JP2694369B2 - Silicon nitride sintered body - Google Patents

Silicon nitride sintered body

Info

Publication number
JP2694369B2
JP2694369B2 JP1308621A JP30862189A JP2694369B2 JP 2694369 B2 JP2694369 B2 JP 2694369B2 JP 1308621 A JP1308621 A JP 1308621A JP 30862189 A JP30862189 A JP 30862189A JP 2694369 B2 JP2694369 B2 JP 2694369B2
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
rare earth
temperature
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1308621A
Other languages
Japanese (ja)
Other versions
JPH03170374A (en
Inventor
正喜 寺園
祥二 高坂
和憲 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP1308621A priority Critical patent/JP2694369B2/en
Priority to US07/618,480 priority patent/US5114889A/en
Publication of JPH03170374A publication Critical patent/JPH03170374A/en
Application granted granted Critical
Publication of JP2694369B2 publication Critical patent/JP2694369B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ガスタービンやターボロータ等の熱機関に
好適な高温における抗折強度、靱性に優れた窒化珪素質
焼結体に関する。
Description: TECHNICAL FIELD The present invention relates to a silicon nitride sintered body which is suitable for a heat engine such as a gas turbine or a turbo rotor and which has excellent bending strength and toughness at high temperatures.

(従来技術) 従来から、窒化珪素質焼結体は高温における強度、硬
度、熱的化学的安定性に優れることからエンジニアリン
グセラミックス、特に熱機関用材料として注目されてい
る。
(Prior Art) Conventionally, silicon nitride-based sintered bodies have attracted attention as engineering ceramics, particularly as materials for heat engines, because of their excellent strength, hardness, and thermochemical stability at high temperatures.

一般に、これら窒化珪素質焼結体を製造するには窒化
珪素自体が難焼結性であることから、希土類元素酸化物
等の各種の焼結助剤を添加し、ホットプレス法、常圧焼
成法またはガス圧力焼成法等が採用されている。また、
最近では所望の組成からなる窒化珪素成形体の表面にガ
ラス等からなる不透過性シールを形成し、高圧力下で焼
成する(以下、シールHIPという)ことにより高密度、
高強度の焼結体を得る方法が提案されている。
Generally, in order to manufacture these silicon nitride sintered bodies, since silicon nitride itself is difficult to sinter, various sintering aids such as rare earth element oxides are added, and hot pressing and normal pressure firing are performed. Method or gas pressure firing method is adopted. Also,
Recently, a high-density material has been formed by forming an opaque seal made of glass or the like on the surface of a silicon nitride molded body having a desired composition and firing it under high pressure (hereinafter referred to as seal HIP).
A method for obtaining a high-strength sintered body has been proposed.

一方、組成の点からは、前述したようにY2O3等の希土
類元素酸化物の他、Al2O3、MgO等の酸化物が焼結助剤と
しても最も一般的に使用されているが、焼結体の高温特
性を考慮した場合、Al2O3やMgOなどが焼結体中に含まれ
ると焼結体の粒界に低融点物質が生成されるために高温
強度や高温耐酸化性が低下するという見地から、上記の
酸化物を実質的に含まないSi3N4‐RE2O3(希土類酸化
物)−SiO2の単純三元組成系が検討されている。
On the other hand, from the viewpoint of the composition, as described above, in addition to rare earth element oxides such as Y 2 O 3, oxides such as Al 2 O 3 and MgO are most commonly used as sintering aids. However, considering the high temperature characteristics of the sintered body, when Al 2 O 3 or MgO is contained in the sintered body, a low melting point substance is generated at the grain boundary of the sintered body, so high temperature strength and high temperature acid resistance. From the standpoint that the chemical conversion property is lowered, a simple ternary composition system of Si 3 N 4 —RE 2 O 3 (rare earth oxide) -SiO 2 which does not substantially contain the above oxide is being studied.

また、焼結体の組織の点からは、高温特性を決定する
要因として焼結体中の粒界相が注目されており、粒界相
自体の強度を向上させることを目的として粒界相を実質
上結晶化させる試みがなされている。そこで最近に至っ
ては、上記の単純三元系の組成に対し、焼成条件の検討
あるいは焼結体の熱処理等によって粒界にSi3N4‐RE2O3
(希土類酸化物)−SiO2からなる各種の結晶相、例えば
アパタイト、YAM、ワラストナイト等を析出させること
も行われている。
Further, from the viewpoint of the structure of the sintered body, the grain boundary phase in the sintered body has been attracting attention as a factor that determines the high temperature characteristics, and the grain boundary phase is changed for the purpose of improving the strength of the grain boundary phase itself. Attempts have been made to substantially crystallize. Therefore, recently, for the above-mentioned simple ternary composition, Si 3 N 4 -RE 2 O 3 was added to the grain boundaries by studying the firing conditions or heat treatment of the sintered body.
Various crystal phases composed of (rare earth oxide) -SiO 2 such as apatite, YAM, wollastonite, etc. are also deposited.

しかし、粒界相の結晶化は高温強度に対しある程度の
効果を有するものの、粒界に特定の結晶相のみを安定し
て析出させることは非常に困難であり、また、場合によ
っては粒界相に結晶相以外に低融点のガラス相が生成す
ることによって特性を劣化させる場合もある。
However, although crystallization of the grain boundary phase has a certain effect on the high-temperature strength, it is very difficult to stably precipitate only a specific crystal phase at the grain boundary. In some cases, a low melting point glass phase other than the crystalline phase is formed, thus deteriorating the characteristics.

そこで、本発明者等は、上記の三元系の組成において
SiO2/RE2O3モル比が2を越え、25以下からなるSiO2
過剰に含む組成をシールHIP法によって低温焼成するこ
とによって、微細な窒化珪素粒状組織からなり、粒界相
が珪素、希土類元素、酸素および窒素から構成される室
温強度、高温強度並びに耐酸化性に優れた焼結体が得ら
れることを提案した。
Therefore, the present inventors have considered that the above ternary composition
The composition of SiO 2 / RE 2 O 3 molar ratio exceeding 2 and 25 or less containing excess SiO 2 is fired at a low temperature by the seal HIP method to form a fine silicon nitride grain structure and a grain boundary phase of silicon. It was proposed that a sintered body composed of a rare earth element, oxygen and nitrogen and having excellent room temperature strength, high temperature strength and oxidation resistance can be obtained.

(発明が解決しようとする問題点) しかしながら、上記の焼結体は従来品に比較して抗折
強度、耐酸化性については優れた特性を有するが、組織
が微細粒状組織であることに起因して、外部からのクラ
ックの進展に対し、充分な効力を持たなくなり、所謂焼
結体自体の靱性が劣化しやすいという欠点を有すること
がわかった。
(Problems to be Solved by the Invention) However, although the above-described sintered body has excellent characteristics in bending strength and oxidation resistance as compared with conventional products, it is due to the fact that the structure is a fine grain structure. Then, it has been found that there is a drawback that the so-called sintered body itself tends to deteriorate in the toughness because it does not have sufficient effect against the development of cracks from the outside.

(発明の目的) よって、本発明は上記の優れた強度並びに耐酸化性を
維持しつつ、優れた靱性をも兼ね備えた焼結体を提供す
ることを目的とするものである。
(Object of the Invention) Accordingly, the object of the present invention is to provide a sintered body having excellent toughness while maintaining the above-mentioned excellent strength and oxidation resistance.

(問題点を解決するための手段) 本発明者等は、上記の問題点に対して検討を加えた結
果、先に提案したSi3N4‐RE2O3(希土類酸化物)−SiO2
系の組成物を用い、焼結体の組織を針状粒子からなる微
細構造を形成することによって優れた室温抗折強度並び
に高温抗折強度を維持しつつ、靱性(K1c)を高めるこ
とができることを知見した。
(Means for Solving Problems) As a result of examining the above problems, the present inventors have previously proposed Si 3 N 4 -RE 2 O 3 (rare earth oxide) -SiO 2
By using the composition of the system to form the microstructure of acicular particles in the structure of the sintered body, it is possible to increase the toughness (K 1c ) while maintaining excellent room-temperature bending strength and high-temperature bending strength. I found that I could do it.

即ち、本発明は、窒化珪素が70乃至99モル%と、希土
類元素酸化物が0.1〜5モル%と、過剰酸素がSiO2換算
で25モル%以下からなり、(過剰酸素/希土類元素酸化
物)モル比が2より大きく、25以下の範囲にある窒化珪
素質焼結体であり、該焼結体の窒化珪素焼結の平均アス
ペクト比が3以上、平均粒子径(長径)が15μm以下
で、且つ靱性(K1c)が6MPa・m1/2以上であることを特
徴とする窒化珪素質焼結体を提供するものである。
That is, the present invention comprises 70 to 99 mol% of silicon nitride, 0.1 to 5 mol% of rare earth element oxide, and 25 mol% or less of excess oxygen in terms of SiO 2 (excess oxygen / rare earth element oxide. ) A silicon nitride sintered body having a molar ratio of more than 2 and in the range of 25 or less, wherein the average aspect ratio of silicon nitride sintering of the sintered body is 3 or more, and the average particle diameter (major axis) is 15 μm or less. And a toughness (K 1c ) of 6 MPa · m 1/2 or more.

以下、本発明を詳述する。 Hereinafter, the present invention will be described in detail.

本発明の焼結体を構成する組成は、窒化珪素が70〜99
モル%、特に80〜93.5モル%と、希土類元素酸化物0.1
〜5モル%、特に0.5〜4モル%、過剰酸素がSiO2換算
で25モル%以下、特に6〜20モル%の割合からなる。な
お、過剰酸素とは焼結体の系全体に含まれる全酸素量か
ら希土類元素酸化物として混入した化学量論的量で混入
した酸素を除いた酸素量で、具体的には窒化珪素原料中
の不純物酸素、あるいはSiO2として添加された酸素から
構成されるものであり、本発明ではいずれもSiO2換算量
を示すものである。
The composition of the sintered body of the present invention has a silicon nitride content of 70 to 99.
Mol%, especially 80-93.5 mol%, and rare earth element oxide 0.1
.About.5 mol%, especially 0.5 to 4 mol%, and excess oxygen is 25 mol% or less, especially 6 to 20 mol%, in terms of SiO 2 . The excess oxygen is the amount of oxygen excluding the amount of oxygen mixed in as a rare earth element oxide in the stoichiometric amount from the total amount of oxygen contained in the entire system of the sintered body. Of the impurity oxygen or oxygen added as SiO 2 , and in the present invention, both show the equivalent amount of SiO 2 .

本発明における組成上の特徴は、(過剰酸素/希土類
元素酸化物)モル比が2より大きく、25以下、特に3〜
20の割合からなる点にある。このモル比を上記の範囲に
限定した理由はこのモル比が2以下では高温における耐
酸化性が劣化し易く、逆に25を越えると低融点のガラス
が生成されやすくなり高温特性が劣化する。また、窒化
珪素、希土類酸化物、過剰酸素のいずれかが前述の範囲
を逸脱しても室温強度ならびに高温強度が劣化し、本発
明の目的が達成されない。
The compositional feature of the present invention is that the (excess oxygen / rare earth element oxide) molar ratio is greater than 2 and is 25 or less, particularly 3 to
It consists of 20 points. The reason why the molar ratio is limited to the above range is that when the molar ratio is 2 or less, the oxidation resistance at high temperature tends to deteriorate, and conversely, when the molar ratio exceeds 25, a glass having a low melting point tends to be produced and the high temperature characteristics deteriorate. Further, even if any one of silicon nitride, rare earth oxide, and excess oxygen deviates from the above range, room temperature strength and high temperature strength deteriorate, and the object of the present invention cannot be achieved.

本発明によれば、上記特定の組成系において、焼結体
中の窒化珪素結晶粒子の平均アスペクト比を3以上、特
に5以上で且つ平均粒子径(長径)を15μm以下、、特
に10μm以下の組織にすることによって、前述した優れ
た強度、耐酸化性を維持しつつ焼結体の靱性を大幅に向
上させることができる。平均アスペクト比が3を下回る
と所望の靱性が得られず、平均粒子径が15μmを越える
とこれら粒子が破壊源となりやすく、強度が低下する。
According to the present invention, in the above specific composition system, the average aspect ratio of the silicon nitride crystal particles in the sintered body is 3 or more, particularly 5 or more, and the average particle diameter (major axis) is 15 μm or less, particularly 10 μm or less. By forming the structure, the toughness of the sintered body can be significantly improved while maintaining the above-described excellent strength and oxidation resistance. If the average aspect ratio is less than 3, desired toughness cannot be obtained, and if the average particle size exceeds 15 μm, these particles are likely to become a fracture source and the strength decreases.

上記の構成からなる窒化珪素質焼結体を製造する方法
としては、各種の製法が挙げられるが、特に優れた特性
を得るためにはシールHIP法が好適である。よってここ
ではシールHIP法を例にとって説明する。
As a method for producing the silicon nitride sintered body having the above structure, various production methods can be mentioned, but the seal HIP method is suitable for obtaining particularly excellent characteristics. Therefore, the seal HIP method will be described here as an example.

まず、原料粉末として窒化珪素粉末、希土類元素酸化
物粉末、さらに場合によりSiO2粉末を用いる。窒化珪素
粉末は、焼結性を促進するためBET比表面積が3〜20m2/
g、α化率95%以上であることが望ましい。また、酸素
含有量は一般に市販品で0.8〜1.4重量%程度含有される
が、SiO2の添加によって任意に調整できる。
First, a silicon nitride powder, a rare earth element oxide powder, and optionally a SiO 2 powder are used as raw material powders. Silicon nitride powder has a BET specific surface area of 3 to 20 m 2 /
g, desirably at least 95%. The oxygen content is generally but contained about 0.8 to 1.4% by weight commercially available, it can be arbitrarily adjusted by the addition of SiO 2.

これらの粉末を用いて前述した組成に秤量混合し、バ
インダーを添加して造粒後、成形する。成形は周知の方
法を採用でき、具体的にはプレス成形、押し出し成形、
鋳込み成形、射出成形等が採用できる。
These powders are weighed and mixed with the above-mentioned composition, a binder is added and granulated, and then molded. A well-known method can be adopted for molding, specifically, press molding, extrusion molding,
Cast molding, injection molding, etc. can be adopted.

このようにして得られた成形体は脱バインダーした
後、焼成工程においてシール材であるガラス等との反応
を防止することを目的としてBN粉末等のガラスと濡れ性
の悪い粉末を成形体表面に塗布する。成形体表面へのBN
等のガラスとの濡れ性の悪い粉末の塗布は、BN等の粉末
をスラリー化して成形体に塗布するか、またはスラリー
をスプレー塗布することもできる。なお、成形体表面へ
の塗布量はその厚みが1〜10mm程度が望ましい。
The molded body obtained in this manner is debindered, and then powder such as BN powder having poor wettability is formed on the surface of the molded body in order to prevent reaction with the glass or the like as a sealing material in the firing step. Apply. BN on surface of compact
For the coating of powder having poor wettability with glass, etc., powder of BN or the like may be made into a slurry and applied to the molded body, or the slurry may be spray-applied. The coating amount on the surface of the molded body is preferably about 1 to 10 mm.

上記BN等の粉末塗布後に乾燥工程が必要であり、この
時成形体にクラックが生じやすいため、BN塗布前の成形
体を一旦1200〜1600℃の不活性ガス雰囲気下で仮焼して
おくことが望ましい。
A drying step is required after powder application of the above BN etc., and cracks are likely to occur in the molded body at this time. Therefore, the molded body before BN application should be calcined once in an inert gas atmosphere at 1200 to 1600 ° C. Is desirable.

また、BN粉末中には、B2O3等の不純物が存在し、これ
が焼成時、焼結体中に混入して低融点の粒界を形成し焼
結体の高温特性を劣化させることから、焼成前に1200〜
1450℃の減圧下で熱処理し、この不純物を除去すること
が望ましい。なお、この時の条件は窒化珪素の分解が生
じない条件で行うことが必要である。
In addition, impurities such as B 2 O 3 are present in the BN powder and are mixed into the sintered body during sintering to form low melting point grain boundaries and deteriorate the high temperature characteristics of the sintered body. Before firing, 1200 ~
It is desirable to perform a heat treatment under a reduced pressure of 1450 ° C. to remove the impurities. Note that it is necessary to perform the conditions at this time under conditions that do not cause decomposition of silicon nitride.

次に、BNが塗布された成形体に対し焼成時シールを形
成するガラス粉末をその表面に塗布するかあるいはガラ
ス製カプセル内に封入する。また他の方法として、前記
成形体を内部にガラス粉末が充填された耐熱容器内に埋
めることもできる。その後、成形体をHIP法により高温
高圧下で焼成する。
Next, a glass powder that forms a seal at the time of firing is applied to the surface of the molded body coated with BN, or is encapsulated in a glass capsule. As another method, the molded body can be buried in a heat-resistant container filled with glass powder. Thereafter, the molded body is fired under high temperature and high pressure by the HIP method.

次に、第1図に本発明の焼結体を得るための具体的な
焼成パターンを示した。第1図によれば、まず点A−B
において減圧下で炉内の温度を昇温して成形体に含まれ
る水分を除去する。
Next, FIG. 1 shows a specific firing pattern for obtaining the sintered body of the present invention. According to FIG. 1, first, points AB
In (1), the temperature in the furnace is raised under reduced pressure to remove the water contained in the compact.

次に点B−Cにおいて成形体表面に存在するガラスの
軟化点以上の焼成温度にまで昇温すると同時に、該温度
における窒化珪素の分解平衡圧と同等もしくはそれより
0.01〜0.2MPa程度高い分圧の窒素ガスを導入しつつガラ
スを軟化させ成形体表面にガラスによるガス不透過性膜
を形成する。
Next, at the point B-C, the temperature is raised to a firing temperature equal to or higher than the softening point of the glass present on the surface of the molded body, and at the same time, the decomposition equilibrium pressure of silicon nitride at that temperature or equal
While introducing nitrogen gas with a high partial pressure of about 0.01 to 0.2 MPa, the glass is softened to form a gas impermeable film of glass on the surface of the molded body.

ガス不透過性膜が成形体表面に完全に形成された後、
点C−Dにおいて炉内圧力を充分に緻密化しうる条件
下、例えば50MPa以上の圧力まで上昇させる。この時の
圧力媒体には窒素、アルゴンの不活性ガスが用いられ
る。この段階で、希土類酸化物、SiO2および窒化珪素に
より液相が生成されて焼成が進行し、点Dではその緻密
化はほぼ終了する。
After the gas impermeable membrane is completely formed on the surface of the molded body,
At the points C-D, the pressure in the furnace is increased to a pressure of 50 MPa or higher under the condition that the pressure can be sufficiently densified. At this time, an inert gas such as nitrogen or argon is used as the pressure medium. At this stage, a liquid phase is produced by the rare earth oxide, SiO 2 and silicon nitride, and firing proceeds, and at point D, the densification is almost completed.

その後、点D−Eにおいて最高温度圧力下で所定時間
保持して結晶を成長させた後、点E以降、温度、圧力を
共に下げ焼成を終了する。なお、この時の最高温度は14
50〜1800℃、特に1500〜1750℃に設定される。
After that, at point D-E, the crystal is grown by maintaining it at the maximum temperature and pressure for a predetermined time, and after point E, the temperature and the pressure are both lowered to complete the firing. The maximum temperature at this time is 14
It is set to 50 to 1800 ° C, especially 1500 to 1750 ° C.

本発明において、前述した優れた特性を有する焼結体
を得るためには、例えば、点Dにおいて緻密化がほぼ終
了した段階で焼結体中に多量のα−Si3N4を残存させ、
その状態で所定時間維持して窒化珪素を針状化させる。
通常、窒化珪素の針状化はα−Si3N4からβ−Si3N4への
転移に付随し液相を生じる温度にて起こるが、点C−D
間においてα−β転移を進行させ過ぎると、出発原料と
して高β−Si3N4含有原料を用いた場合と同様な状態と
なり、本発明の目的とする有効な針状化が阻害される。
In the present invention, in order to obtain a sintered body having the above-mentioned excellent properties, for example, a large amount of α-Si 3 N 4 is left in the sintered body at the stage where the densification is almost completed at point D,
In that state, the silicon nitride is made needle-like by maintaining it for a predetermined time.
Usually, the acicularization of silicon nitride occurs at a temperature at which a liquid phase is formed accompanying the transition from α-Si 3 N 4 to β-Si 3 N 4 , but at points C-D
If the α-β transition progresses too much in the interval, the state becomes similar to that when a high β-Si 3 N 4 containing raw material is used as a starting raw material, and the effective acicularization aimed at by the present invention is hindered.

そこで、点C−D間の昇圧速度を50MPa/Hr以上に高め
ることによって点Dにおける焼結体中のα−Si3N4量を
高めることができる。
Therefore, the amount of α-Si 3 N 4 in the sintered body at the point D can be increased by increasing the rate of pressure increase between the points C and D to 50 MPa / Hr or more.

なお、HIP時における焼成条件として焼成温度を1450
〜1800℃の範囲に限定した理由は、この温度範囲におい
て微細な針状組織が形成されるためで、1450℃未満では
緻密化が達成されず、1800℃を越えると異常粒成長が生
じ易く、機械的特性の向上が望めない。また圧力は緻密
化に不可欠の要因であり、50MPa未満では緻密体が得ら
れない。なお、点D−E間は組織の針状化が進行するに
充分時間保持し、具体的には1〜5Hr程度保持する。ま
た点E以降の冷却速度は500〜1500℃/Hrが好適である。
The firing temperature was set to 1450 as the firing condition during HIP.
The reason for limiting the temperature range to 1800 ° C is that a fine needle-like structure is formed in this temperature range. Densification is not achieved below 1450 ° C, and abnormal grain growth easily occurs above 1800 ° C. No improvement in mechanical properties can be expected. Further, pressure is an essential factor for densification, and a densified body cannot be obtained at less than 50 MPa. In addition, between the points D and E, it is held for a sufficient time for progressing the acicularization of the tissue, specifically, about 1 to 5 hours. Further, the cooling rate after the point E is preferably 500 to 1500 ° C./Hr.

このようにして得られる焼結体は、針状化したβ−窒
化珪素結晶相と、場合により少量のα−窒化珪素結晶
相、該結晶相の粒界に珪素、希土類元素、酸素、窒素が
存在するが、上記のような製法によれば、高融点ガラス
相の他にSi2N2Oで表わされるシリコンオキシナイトライ
ド結晶相あるいはRE2O3・2SiO2(RE:希土類元素)で表
されるダイシリケート結晶相が生成する場合もある。こ
のような粒界組織は従来から知られた各種結晶相に比較
して高温強度、耐酸化性において優れた特性を有すると
ともに安定して製造することができるというメリットを
有する。
The sintered body thus obtained contains needle-shaped β-silicon nitride crystal phase and a small amount of α-silicon nitride crystal phase in some cases, and silicon, rare earth elements, oxygen, and nitrogen at grain boundaries of the crystal phase. According to the manufacturing method as described above, a silicon oxynitride crystal phase represented by Si 2 N 2 O or RE 2 O 3 · 2SiO 2 (RE: rare earth element) is present in addition to the high melting point glass phase. In some cases, a disilicate crystal phase is generated. Such a grain boundary structure has advantages in that it has excellent properties in high-temperature strength and oxidation resistance as compared with conventionally known various crystal phases and can be manufactured stably.

また、この焼結体に対し、所定の条件、例えば非酸化
性雰囲気で1200〜1700℃の温度で熱処理し、あるいは酸
化性雰囲気で熱処理することによって特性の改善を図る
こともできる。
In addition, the characteristics can be improved by subjecting this sintered body to heat treatment under a predetermined condition, for example, at a temperature of 1200 to 1700 ° C. in a non-oxidizing atmosphere, or heat treatment in an oxidizing atmosphere.

以下、本発明を次の例で説明する。 Hereinafter, the present invention will be described with reference to the following examples.

(実施例) 原料粉末として、窒化珪素粉末(BET比表面積5m2/
g、α化率99%、不純物酸素量1.0重量%)と、各種希土
類酸化物あるいはSiO2粉末を用いて、第1表に示す組成
に成るように調合し混合後、1t/cm2でプレス成形後、14
00℃で仮焼した。
(Example) Silicon nitride powder (BET specific surface area 5 m 2 /
g, α conversion rate 99%, impurity oxygen amount 1.0% by weight) and various rare earth oxides or SiO 2 powders are mixed and mixed to have the composition shown in Table 1, and then pressed at 1 t / cm 2 . 14 after molding
It was calcined at 00 ° C.

得られた成形体に対し、約粒径1〜5μmのBN粉末の
ペーストを1〜10mmの厚みで塗布後、0.2Torrの減圧下
で1350℃の熱処理し、不純物の除去を行った。
A paste of BN powder having a particle size of about 1 to 5 μm was applied to the obtained molded body in a thickness of 1 to 10 mm, and then heat-treated at 1350 ° C. under a reduced pressure of 0.2 Torr to remove impurities.

その後、SiO2を主成分とするガラスを1〜10mmの厚み
で塗布した。
Thereafter, a glass containing SiO 2 as a main component was applied in a thickness of 1 to 10 mm.

このように処理された成形体を熱間静水圧焼成炉に配
置して、第1図の焼成パターンに基づき、焼成を行っ
た。まず、減圧下500℃で水分除去した後に窒素ガス0.1
MPaの雰囲気下で、炉内の温度をガラスの軟化点温度以
上にまで昇温し、さらに第1表に示した各焼成温度まで
約900℃/Hrの昇温速度で上昇させた。成形体表面にガラ
スシールが完成したことを確認し、炉内の圧力をArを圧
力媒体として第1表に示す昇圧速度で昇圧し、所定の条
件で焼成した。焼成後はいずれも1000℃/Hrの冷却速度
で冷却した。
The molded body thus treated was placed in a hot isostatic press furnace and fired based on the firing pattern shown in FIG. First, after removing water at 500 ° C. under reduced pressure, nitrogen gas 0.1
In an atmosphere of MPa, the temperature in the furnace was raised to the softening point temperature of the glass or higher, and further raised to each firing temperature shown in Table 1 at a heating rate of about 900 ° C / Hr. After confirming that the glass seal was completed on the surface of the molded body, the pressure in the furnace was increased at a pressure increasing rate shown in Table 1 using Ar as a pressure medium, and firing was performed under predetermined conditions. After firing, each was cooled at a cooling rate of 1000 ° C./Hr.

次に、ガラス除去後の焼結体に対し、JISR1601に従
い、室温、1200℃および1400℃における4点曲げ抗折強
度およびIM法によりK1cを測定した。さらに、1400℃に
おける酸化重量増を調べた。
Next, with respect to the sintered body after glass removal, K 1c was measured according to JIS R1601 by room temperature, 1200 ° C. and 1400 ° C. 4-point bending bending strength, and IM method. Furthermore, the increase in the weight of oxidization at 1400 ° C was investigated.

また、各焼結体の鏡面写真から窒化珪素結晶粒の平均
アスペクト比および平均粒径(長径)を測定した。
Further, the average aspect ratio and the average grain size (major axis) of the silicon nitride crystal grains were measured from the mirror surface photograph of each sintered body.

結果は第1表に示した。 The results are shown in Table 1.

第1表によれば、(過剰酸素/希土類元素酸化物)モ
ル比が2より低い試料9,14では室温強度及び1400℃の強
度が低い。また、上記モル比が25を越える試料5では強
度が低い。また、焼成温度を高く設定した試料10は異常
粒成長が生じており同様に強度が低いものであった。
According to Table 1, samples 9 and 14 having a (excess oxygen / rare earth element oxide) molar ratio of less than 2 have low room temperature strength and strength of 1400 ° C. Further, Sample 5 having a molar ratio of more than 25 has low strength. Further, Sample 10 in which the firing temperature was set high had abnormal grain growth and was similarly low in strength.

さらに、焼成時に昇圧速度を遅く設定した試料11、15
はいずれもアスペクト比が小さく、靱性の向上効果が見
られなかった。
Furthermore, Samples 11 and 15 in which the pressurization rate was set slow during firing
All had a small aspect ratio, and the effect of improving toughness was not observed.

これらの比較例に対し本発明の試料はいずれも粒径が
小さく、またアスペクト比が大きく、特性的にも1100MP
a以上の抗折強度、6.0MPam1/2以上の優れた靱性を有す
るとともに高温耐酸化性においても0.1mg/cm2以下の優
れた特性を有することが理解される。
Compared to these comparative examples, the sample of the present invention has a small particle size, a large aspect ratio, and characteristically 1100MP.
It is understood that it has a bending strength of a or more, an excellent toughness of 6.0 MPa m 1/2 or more, and an excellent property of 0.1 mg / cm 2 or less in high temperature oxidation resistance.

(発明の効果) 以上詳述した通り、本発明の窒化珪素質焼結体によれ
ば、Si3N4‐RE2O3(希土類酸化物)−SiO2(過剰酸化)
の単純三元組成系においてその過剰酸素量を多く含む系
において、組織上窒化珪素結晶粒子を針状化した微細な
構造を形成することによって、室温、高温において優れ
た強度を維持し、高い靱性を付与することができる。
(Effect of the Invention) As described in detail above, according to the silicon nitride sintered body of the present invention, Si 3 N 4 -RE 2 O 3 (rare earth oxide) -SiO 2 (excessive oxidation)
In a simple ternary composition system containing a large amount of excess oxygen, by forming a fine structure of acicular silicon nitride crystal grains on the structure, excellent strength is maintained at room temperature and high temperature, and high toughness is maintained. Can be given.

これにより、窒化珪素質焼結体の熱機関等の高温用構
造材料をはじめ、各種機械構造部品としてその用途をさ
らに拡充することができる。
As a result, it is possible to further expand its use as various mechanical structural parts, including high-temperature structural materials such as heat engines for silicon nitride sintered bodies.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の窒化珪素質結晶体を得るための具体
的な焼成パターンを示す。
FIG. 1 shows a specific firing pattern for obtaining the silicon nitride crystalline material of the present invention.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】窒化珪素70乃至99モル%と、希土類元素酸
化物0.1〜5モル%と、過剰酸素(SiO2換算量)25%モ
ル以下からなり、(過剰酸素/希土類元素酸化物)モル
比が2より大きく、25以下の範囲にある窒化珪素質焼結
体であって、該焼結体の窒化珪素結晶の平均アスペクト
比が3以上、平均粒子径(長径)が15μm以下であり、
且つ靱性(K1c)が6MPa・m1/2以上であることを特徴と
する窒化珪素質焼結体。
1. Silicon nitride 70 to 99 mol%, rare earth element oxide 0.1 to 5 mol%, and excess oxygen (SiO 2 conversion amount) 25% mol or less, and (excess oxygen / rare earth element oxide) mol A silicon nitride sintered body having a ratio of more than 2 and in the range of 25 or less, in which the silicon nitride crystals of the sintered body have an average aspect ratio of 3 or more and an average particle diameter (major axis) of 15 μm or less,
A silicon nitride sintered body having a toughness (K 1c ) of 6 MPa · m 1/2 or more.
JP1308621A 1989-11-27 1989-11-27 Silicon nitride sintered body Expired - Fee Related JP2694369B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1308621A JP2694369B2 (en) 1989-11-27 1989-11-27 Silicon nitride sintered body
US07/618,480 US5114889A (en) 1989-11-27 1990-11-27 Silicon nitride sintered body and process for preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1308621A JP2694369B2 (en) 1989-11-27 1989-11-27 Silicon nitride sintered body

Publications (2)

Publication Number Publication Date
JPH03170374A JPH03170374A (en) 1991-07-23
JP2694369B2 true JP2694369B2 (en) 1997-12-24

Family

ID=17983253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1308621A Expired - Fee Related JP2694369B2 (en) 1989-11-27 1989-11-27 Silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JP2694369B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0016787D0 (en) 2000-07-07 2000-08-30 Pfizer Ltd Compounds useful in therapy

Also Published As

Publication number Publication date
JPH03170374A (en) 1991-07-23

Similar Documents

Publication Publication Date Title
US5114889A (en) Silicon nitride sintered body and process for preparation thereof
JP2694369B2 (en) Silicon nitride sintered body
JP3231944B2 (en) Method for manufacturing silicon nitride heat-resistant member
JP2742619B2 (en) Silicon nitride sintered body
JP3034100B2 (en) Silicon nitride sintered body and method for producing the same
JP3124863B2 (en) Silicon nitride sintered body and method for producing the same
JPH1121175A (en) Silicon nitride sintered compact
JP2694368B2 (en) Method for producing silicon nitride based sintered body
JPH1179848A (en) Silicon carbide sintered compact
JP2811493B2 (en) Silicon nitride sintered body
JP2708136B2 (en) Silicon nitride sintered body and method for producing the same
JP3034099B2 (en) Silicon nitride sintered body and method for producing the same
JPH06287066A (en) Silicon nitride sintered compact and its production
JP2801447B2 (en) Method for producing silicon nitride based sintered body
JP2783702B2 (en) Silicon nitride sintered body
JP2742622B2 (en) Silicon nitride sintered body and method for producing the same
JP2652936B2 (en) Silicon nitride sintered body and method for producing the same
JP2671539B2 (en) Method for producing silicon nitride sintered body
JPH06100376A (en) Sintered beta-sialon and its production
JP3236733B2 (en) Silicon nitride sintered body
JP3207045B2 (en) Method for producing silicon nitride based sintered body
JPH0585827A (en) Sintered silicon nitride-mixed oxide and its production
JP2746759B2 (en) Silicon nitride sintered body
JP2736427B2 (en) Silicon nitride sintered body and method for producing the same
JPH06316465A (en) Silicon nitride-based sintered compact and production thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070912

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080912

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080912

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090912

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees