロンの優れた特徴が
引き出せなく、逆にzが0.35を越えると焼結体の熱
伝導率が低下してしまうため、前記zの値は0.05〜
0.35であることが必要となる。
Next, if the value of z in the composition formula of β-sialon is less than 0.05, the excellent characteristics of β-sialon cannot be brought out. Since the thermal conductivity is reduced, the value of z is 0.05 to
It needs to be 0.35.

【0021】即ち、セラミックスは結晶と粒界相から構
成される多結晶体であり、熱伝導率を低下させるフォノ
ン散乱の要因が多数存在する。前記β−サイアロン焼結
体の熱伝導率は、粒子内部や粒界に残存している不純物
量、結晶の完全性、微構造に大きく依存しており、特
に、結晶内のAlとOの固溶量の増加とともに熱伝導率
は低下する。
That is, ceramics is a polycrystal composed of a crystal and a grain boundary phase, and there are many factors of phonon scattering that lower the thermal conductivity. The thermal conductivity of the β-sialon sintered body largely depends on the amount of impurities remaining inside the grains and grain boundaries, the integrity of the crystal, and the microstructure. The thermal conductivity decreases as the amount of solution increases.

【0022】また、熱衝撃破壊抵抗係数は下記の式より
求めることができる。 R’=S(1−ν)k/Eα (R’は熱衝撃破壊抵抗係数、Sは抗折強度、Eはヤン
グ率、νはポアソン比、kは熱伝導率、αは熱膨張率で
ある。)ここではセラミック焼結体のヤング率、ポアソ
ン比、熱膨張率は、粒界相の量が極端に多くならない限
り、ほぼ一定である。しかし、抗折強度と熱伝導率は焼
結体により大幅に変化する。特に、高強度材料において
は前記式から明白なように、熱伝導率を向上させること
で熱衝撃破壊抵抗係数を高めることができ、ひいては、
耐熱衝撃抵抗を高めることができる。
Further, the thermal shock fracture resistance coefficient can be obtained from the following equation. R ′ = S (1-ν) k / Eα (R ′ is thermal shock resistance, S is bending strength, E is Young's modulus, ν is Poisson's ratio, k is thermal conductivity, and α is thermal expansion coefficient. Here, the Young's modulus, Poisson's ratio, and coefficient of thermal expansion of the ceramic sintered body are almost constant unless the amount of the grain boundary phase becomes extremely large. However, the bending strength and the thermal conductivity vary greatly depending on the sintered body. In particular, in a high-strength material, as is clear from the above equation, it is possible to increase the thermal shock resistance by improving the thermal conductivity.
Thermal shock resistance can be increased.

【0023】次に、本発明の窒化珪素質焼結体を製造す
る方法について説明する。まず、原料粉末として窒化珪
素粉末または珪素粉末及び窒化珪素粉末を主成分とし、
添加成分として軽希土類元素酸化物、重希土類元素酸化
物、酸化珪素及び酸化アルミニウムの粉末を用いる他
に、あるいは軽希土類元素酸化物、重希土類元素酸化物
及び酸化珪素及び/または全希土類元素酸化物と酸化珪
素から合成したRE2 Si2 7 (RE:希土類元素)
と酸化アルミニウムの粉末を用いることもできる。
Next, a method for producing the silicon nitride sintered body of the present invention will be described. First, a silicon nitride powder or a silicon powder and a silicon nitride powder as main components as raw material powders,
In addition to using light rare earth element oxides, heavy rare earth element oxides, silicon oxide and aluminum oxide powders as additive components, or light rare earth element oxides, heavy rare earth element oxides, silicon oxide and / or all rare earth element oxides RE 2 Si 2 O 7 synthesized from silicon and silicon oxide (RE: rare earth element)
And aluminum oxide powder can also be used.

【0024】前記窒化珪素粉末は、α−Si3 4 、β
−Si3 4 のいずれでも良く、その平均粒径は0.4
〜1.2μmが好ましく、また、前記珪素粉末は窒化を
容易にするためにその平均粒径が10μm以下、とりわ
け3μm以下の微粒のものが好適である。
The silicon nitride powder comprises α-Si 3 N 4 , β
—Si 3 N 4 , and the average particle size is 0.4
The average particle diameter of the silicon powder is preferably 10 μm or less, particularly preferably 3 μm or less in order to facilitate nitriding.

【0025】前記主成分として珪素粉末を用いると、後
述する窒化工程では寸法変化が無くて重量が増加するた
め、成形体の密度が向上するとともに焼成時の寸法収縮
量を小さくでき、焼結体の寸法精度を向上できる。但
し、珪素粉末を多量に含むと後述する窒化工程におい
て、添加された珪素粉末を全て窒化することが困難とな
り、逆に窒化珪素質焼結体としての特性が低下する恐れ
があるため、珪素粉末の量は、窒化珪素粉末量に対する
珪素粉末の窒化珪素換算量の比率が1以下であることが
好ましい。
When silicon powder is used as the main component, the weight is increased without dimensional change in the nitriding step to be described later, so that the density of the molded body is improved and the dimensional shrinkage amount during firing can be reduced. Dimensional accuracy can be improved. However, if a large amount of silicon powder is contained, it is difficult to nitride all of the added silicon powder in the nitriding step described later, and on the contrary, the properties of the silicon nitride-based sintered body may be deteriorated. It is preferable that the ratio of the amount of silicon powder in terms of silicon nitride to the amount of silicon nitride powder be 1 or less.

【0026】本発明による窒化珪素と酸化アルミニウム
の反応による前記組成式のβ−サイアロンの生成反応は
下記のように考えられる。
The formation reaction of β-sialon of the above composition formula by the reaction between silicon nitride and aluminum oxide according to the present invention is considered as follows.

【0027】 〔2−(z/4)〕Si3 4 +(z/2)Al2 3 →Si6-z AlZ Z 8-Z +(z/4)SiO2 従って、前記zの値を0.05〜0.35の範囲に制御
するためには、珪素の窒化珪素換算量及び/または窒化
珪素量の合計とアルミニウムの酸化物換算量の合計に対
するアルミニウムの酸化物換算量のモル分率を1.2〜
8.4に調製、混合する必要がある。
[2- (z / 4)] Si 3 N 4 + (z / 2) Al 2 O 3 → Si 6 -z Al Z O Z N 8-Z + (z / 4) SiO 2 In order to control the value of z in the range of 0.05 to 0.35, the amount of aluminum oxide equivalent to the total amount of silicon nitride equivalent and / or the sum of silicon nitride equivalent and aluminum oxide equivalent is calculated. From 1.2 to
It is necessary to prepare and mix to 8.4.

【0028】かくして得られた混合粉末を公知の成形方
法、例えば、プレス成形、鋳込み成形、押出し成形、射
出成形や冷間静水圧成形等により所望の形状に成形す
る。
The mixed powder thus obtained is molded into a desired shape by a known molding method, for example, press molding, casting molding, extrusion molding, injection molding, cold isostatic pressing and the like.

【0029】次いで、成形体に珪素粉末を含有する場合
には、該成形体を窒素含有雰囲気中、800℃〜150
0℃の温度で窒化処理して窒化珪素とする。尚、前記窒
化処理により含有する珪素粉末をすべて窒化させるに
は、前記温度範囲内で温度を小刻みに上昇させながら、
徐々に窒化させていくことが好ましい。
Next, when the compact contains silicon powder, the compact is placed in a nitrogen-containing atmosphere at 800 ° C. to 150 ° C.
Nitriding is performed at a temperature of 0 ° C. to obtain silicon nitride. In order to nitride all of the silicon powder contained by the nitriding treatment, the temperature is gradually increased within the temperature range,
It is preferable to gradually nitride.

【0030】その後、例えばホットプレス方法、常圧焼
成、窒素ガスを用いた加圧焼成、更には前記焼成後のH
IP焼成や、ガラスシ−ルHIP焼成等、公知の焼成方
法により緻密な焼結体を得る。
Thereafter, for example, a hot pressing method, normal pressure firing, pressure firing using nitrogen gas, and H
A dense sintered body is obtained by a known firing method such as IP firing or glass seal HIP firing.

【0031】その際、焼成温度が高過ぎると主相である
β−サイアロン結晶が粒成長して強度が低下するため、
焼成温度は1850℃以下、とりわけ1600〜175
0℃の温度とし、窒素ガス含有非酸化性雰囲気中で焼成
することが望ましい。
At this time, if the firing temperature is too high, the β-sialon crystal, which is the main phase, grows and the strength decreases,
The sintering temperature is 1850 ° C. or less, especially 1600 to 175
It is desirable to set the temperature to 0 ° C. and to fire in a non-oxidizing atmosphere containing nitrogen gas.

【0032】また、周期律表第4a、5a、6a族元素
金属や、それらの炭化物、窒化物、珪化物や、炭化珪素
等を、周知技術により分散粒子やウィスカ−として窒化
珪素質焼結体中に存在させて複合化し、窒化珪素質焼結
体の特性を改善することも可能である。
Further, a silicon nitride sintered body can be obtained by dispersing particles or whiskers of a metal of Group 4a, 5a, or 6a of the periodic table or a carbide, nitride, silicide, or silicon carbide thereof by a known technique. It is also possible to improve the properties of the silicon nitride-based sintered body by compounding them by being present in them.

【0033】(実施例1)BET比表面積9m2 /g、
α率98%、酸素量1.2重量%の窒化珪素(Si3
4 )と各種の軽希土類元素酸化物(L−RE2 3 )、
重希土類元素酸化物(H−RE2 3 )、酸化珪素(S
iO2 )、酸化アルミニウム(Al2 3)の粉末を用
いて、表1に示す組成となるように調合後、1t/cm
2 の成形圧力で金型成形した。
(Example 1) BET specific surface area 9 m 2 / g,
Silicon nitride (Si 3 N) having an α ratio of 98% and an oxygen amount of 1.2% by weight
4 ) and various light rare earth element oxides (L-RE 2 O 3 ),
Heavy rare earth element oxide (H-RE 2 O 3 ), silicon oxide (S
iO 2), using powder of aluminum oxide (Al 2 O 3), after formulated so as to have the composition shown in Table 1, 1t / cm
Molding was performed at a molding pressure of 2 .

【0034】[0034]

【表1】 [Table 1]

【0035】次に、これらの成形体を炭化珪素質の匣鉢
に入れ、組成の変動を少なくするために、雰囲気を制御
して常圧の窒素雰囲気中、1700℃、10時間の条件
で焼成した。
Next, these compacts are placed in a silicon carbide sagger, and baked at 1700 ° C. for 10 hours in a nitrogen atmosphere at normal pressure while controlling the atmosphere in order to reduce composition fluctuation. did.

【0036】かくして得られた焼結体をJIS−R16
01規格に準じて所定の寸法形状に研磨加工して評価用
の試料を作成した。
The sintered body thus obtained was subjected to JIS-R16
Samples for evaluation were prepared by polishing to predetermined dimensions and shapes according to the 01 standard.

【0037】前記評価用の試料により、アルキメデス法
に基づき比重測定を行い、理論密度比を算出し、X線回
折測定によりβ−窒化珪素結晶のピ−クシフトからz値
を求めた。また、JIS−R1601規格に基づき室温
及び800℃での4点曲げ抗折強度試験を実施し、熱伝
導率はレ−ザ−フラシュ法により測定した。以上の結果
を表2に示す。
Using the evaluation sample, specific gravity was measured based on the Archimedes method, the theoretical density ratio was calculated, and the z value was determined from the peak shift of the β-silicon nitride crystal by X-ray diffraction measurement. Further, a four-point bending strength test was performed at room temperature and 800 ° C. based on JIS-R1601 standard, and the thermal conductivity was measured by a laser flash method. Table 2 shows the above results.

【0038】[0038]

【表2】 [Table 2]

【0039】表1及び表2の結果によると、組成式がS
6-Z AlZ Z 8-Z で表されるβ−サイアロン結晶
相中のz値が、0.05未満の試料番号1は緻密化不足
であり、z値が0.35を越える試料番号19は熱伝導
率が低下していた。また、軽希土類元素と重希土類元素
を両方使用していない試料番号4、8、15はいずれも
緻密化不足であった。更に、軽希土類元素と重希土類元
素の酸化物換算量が10モル%を越える試料番号25は
熱伝導率が低下していた。
According to the results of Tables 1 and 2, the composition formula is S
z value of i 6-Z Al Z O Z N 8-Z in β- sialon crystal phase represented is, Sample No. 1 of less than 0.05 is insufficient densification, z value exceeds 0.35 Sample No. 19 had a low thermal conductivity. Further, Sample Nos. 4, 8, and 15 in which neither light rare earth elements nor heavy rare earth elements were used were all insufficiently densified. Further, Sample No. 25, in which the amount of light rare earth element and heavy rare earth element in terms of oxide exceeds 10 mol%, the thermal conductivity was reduced.

【0040】それに対して本発明は、いずれも実用レベ
ルで充分な抗折強度と高い熱伝導率を有していた。
On the other hand, all of the present inventions had sufficient bending strength and high thermal conductivity at practical levels.

【0041】(実施例2)平均粒径3μm、酸素量1.
1重量%の珪素(Si)とBET比表面積9m2/g、
α率98%、酸素量1.2重量%の窒化珪素(Si3
4 )、各種の軽希土類元素酸化物(L−RE2 3 )、
重希土類元素酸化物(H−RE2 3 )、酸化珪素(S
iO2 )、酸化アルミニウム(Al2 3 )または、一
部、希土類元素酸化物と酸化珪素粉末から合成したRE
2 Si2 7 と酸化アルミニウム(Al2 3 )の粉末
を用いて表3に示す組成となるように調合後、1t/c
2の成形圧力で金型成形した。
Example 2 The average particle size was 3 μm and the amount of oxygen was 1.
1% by weight of silicon (Si) and a BET specific surface area of 9 m 2 / g,
Silicon nitride (Si 3 N) having an α ratio of 98% and an oxygen amount of 1.2% by weight
4 ), various light rare earth element oxides (L-RE 2 O 3 ),
Heavy rare earth element oxide (H-RE 2 O 3 ), silicon oxide (S
iO 2 ), aluminum oxide (Al 2 O 3 ), or RE partially synthesized from a rare earth element oxide and silicon oxide powder
After mixing using 2 Si 2 O 7 and aluminum oxide (Al 2 O 3 ) powder to obtain the composition shown in Table 3, 1 t / c
Molding was performed at a molding pressure of m 2 .

【0042】[0042]

【表3】 [Table 3]

【0043】得られた成形体は、窒素ガス気流中、12
00℃の温度で5時間、更に1400℃の温度で10時
間の窒化処理をした。この際の重量増加率を測定し、該
重量増加率を添加した珪素が100%窒化珪素に変換し
た時の重量増加率で除して珪素の窒化率を求めた。
The obtained molded product was placed in a nitrogen gas stream at 12
The nitriding treatment was performed at a temperature of 00 ° C. for 5 hours and further at a temperature of 1400 ° C. for 10 hours. At this time, the rate of weight increase was measured, and the rate of weight increase was divided by the rate of weight increase when the added silicon was converted to 100% silicon nitride, thereby obtaining the nitriding rate of silicon.

【0044】次いで、前記窒化体を炭化珪素質の匣鉢に
入れて、組成変動を少なくするために、雰囲気を制御
し、常圧の窒素雰囲気中、1700℃、10時間の条件
で焼成した。
Next, the nitride was placed in a silicon carbide sagger and fired at 1700 ° C. for 10 hours in a nitrogen atmosphere at normal pressure under controlled atmosphere in order to reduce composition fluctuation.

【0045】かくして得られた焼結体を実施例1と同様
に処理し、同一項目の評価を行い表4の結果を得た。
The sintered body thus obtained was treated in the same manner as in Example 1, and the same items were evaluated. The results shown in Table 4 were obtained.

【0046】[0046]

【表4】 [Table 4]

【0047】表3及び表4の結果によると、組成式がS
6-Z AlZ Z 8-Z で表されるβ−サイアロン結晶
相中のz値が、0.05未満の試料番号1、5は緻密化
不足であり、z値が0.35を越える試料番号10は熱
伝導率が低下していた。また、軽希土類元素と重希土類
元素を両方使用していない試料番号8、9は緻密化不足
であった。更に、軽希土類元素と重希土類元素の酸化物
換算量が10モル%を越える試料番号11は熱伝導率が
低下していた。
According to the results of Tables 3 and 4, the composition formula is S
i z value of 6-Z Al Z O Z N 8-Z in β- sialon crystal phase represented is, Sample No. 1, 5 less than 0.05 is insufficient densification, z value 0.35 The sample No. 10 exceeding had a low thermal conductivity. Further, Sample Nos. 8 and 9 in which both the light rare earth element and the heavy rare earth element were not used were insufficiently densified. Further, Sample No. 11 in which the amount of light rare earth element and heavy rare earth element in terms of oxide exceeded 10 mol% had a low thermal conductivity.

【0048】それに対して本発明は、いずれも実用レベ
ルで充分な抗折強度と高い熱伝導率を有していた。
On the other hand, all of the present invention had sufficient bending strength and high thermal conductivity at practical levels.

【0049】[0049]

【発明の効果】本発明の窒化珪素質焼結体及びその製造
方法によれば、低い焼成温度と低圧の雰囲気焼成が可能
となり、室温から高温まで自動車用部品やガスタ−ビン
エンジン用部品等として使用するに充分な機械的特性を
実用的なレベルで確保でき、かつ高い熱伝導率を有する
耐熱衝撃抵抗に優れた窒化珪素質焼結体を得ることが可
能となる。
According to the silicon nitride sintered body and the method of manufacturing the same of the present invention, low firing temperature and low pressure atmosphere firing can be performed, and from room temperature to high temperature, such as automobile parts and gas turbine engine parts. It is possible to obtain a silicon nitride sintered body having sufficient mechanical properties to be used at a practical level and having high thermal conductivity and excellent thermal shock resistance.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭53−115712(JP,A) 特開 昭58−185484(JP,A) 特開 平4−321562(JP,A) 特開 平6−305839(JP,A) (58)調査した分野(Int.Cl.7,DB名) C04B 35/599 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-53-115712 (JP, A) JP-A-58-185484 (JP, A) JP-A-4-321562 (JP, A) JP-A-6-185484 305839 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C04B 35/599

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】組成式がSi6-Z AlZ Z 8-Z で表さ
れるβ−サイアロンの結晶相を主相とし、その粒界相が
軽希土類元素、重希土類元素、珪素、アルミニウム、酸
素及び窒素から構成され、前記組成式中のzの値が0.
05〜0.35であり、かつ室温の熱伝導率が15W/
m・K以上であることを特徴とする窒化珪素質焼結体。
The present invention provides a β-sialon crystal phase represented by a composition formula of Si 6-Z Al Z O Z N 8-Z as a main phase, and its grain boundary phase is a light rare earth element, a heavy rare earth element, silicon, It is composed of aluminum, oxygen and nitrogen, and the value of z in the above composition formula is 0.1.
And the thermal conductivity at room temperature is 15 W /
A silicon nitride based sintered body having a m · K or more.
【請求項2】窒化珪素と、軽希土類元素酸化物、重希土
類元素酸化物、酸化珪素及び/または全希土類元素酸化
物と酸化珪素より合成したRE2 Si2 7(RE:希
土類元素)、酸化アルミニウムから成り、かつ窒化珪素
量と酸化アルミニウムの合計量に対する酸化アルミニウ
ム量のモル分率が1.2〜8.4である粉末混合物を成
形した後、焼結することを特徴とする窒化珪素質焼結体
の製造方法。
2. RE 2 Si 2 O 7 (RE: rare earth element) synthesized from silicon nitride, light rare earth element oxide, heavy rare earth element oxide, silicon oxide and / or all rare earth element oxide and silicon oxide, Forming a powder mixture composed of aluminum oxide and having a molar fraction of aluminum oxide with respect to the total amount of silicon nitride and aluminum oxide of 1.2 to 8.4, followed by sintering; Method for producing high quality sintered body.
【請求項3】珪素及び窒化珪素と、軽希土類元素酸化
物、重希土類元素酸化物、酸化珪素及び/または全希土
類元素酸化物と酸化珪素より合成したRE2 Si2 7
(RE:希土類元素)、酸化アルミニウムから成り、か
つ珪素の窒化珪素換算量及び窒化珪素量と酸化アルミニ
ウムの合計量に対する酸化アルミニウム量のモル分率が
1.2〜8.4である粉末混合物を成形した後、800
℃〜1500℃の窒素含有雰囲気中で前記珪素を窒化処
理し、その後、焼結することを特徴とする窒化珪素質焼
結体の製造方法。
3. RE 2 Si 2 O 7 synthesized from silicon and silicon nitride, light rare earth element oxide, heavy rare earth element oxide, silicon oxide and / or all rare earth element oxide and silicon oxide.
(RE: rare earth element), a powder mixture composed of aluminum oxide and having a silicon nitride equivalent amount and a molar fraction of aluminum oxide amount to the total amount of silicon nitride and aluminum oxide of 1.2 to 8.4. After molding, 800
A method for producing a silicon nitride-based sintered body, comprising nitriding the silicon in a nitrogen-containing atmosphere at a temperature of from 1500C to 1500C and thereafter sintering the silicon.
JP05101335A 1993-04-27 1993-04-27 Silicon nitride sintered body and method for producing the same Expired - Fee Related JP3124865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05101335A JP3124865B2 (en) 1993-04-27 1993-04-27 Silicon nitride sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05101335A JP3124865B2 (en) 1993-04-27 1993-04-27 Silicon nitride sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH06305840A JPH06305840A (en) 1994-11-01
JP3124865B2 true JP3124865B2 (en) 2001-01-15

Family

ID=14297971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05101335A Expired - Fee Related JP3124865B2 (en) 1993-04-27 1993-04-27 Silicon nitride sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP3124865B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6511774B1 (en) 1997-01-16 2003-01-28 Mitsubishi Paper Mills Limited Separator for nonaqueous electrolyte batteries, nonaqueous electrolyte battery using it, and method for manufacturing separator for nonaqueous electrolyte batteries

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2402098B2 (en) * 2004-12-22 2021-03-03 Ngk Spark Plug Co., Ltd. Sialon insert and cutting tool equipped therewith
JP2016132004A (en) * 2015-01-20 2016-07-25 日本特殊陶業株式会社 Friction agitation jointing tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6511774B1 (en) 1997-01-16 2003-01-28 Mitsubishi Paper Mills Limited Separator for nonaqueous electrolyte batteries, nonaqueous electrolyte battery using it, and method for manufacturing separator for nonaqueous electrolyte batteries

Also Published As

Publication number Publication date
JPH06305840A (en) 1994-11-01

Similar Documents

Publication Publication Date Title
JP3270792B2 (en) Method for producing silicon nitride based sintered body
JP3124865B2 (en) Silicon nitride sintered body and method for producing the same
JP3454993B2 (en) Silicon nitride sintered body and method for producing the same
JP3231944B2 (en) Method for manufacturing silicon nitride heat-resistant member
JP3454994B2 (en) Silicon nitride sintered body and method for producing the same
JP3426823B2 (en) Silicon nitride sintered body and method for producing the same
JP3152790B2 (en) Method for producing silicon nitride based sintered body
JP3034100B2 (en) Silicon nitride sintered body and method for producing the same
JP3124864B2 (en) Silicon nitride sintered body and method for producing the same
JP2980342B2 (en) Ceramic sintered body
JPH1179848A (en) Silicon carbide sintered compact
JP3318466B2 (en) Silicon nitride sintered body and method for producing the same
JP3124867B2 (en) Silicon nitride sintered body and method for producing the same
JPH10279360A (en) Silicon nitride structural parts and its production
JP3124862B2 (en) Method for producing silicon nitride based sintered body
JP2892246B2 (en) Silicon nitride sintered body and method for producing the same
JP2801447B2 (en) Method for producing silicon nitride based sintered body
JP3236733B2 (en) Silicon nitride sintered body
JP2708136B2 (en) Silicon nitride sintered body and method for producing the same
JPH10212167A (en) Silicon nitride-base composite sintered compact and its production
JP3034099B2 (en) Silicon nitride sintered body and method for producing the same
JP3667145B2 (en) Silicon nitride sintered body
JP3236739B2 (en) Silicon nitride sintered body and method for producing the same
JP3207065B2 (en) Silicon nitride sintered body
JP2777051B2 (en) Method for producing silicon nitride based sintered body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees