JP3810236B2 - Silicon nitride sintered body and manufacturing method thereof - Google Patents

Silicon nitride sintered body and manufacturing method thereof Download PDF

Info

Publication number
JP3810236B2
JP3810236B2 JP27329999A JP27329999A JP3810236B2 JP 3810236 B2 JP3810236 B2 JP 3810236B2 JP 27329999 A JP27329999 A JP 27329999A JP 27329999 A JP27329999 A JP 27329999A JP 3810236 B2 JP3810236 B2 JP 3810236B2
Authority
JP
Japan
Prior art keywords
silicon nitride
oxide
rare earth
phase
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27329999A
Other languages
Japanese (ja)
Other versions
JP2001089244A (en
Inventor
政宏 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP27329999A priority Critical patent/JP3810236B2/en
Publication of JP2001089244A publication Critical patent/JP2001089244A/en
Application granted granted Critical
Publication of JP3810236B2 publication Critical patent/JP3810236B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、高温における疲労寿命の長い窒化珪素質焼結体とその製造方法に関するものであり、特にピストンピン、エンジンバルブ等の自動車用部品やガスタービンエンジン用部品などの熱機関用部品として好適なものである。
【0002】
【従来の技術】
従来、エンジニアリングセラミックスとして知られている窒化珪素質焼結体は、耐熱性、耐熱衝撃性、耐摩耗性及び耐酸化性に優れることから、特にガスタービンやタ−ボロ−タ等の熱機関用部品としての応用が進められている。
【0003】
窒化珪素は難焼結材であることから焼結性を向上させるため、窒化珪素粉末に対し、焼結助剤としてY23などの希土類元素酸化物や酸化アルミニウムなどを添加した成形体を、加圧焼成し、窒化珪素結晶相を主体とし、希土類元素、珪素、アルミニウム、酸素及び窒素とからなる非晶質の粒界相により構成された焼結体を得ることが知られている。
【0004】
しかし、焼結助剤として希土類元素酸化物と酸化アルミニウムを用いた場合、室温での強度は高いものの、高温域、例えば1000℃前後の温度域では、焼結体中の希土類元素、珪素、アルミニウム、酸素及び窒素とからなる粒界相が低融点で高温域において軟化し易いため、高温強度および疲労特性が大きく劣化するといった課題があった。
【0005】
また、高い高温強度を実現するために微細な組織としたために、破壊靭性が小さくなって、衝撃などが窒化珪素質焼結体に加わったとき、クラックの進展が早く、容易に破壊されるという問題があった。
【0006】
そこで、高温強度を向上するために、特開平7−330437号公報では、熱処理を加えて希土類元素、珪素、アルミニウム、酸素及び窒素とからなる非晶質の粒界相を結晶化させて、高温強度に優れた窒化珪素質焼結体が提案されている。
【0007】
また、破壊靭性値を向上させるために、特開平5−186271号公報では、窒化珪素粒子の成長を促進して柱状の粒子を形成せしめ、破壊しにくい窒化珪素質焼結体が提案されている。
【0008】
【発明が解決しようとする課題】
しかしながら、特開平7−330437号公報で開示された窒化珪素質焼結体では、高温強度が大きいものの、破壊靭性値が低いため、実際の熱機関で使用された場合にチッピングを生じやすいという問題があった。
【0009】
また、焼結助剤として含有する酸化アルミニウムは粒界相の結晶化を抑制する作用があるため、窒化珪素粒子間や窒化珪素粒子と結晶化された粒界相との間に存在する非晶質相が原因となり、高温強度のばらつきが大きくなるとともに、また高温域での疲労寿命も短かく、熱機関用部品などは高温に曝された過酷な条件下で長期に安定して使用することができない問題があった。
【0010】
一方、特開平5−186271号公報で開示されているように、粒成長を促進し、破壊靭性値を向上させることができるが、その反面、その成長した粒子そのものが破壊源となるため、強度特性を劣化させる問題があった。
【0011】
以上のように、高温強度または高靭性のいずれかの特性を改善する手法が得られているものの、その特性が不十分であったり、一方の特性を改善すると他方の特性が低下するという問題があった。
【0012】
したがって、本発明は、室温から1000℃付近の高温域において優れた強度を有するとともに、かつチッピング性に優れた高靭性で、疲労寿命の長い窒化珪素質焼結体とその製造方法を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明の窒化珪素質焼結体は、窒化珪素を主成分とし、希土類元素が酸化物換算で2〜10重量%、アルミニウムが酸化物換算で2〜5重量%、さらに過剰酸素が酸化珪素換算で0.5〜5重量%で、かつ前記希土類元素の酸化物換算量に対するアルミニウムの酸化物換算量の比が0.2〜0.7、前記希土類元素の酸化物換算量に対する過剰酸素の酸化珪素換算量の比が0.2〜0.7となる窒化珪素質焼結体において、β型窒化珪素結晶相と、希土類元素、珪素、アルミニウム、酸素及び窒素とからなる粒界結晶相並びに粒界非晶質相よりなり、10μm以下のβ型窒化珪素結晶相のマトリックス70〜90%、40〜100μmのβ型窒化珪素結晶10〜30%含み、かつ窒化珪素結晶相間の非晶質相の厚みが2nm以下で、かつ上記β型窒化珪素結晶相と前記粒界結晶相間の非晶質相の厚みが5nm以下であることを特徴とする。
【0014】
すなわち、本発明の窒化珪素質焼結体は、粒界相の結晶化を促進させ、窒化珪素粒子間や窒化珪素粒子と結晶化された粒界相との間に存在する非晶質相の厚みを薄くすることで、粒界の強度が高くなるために高温強度が向上し、また粒界での高温すべりが抑制されるために疲労寿命が改善できる。さらに、微細な窒化珪素粒子からなるマトリックス中に、柱状で大きな窒化珪素粒子を所定の粒度分布で分散させることによってクラックの進行方向を変え、クラックの走行距離を長くすることで破壊エネルギーを吸収し、靭性を改善することができる。したがって、高温強度に優れ、疲労寿命の長く、高靭性な窒化珪素質焼結体を得ることができる。
【0015】
また、希土類元素、アルミニウムおよび過剰酸素の含有量およびこれらの存在比が、アスペクト比および粒界結晶量に影響を及ぼすため、添加量とこれらの存在比を制御して上記の組織が得られる。
【0016】
さらに、本発明は上記窒化珪素質焼結体を製造するために、窒化珪素を主成分とし、助剤成分として希土類元素酸化物が2〜10重量%、酸化アルミニウムが2〜5重量%、さらに過剰酸素が酸化珪素換算で0.5〜5重量%で、かつ上記希土類元素酸化物量に対する酸化アルミニウム量の比が0.2〜0.7、上記希土類元素酸化物量に対する過剰酸素の酸化珪素換算量の比が0.2〜0.7となるようにそれぞれ添加してなる成形体を、非酸化性雰囲気下にて1700〜1800℃の温度で焼成し、その後窒素圧5気圧以上で1900〜2000℃の温度域で焼成し、しかるのち1000℃まで50℃/分以上の速度で急冷したあと、1000〜1500℃の熱処理をすることで焼結体の粒界相を結晶化することを特徴とする。
【0017】
これは、β型窒化珪素結晶相と、希土類元素、珪素、アルミニウム、酸素及び窒素とからなる粒界結晶相並びに粒界非晶質相よりなり、10μm以下のβ型窒化珪素結晶相のマトリックス70〜90%、40〜100μmのβ型窒化珪素結晶10〜30%含み、かつ窒化珪素結晶相間の非晶質相の厚みが2nm以下で、かつ前記β型窒化珪素結晶相と前記粒界結晶相間の非晶質相の厚みが5nm以下となる組織を得るためであり、所定の温度で焼成し、粒成長を促進させた後、特定の速度で急冷したあと、熱処理や熱が加わる条件で使用することにより粒界相を結晶化させることが重要である。
【0018】
【発明の実施の形態】
本発明の窒化珪素質燒結体は、図1に結晶構造の模式図を示すように、β型窒化珪素結晶相1を主体とし、希土類元素、珪素、酸素及び窒素とからなる粒界結晶相2並びに粒界非晶質相3,4を有するものであるが、本発明によれば、窒化珪素結晶相1間の非晶質相3の厚みが2nm、好ましくは1nm以下で、かつ窒化珪素結晶相1と粒界結晶相2間の非晶質相4の厚みが5nm、好ましくは3nm以下であることを大きな特徴とする。
【0019】
このように、粒界相を単に結晶化させるだけでなく、窒化珪素結晶相1間に残存する粒界非晶質相3や窒化珪素結晶相1と粒界結晶相2との間に残存する粒界非晶質相4の厚みを上記範囲内まで薄くすることで、酸化特性、クリープ等の他の高温特性を向上させることができる。
【0020】
すなわち、粒界の非晶質相3,4が薄いと、1000℃前後の高温下で非晶質相3、4が軟化しにくくなり、また外部応力に対してクラックが進展しにくくなる。その結果、1000℃の高温雰囲気下で700MPaの荷重を加えた時の繰り返し疲労寿命を107回以上、さらには3×107回以上にまで大幅に高めるとともに、窒化珪素質焼結の高温強度を800MPa以上にすることができる。
【0021】
ところで、このような高温特性を得るためには、窒化珪素に対し、Y、Er、Yb、Lu、Sm、Dy等の希土類元素を酸化物換算量で2〜10重量%、好ましくは4〜8重量%と、アルミニウムを酸化アルミニウム換算量で2〜5重量%、好ましくは3〜4重量%の範囲で含有するとともに、過剰酸素を酸化珪素換算量で0.5〜5重量%、好ましくは2〜4重量%の範囲で含み、さらに上記希土類元素の酸化物換算量に対するアルミニウムの酸化アルミニウム換算量の比が0.2〜0.7、好ましくは0.3〜0.6で、かつ上記希土類元素の酸化物換算量に対する過剰酸素の酸化珪素換算量の比が0.2〜0.7、好ましくは0.3〜0.6であることが重要である。
【0022】
ここで、過剰酸素は希土類酸化物に必要な酸素量と酸化アルミニウムに必要な酸素量とを算出し、全体の酸素量から差し引いたものである。全酸素量は、燃焼法を用いた酸素分析装置にて測定を行うことができる。
【0023】
即ち、希土類元素、アルミニウム、過剰酸素の含有量及び比率が上記範囲を外れると、希土類元素、珪素、酸素及び窒素とからなる粒界相を十分に結晶化させることができなかったり、結晶化しても粒界非晶質相3および4の厚みを前記範囲とすることができないからである。
【0024】
また、高靭性の特徴を併せ持つために10μm以下好ましくは8μm以下のβ型窒化珪素結晶粒子のマトリックス70〜90%好ましくは80〜90%中に40〜100μm好ましくは70〜90μmの粗大なβ型窒化珪素結晶粒子を10〜30%好ましくは10〜20%の割合で分散させることが重要である。このような組織に制御することにより靭性値を7以上さらには8MPa・m1/2以上に高めることができ、さらに粒界のアモルファスフィルム相の厚みも薄くし、疲労特性をさらに向上できる。10μm以下の微細粒子の割合が70%よりも少ない、もしくは柱状粒子が40μm以下ではディフレクションが少なくクラックは比較的直線的に進展し、クラックの走行距離が短いために吸収できる破壊エネルギーが小さくなり、高靭性化が達成されない。また柱状粒子が100μm以上、その割合が20%以上ではそれ自身が破壊源となり高強度化が達成されない。
【0025】
さらに、本発明の窒化珪素質焼結体中には、他の成分として、周期律表第4a、5a、6a族元素の金属や、TiC,TiN,TaC,TaN,VC,NbC,WC,WSi2,Mo2Cなど周期律表第4a、5a、6a族元素の炭化物、窒化物、珪化物の少なくとも1種以上、又はSiCなどを分散粒子やウィスカ−の状態で含有させることで特性を改善することも可能である。ただし、これらの合計含有量は5重量%以下とすることが好ましい。
【0026】
次に、本発明の窒化珪素質焼結体を製造する方法について説明する。
【0027】
まず、窒化珪素粉末を準備する。窒化珪素粉末としては、α−Si34、β−Si34のいずれの状態であっても良く、その粒径が0.4〜1.2μmでかつ酸素を0.5〜1.5重量%の範囲で含有しているものを用いることが良い。
【0028】
そして、この窒化珪素粉末に対し、焼結助剤として希土類元素酸化物を2〜10重量%、好ましくは4〜8重量%と、酸化アルミニウムを2〜5重量%、好ましくは3〜4重量%の範囲でそれぞれ添加するとともに、酸化珪素を0.5〜5重量%、好ましくは2〜4重量%の範囲で添加し、さらに上記希土類元素酸化物の添加量に対する酸化アルミニウムの添加量の比が0.2〜0.7、好ましくは0.3〜0.6で、かつ上記希土類元素酸化物の添加量に対する酸化珪素量の比が0.2〜0.7、好ましくは0.3〜0.6となるように調合する。ただし、上記酸化珪素量とは、添加する酸化珪素粉末の添加量に、窒化珪素粉末中に不純物として含まれる過剰酸素を酸化珪素換算した量を加えた値とする。
【0029】
これらの範囲で調合した原料粉末に対して、エタノールやイソプロピルアルコール等の有機溶剤及びバインダーを加えたあと、公知の粉砕方法、例えばボールミル、振動ミル、回転ミル、バレルミル等により原料粉末を均一に混合粉砕したものを、一軸加圧成形法や等加圧成形法、あるいは鋳込み成形法、押出成形法、射出成形法、冷間静水圧プレス等の公知のセラミック成形手段にて所望の形状に形成した成形体を製作する。この時、必要に応じて成形体に切削加工を施して良い。
【0030】
次に、得られた成形体を、非酸化雰囲気中にて1700〜1800℃、好ましくは1750〜1800℃の温度で常圧焼成したあと、1900〜2000℃好ましくは1950から2000℃の温度で、5気圧以上、特に10〜50気圧で焼成する。このような2段階焼成を行うことにより、低温処理で均一で微細な粒子を生成させ、ある程度緻密化させ、その後の高温処理で一部の粒子を粒成長させることができる。また、上記焼成後の冷却過程で1000℃まで50℃/分以上、好ましくは70℃/分以上の速度で急冷することが重要である。
【0031】
なお、焼成にあたっては、密閉した焼成鉢内に充填した酸化珪素とSiの混合粉末、あるいは酸化珪素と窒化珪素の混合粉末内に前記成形体を埋め、SiO含有雰囲気下で焼成するようにしても良く、この場合、焼成時における窒化珪素の分解を抑制することができる。
【0032】
ここで、冷却速度を1000℃まで50℃/分以上とするのは、これより遅い冷却速度では、希土類元素、珪素、酸素及び窒素とからなる粒界相が部分的に結晶化したり、固化して分相を形成し、焼成後の粒界の組成が不均一となるために、後述する熱処理や熱が加わる条件で使用しても、粒界相の結晶化が不十分となり、窒化珪素結晶相1間の非晶質相3の厚みを2nm以下で、かつ窒化珪素結晶相1と粒界結晶相2間の非晶質相4の厚みを5nm以下とすることができないからである。
【0033】
すなわち、本発明によれば、焼成後急冷することで、希土類元素、珪素、酸素及び窒素とからなる粒界相の結晶化を抑制して非晶質の状態とし、粒界の組成を均一化しておくことが好ましい。
【0034】
しかるのち、得られた窒化珪素質焼結体に1000〜1500℃の範囲で熱処理を加える。この熱処理は、1000℃以上の熱が加わる雰囲気下で使用することによっても成就できる。このような熱処理により、焼結体中の希土類元素、珪素、酸素及び窒素とからなる粒界相を結晶化させ、窒化珪素結晶相1間の非晶質相3の厚みを2nm以下で、かつ窒化珪素結晶相1と粒界結晶相2間の非晶質相4の厚みを5nm以下とすることができ、その結果繰り返し疲労寿命の長い耐久性に優れた窒化珪素質焼結体を得ることができる。
【0035】
さらに、本発明の製造方法によれば、出発原料の窒化珪素粉末に対し、10〜80重量%を珪素粉末に置き換えることもでき、この場合、成形体を焼成前に、窒素雰囲気下にて1000〜1400℃の温度で熱処理してSi粉末を窒化処理して窒化珪素を生成させ、成形体の密度を高めたうえで、前記焼成条件で焼成すれば良い。この製法によれば、焼成時の収縮を抑え、緻密で寸法精度の高い窒化珪素質焼結体を得ることができる。
【0036】
【実施例】
実施例1
BET比表面積9m2/g、窒化珪素のα率98%、酸素量1.2重量%の窒化珪素粉末に対し、焼結助剤として平均粒径1.5μmの希土類元素酸化物の粉末と、純度99.9%、平均粒径2μmの酸化アルミニウムの粉末と、純度99.9%、平均粒径2μmの酸化珪素の粉末と、所望により純度99%、平均粒径5.0μmのSi粉末を表1のように調合し、バインダー及び溶媒を添加して混練乾燥したあと、1t/cm2の圧力にて冷間静水圧成形法により成形体を形成した。
【0037】
次に、得られた成形体を炭化珪素からなる匣鉢に入れ、常圧の窒素雰囲下にて1300℃で5時間保持したあと、さらに1750℃の温度にて5時間焼成した。その後1950℃まで昇温し、5時間保持した。その後80℃/分の速度で冷却して窒化珪素質焼結体を得た。その後、この窒化珪素質焼結体を常圧の窒素雰囲気において1200℃で5時間熱処理を行った。
【0038】
そして、得られた窒化珪素質焼結体について、ICP分析と酸素分析にて組成を確認するとともに、焼結体の一部を切り出し、窒素雰囲気中、1100℃の温度で約10時間の熱処理を施したあと、窒化珪素質焼結体の表面に研磨加工を施し、透過型電子顕微鏡により窒化珪素結晶相1間の粒界非晶質相3の厚みL及び窒化珪素結晶相1と粒界結晶相2間の非晶質相4の厚みWを測定した。測定条件は50万倍の格子像を用い、測定ポイントを10カ所とし、その平均値を表1に示した。
【0039】
また、粒径の算出は走査型電子顕微鏡で組織観察を行い、顕微鏡写真から、画像解析により10μm以下、40〜100μmおよび100μm以上の面積比率を求めた。また、JIS1607に従って靭性(K1c)を測定し、JIS1607に従って1000℃での4点曲げ強度測定を行った。
【0040】
さらに、得られた窒化珪素質焼結体を、1000℃の高温雰囲気下で700MPaの荷重を加え、応力比0.1、周波数40Hzの条件下で4点曲げ試験を行い、繰り返し疲労寿命を測定した。
【0041】
結果は、表1に示す通りである。
【0042】
【表1】

Figure 0003810236
【0043】
まず、各種の希土類元素酸化物を5重量%添加してなる本発明の試料No.1〜7は、Lが1nm以下でWが3nm以下であり、10μm以下の窒化珪素粒子が80〜90%、40〜100μmの粒子が10〜20%であり、その結果、1000℃での強度が900MPa以上、破壊靭性が8MPa・m1/2以上、疲労寿命が7×107回以上という優れた特性を有していた。
【0044】
また、表1に示すように、希土類元素としてY23を使用し、過剰酸素の酸化珪素換算量であるSiO2量およびAl23量を変化させた試料No.8〜29から明らかなように、Y23量、SiO2量、Al23量、SiO2/Y23比およびAl23/Y23比が本発明の範囲内にある試料No.8、9、12、13、16、17、20、21、24、25、28および29は、いずれも窒化珪素質焼結体中におけるβ型窒化珪素結晶相間の非晶質相の厚みLを2nm以下で、かつβ型窒化珪素結晶相と粒界結晶相間の非晶質相の厚みWを5nm以下であり、その結果、1000℃での強度を800MPa以上、1000℃の高温雰囲気下で700MPaの荷重を加えた時の繰り返し疲労寿命を107回以上にまで高められることが確認できた。さらに10μm以下のβ型窒化珪素結晶相からなるマトリックス70〜90%のなかに40〜100μmのβ型窒化珪素結晶10〜30%分散させることにより靭性値を7MPa・m1/2以上に高めることができることが確認できた。
【0045】
さらに、出発原料の窒化珪素粉末に対し、10〜80重量%の範囲内で珪素粉末に置き換え、成形体を焼成前に、窒素雰囲気下にて1000〜1400℃の温度で熱処理してSi粉末を窒化処理して窒化珪素を生成させ、成形体の密度を高めたうえで焼成した試料No.28および29は、Lが1nm以下、Wが2nm以下、10μm以下の窒化珪素粒子が80〜90%、40〜100μmの粒子が15〜25%であり、その結果、1000℃での強度が1000MPa以上、破壊靭性が8.5MPa・m1/2以上、疲労寿命が8×107回以上という非常に優れた特性を有していた。
【0046】
これに対して、希土類酸化物量が2重量%未満の試料No.10および10重量%を越える試料No.11、酸化珪素量が0.5重量%未満の試料No.14および5重量%を越える試料No.15、アルミナ量が2重量%未満の試料No.18および5%を越える試料No.19、SiO2/Y23比が0.2より小さい試料No.22および0.7より大きい試料No.23、およびAl23/Y23比が0.2より小さい試料No.26および0.7より大きい試料No.27は、L、Wがそれぞれ2nm、5nmより大きく、また10μm以下の窒化珪素の量が70〜90%の範囲外、40〜100μmの量が10〜30%の範囲外となり、高温強度、破壊靭性および疲労寿命がそれぞれ640MPa以下、6.2MPa・m1/2以下、8×106回以下と低い値であった。
実施例2
次に、組成がY23量が5重量%、SiO2量が3重量%およびAl23量が3重量%含まれる窒化珪素質成形体を1750℃の温度で常圧焼成したあと、1950℃の温度域20気圧で焼成後1000℃で100時間熱処理し、表2に示した冷却速度で1000℃まで冷却し、実施例1と同様の条件にて高温強度、疲労寿命、破壊靭性値を測定した。結果を表2に示した。
【0047】
【表2】
Figure 0003810236
【0048】
その結果、1000℃までの冷却速度が50℃/分以上である試料No.30〜32は、10μm以下のβ型窒化珪素結晶相からなるマトリックス70〜90%のなかに40〜100μmのβ型窒化珪素結晶10〜30%を分散させることができた。また、窒化珪素質焼結体中におけるβ型窒化珪素結晶相間の非晶質相の厚みを2nm以下で、かつβ型窒化珪素結晶相と粒界結晶相間の非晶質相の厚みを5nm以下とすることができた。
【0049】
そして、その結果、1000℃での強度を800MPa以上、靭性値を7MPa・m1/2以上、1000℃の高温雰囲気下で700MPaの荷重を加えた時の繰り返し疲労寿命を107回以上とすることができた。
【0050】
一方、1000℃までの冷却速度が50℃/分より遅い試料No.33および34は、β型窒化珪素結晶相間の非晶質相の厚みが2nmを越えるとともに、β型窒化珪素結晶相と粒界結晶相間の非晶質相の厚みが5nmを越えるので本発明の範囲外となり、高温強度、破壊靭性および疲労寿命がそれぞれ800MPa未満、7MPa・m1/2未満、107回未満と低い値となった。
【0051】
以上の結果から、本発明の窒化珪素質焼結体は、いずれも1000℃の高温強度が800MPa以上、破壊靭性が7MPa・m1/2以上、疲労寿命が107回以上が達成された。
【0052】
【発明の効果】
本発明によれば、粒界相の結晶化を促進させて非晶質相の厚みを薄くするとともに、窒化珪素粒子を微細なマトリックスの中に、柱状の窒化けい素粒子を所定量分散させることによって靭性を改善し、高温強度に優れ、疲労寿命の長く、高靭性な窒化珪素質焼結体を得ることができる。
【図面の簡単な説明】
【図1】本発明の窒化珪素質焼結体の結晶構造を示す模式図である。
【符号の説明】
1・・窒化珪素結晶相
2・・粒界結晶相
3・・窒化珪素結晶相間の非晶質相
4・・窒化珪素結晶相と粒界結晶相間の非晶質相[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a silicon nitride sintered body having a long fatigue life at a high temperature and a method for producing the same, and particularly suitable as a heat engine component such as an automotive component such as a piston pin or an engine valve or a gas turbine engine component. It is a thing.
[0002]
[Prior art]
Conventionally, silicon nitride-based sintered bodies known as engineering ceramics have excellent heat resistance, thermal shock resistance, wear resistance, and oxidation resistance, so that they are particularly suitable for heat engines such as gas turbines and turbo-rotors. Applications as parts are underway.
[0003]
Since silicon nitride is a difficult-to-sinter material, in order to improve the sinterability, a molded body in which rare earth element oxides such as Y 2 O 3 or aluminum oxide is added as a sintering aid to silicon nitride powder. It is known to obtain a sintered body that is fired under pressure and is composed of an amorphous grain boundary phase mainly composed of a silicon nitride crystal phase and composed of rare earth elements, silicon, aluminum, oxygen, and nitrogen.
[0004]
However, when rare earth element oxide and aluminum oxide are used as sintering aids, the strength at room temperature is high, but in a high temperature range, for example, around 1000 ° C., rare earth elements, silicon, aluminum in the sintered body Further, since the grain boundary phase composed of oxygen and nitrogen has a low melting point and is easily softened in a high temperature range, there is a problem that high temperature strength and fatigue characteristics are greatly deteriorated.
[0005]
In addition, because it has a fine structure to achieve high high-temperature strength, fracture toughness is reduced, and when impact is applied to the silicon nitride sintered body, the crack progresses quickly and is easily broken. There was a problem.
[0006]
Therefore, in order to improve the high temperature strength, Japanese Patent Application Laid-Open No. 7-330437 discloses that a heat treatment is applied to crystallize an amorphous grain boundary phase composed of rare earth elements, silicon, aluminum, oxygen, and nitrogen, thereby increasing the temperature. A silicon nitride sintered body having excellent strength has been proposed.
[0007]
In order to improve the fracture toughness value, Japanese Patent Laid-Open No. 5-186271 proposes a silicon nitride sintered body that promotes the growth of silicon nitride particles to form columnar particles and is difficult to break. .
[0008]
[Problems to be solved by the invention]
However, the silicon nitride-based sintered body disclosed in Japanese Patent Application Laid-Open No. 7-330437 has a high temperature strength, but has a low fracture toughness value, so that it tends to cause chipping when used in an actual heat engine. was there.
[0009]
In addition, since aluminum oxide contained as a sintering aid has an action of suppressing crystallization of the grain boundary phase, an amorphous material existing between the silicon nitride particles or between the silicon nitride particles and the crystallized grain boundary phase. Due to the temperament, the variation in high-temperature strength is large, and the fatigue life in the high-temperature range is short. Parts for heat engines, etc. should be used stably for a long time under harsh conditions exposed to high temperatures. There was a problem that could not be.
[0010]
On the other hand, as disclosed in JP-A-5-186271, grain growth can be promoted and the fracture toughness value can be improved, but on the other hand, the grown particles themselves serve as a fracture source. There was a problem of deteriorating characteristics.
[0011]
As described above, although a method for improving either the high-temperature strength or the high toughness has been obtained, there is a problem that the property is insufficient or the improvement of one property lowers the other property. there were.
[0012]
Therefore, the present invention provides a silicon nitride-based sintered body having excellent strength in a high temperature range from room temperature to 1000 ° C. and having high toughness with excellent chipping property and a long fatigue life, and a method for producing the same. With the goal.
[0013]
[Means for Solving the Problems]
The silicon nitride-based sintered body of the present invention is mainly composed of silicon nitride, the rare earth element is 2 to 10% by weight in terms of oxide, aluminum is 2 to 5% by weight in terms of oxide, and excess oxygen is in terms of silicon oxide. 0.5 to 5% by weight, and the ratio of the oxide equivalent of aluminum to the oxide equivalent of the rare earth element is 0.2 to 0.7, oxidation of excess oxygen with respect to the oxide equivalent of the rare earth element In a silicon nitride-based sintered body having a silicon equivalent ratio of 0.2 to 0.7, a β-type silicon nitride crystal phase, a grain boundary crystal phase comprising rare earth elements, silicon, aluminum, oxygen and nitrogen, and grains The amorphous silicon phase comprises 70 to 90% of a β-type silicon nitride crystal phase of 10 μm or less, 10 to 30% of β-type silicon nitride crystal of 40 to 100 μm, and an amorphous phase between the silicon nitride crystal phases. The thickness is 2 nm or less and the β type The thickness of the amorphous phase between the grain boundary crystal phase and of the silicon crystal phase, characterized in that it is 5nm or less.
[0014]
That is, the silicon nitride sintered body of the present invention promotes the crystallization of the grain boundary phase, and the amorphous phase existing between the silicon nitride particles or between the silicon nitride particles and the crystallized grain boundary phase. By reducing the thickness, the strength of the grain boundary is increased, so that the high temperature strength is improved, and the high temperature sliding at the grain boundary is suppressed, so that the fatigue life can be improved. Furthermore, by dispersing columnar large silicon nitride particles in a matrix made of fine silicon nitride particles with a predetermined particle size distribution, the crack traveling direction is changed, and the crack traveling distance is increased to absorb the fracture energy. , Can improve toughness. Therefore, it is possible to obtain a silicon nitride-based sintered body having excellent high temperature strength, a long fatigue life, and high toughness.
[0015]
Further, since the contents of rare earth elements, aluminum and excess oxygen, and their abundance ratios affect the aspect ratio and the amount of grain boundary crystals, the above-mentioned structure can be obtained by controlling the addition amount and the abundance ratio thereof.
[0016]
Furthermore, in order to produce the above silicon nitride sintered body, the present invention is mainly composed of silicon nitride, 2 to 10% by weight of rare earth element oxide as an auxiliary component, 2 to 5% by weight of aluminum oxide, Excess oxygen is 0.5 to 5% by weight in terms of silicon oxide, and the ratio of the amount of aluminum oxide to the amount of the rare earth element oxide is 0.2 to 0.7. The amount of excess oxygen to the amount of silicon oxide in terms of the amount of the rare earth element oxide The compacts respectively added so as to have a ratio of 0.2 to 0.7 are fired at a temperature of 1700 to 1800 ° C. in a non-oxidizing atmosphere, and then 1900 to 2000 at a nitrogen pressure of 5 atm or more. It is characterized in that the grain boundary phase of the sintered body is crystallized by performing heat treatment at 1000 to 1500 ° C. after firing in the temperature range of ° C. and then rapidly cooling to 1000 ° C. at a rate of 50 ° C./min or more. To do.
[0017]
This is composed of a β-type silicon nitride crystal phase, a grain boundary crystal phase composed of rare earth elements, silicon, aluminum, oxygen and nitrogen, and a grain boundary amorphous phase, and a matrix 70 of β-type silicon nitride crystal phase of 10 μm or less. 90%, 40-100 μm of β-type silicon nitride crystal 10-30%, the thickness of the amorphous phase between silicon nitride crystal phases is 2 nm or less, and between the β-type silicon nitride crystal phase and the grain boundary crystal phase This is to obtain a structure in which the thickness of the amorphous phase becomes 5 nm or less, after firing at a predetermined temperature, promoting grain growth, quenching at a specific rate, and then using under conditions where heat treatment or heat is applied It is important to crystallize the grain boundary phase by doing so.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
The silicon nitride sintered body of the present invention has a grain boundary crystal phase 2 mainly composed of a β-type silicon nitride crystal phase 1 and comprising a rare earth element, silicon, oxygen and nitrogen, as shown in a schematic diagram of a crystal structure in FIG. According to the present invention, the amorphous phase 3 between the silicon nitride crystal phases 1 has a thickness of 2 nm, preferably 1 nm or less, and a silicon nitride crystal. A major feature is that the thickness of the amorphous phase 4 between the phase 1 and the grain boundary crystal phase 2 is 5 nm, preferably 3 nm or less.
[0019]
Thus, not only the grain boundary phase is crystallized, but also the grain boundary amorphous phase 3 remaining between the silicon nitride crystal phases 1 or between the silicon nitride crystal phase 1 and the grain boundary crystal phase 2. By reducing the thickness of the grain boundary amorphous phase 4 to the above range, other high temperature characteristics such as oxidation characteristics and creep can be improved.
[0020]
That is, when the amorphous phases 3 and 4 at the grain boundaries are thin, the amorphous phases 3 and 4 are difficult to soften at a high temperature of about 1000 ° C., and cracks are difficult to develop against external stress. As a result, the repeated fatigue life when applying a load of 700 MPa in a high temperature atmosphere of 1000 ° C. is significantly increased to 10 7 times or more, and further to 3 × 10 7 times or more, and the high temperature strength of silicon nitride-based sintering is increased. Can be 800 MPa or more.
[0021]
By the way, in order to obtain such high-temperature characteristics, rare earth elements such as Y, Er, Yb, Lu, Sm, and Dy with respect to silicon nitride are 2 to 10% by weight, preferably 4 to 8% in terms of oxides. And 2 to 5% by weight of aluminum in terms of aluminum oxide, preferably 3 to 4% by weight, and excess oxygen in an amount of 0.5 to 5% by weight of silicon oxide, preferably 2 And the ratio of the aluminum oxide equivalent of aluminum to the oxide equivalent of the rare earth element is 0.2 to 0.7, preferably 0.3 to 0.6, and the rare earth It is important that the ratio of excess oxygen to silicon oxide equivalent to the element oxide equivalent is 0.2 to 0.7, preferably 0.3 to 0.6.
[0022]
Here, excess oxygen is obtained by calculating the amount of oxygen necessary for the rare earth oxide and the amount of oxygen necessary for aluminum oxide, and subtracting from the total amount of oxygen. The total oxygen amount can be measured by an oxygen analyzer using a combustion method.
[0023]
That is, if the content and ratio of rare earth elements, aluminum, and excess oxygen are out of the above ranges, the grain boundary phase composed of rare earth elements, silicon, oxygen, and nitrogen cannot be sufficiently crystallized or crystallized. This is because the thickness of the grain boundary amorphous phases 3 and 4 cannot be within the above range.
[0024]
Further, in order to have the characteristics of high toughness, a coarse β-type of 40-100 μm, preferably 70-90 μm in a matrix of 70-90%, preferably 80-90% of β-type silicon nitride crystal particles of 10 μm or less, preferably 8 μm or less. It is important to disperse the silicon nitride crystal particles in a proportion of 10 to 30%, preferably 10 to 20%. By controlling to such a structure, the toughness value can be increased to 7 or more, further 8 MPa · m 1/2 or more, the thickness of the amorphous film phase at the grain boundary can be reduced, and the fatigue characteristics can be further improved. When the proportion of fine particles of 10 μm or less is less than 70%, or when columnar particles are 40 μm or less, there is little deflection and the cracks progress relatively linearly. , High toughness is not achieved. On the other hand, if the columnar particles are 100 μm or more and the ratio is 20% or more, they themselves become a fracture source, and high strength cannot be achieved.
[0025]
Furthermore, in the silicon nitride sintered body of the present invention, as other components, metals of Group 4a, 5a, 6a elements of the periodic table, TiC, TiN, TaC, TaN, VC, NbC, WC, WSi Improved characteristics by including at least one of carbides, nitrides and silicides of elements 4a, 5a and 6a of periodic table such as 2 and Mo 2 C, or SiC in the form of dispersed particles or whiskers. It is also possible to do. However, the total content of these is preferably 5% by weight or less.
[0026]
Next, a method for producing the silicon nitride sintered body of the present invention will be described.
[0027]
First, silicon nitride powder is prepared. The silicon nitride powder may be in any state of α-Si 3 N 4 or β-Si 3 N 4 , the particle size is 0.4 to 1.2 μm, and oxygen is 0.5 to 1.. What is contained in the range of 5% by weight is preferably used.
[0028]
The silicon nitride powder has a rare earth element oxide of 2 to 10% by weight, preferably 4 to 8% by weight, and aluminum oxide of 2 to 5% by weight, preferably 3 to 4% by weight as a sintering aid. The silicon oxide is added in the range of 0.5 to 5% by weight, preferably 2 to 4% by weight, and the ratio of the addition amount of aluminum oxide to the addition amount of the rare earth element oxide is 0.2 to 0.7, preferably 0.3 to 0.6, and the ratio of the amount of silicon oxide to the addition amount of the rare earth element oxide is 0.2 to 0.7, preferably 0.3 to 0 ..6. However, the amount of silicon oxide is a value obtained by adding an amount of silicon oxide powder to which excess oxygen contained as an impurity in silicon nitride powder is converted into silicon oxide.
[0029]
After adding an organic solvent such as ethanol and isopropyl alcohol and a binder to the raw material powder prepared in these ranges, the raw material powder is uniformly mixed by a known pulverization method such as a ball mill, vibration mill, rotary mill, barrel mill, etc. The pulverized product was formed into a desired shape by a known ceramic molding means such as a uniaxial pressure molding method, an equal pressure molding method, a casting molding method, an extrusion molding method, an injection molding method, or a cold isostatic press. A molded body is produced. At this time, the formed body may be cut as necessary.
[0030]
Next, the obtained molded body was fired at normal pressure at a temperature of 1700 to 1800 ° C., preferably 1750 to 1800 ° C. in a non-oxidizing atmosphere, and then 1900 to 2000 ° C., preferably 1950 to 2000 ° C., Baking is performed at 5 atm or more, particularly 10 to 50 atm. By performing such two-stage firing, uniform and fine particles can be generated by low-temperature treatment and densified to some extent, and some of the particles can be grown by subsequent high-temperature treatment. Further, it is important to rapidly cool to 1000 ° C. at a rate of 50 ° C./min or more, preferably 70 ° C./min or more in the cooling process after the firing.
[0031]
In firing, the molded body is embedded in a mixed powder of silicon oxide and Si filled in a closed firing pot or a mixed powder of silicon oxide and silicon nitride, and fired in an atmosphere containing SiO. In this case, decomposition of silicon nitride during firing can be suppressed.
[0032]
Here, the cooling rate is set to 1000 ° C. at 50 ° C./min or more. At a slower cooling rate, the grain boundary phase composed of rare earth elements, silicon, oxygen and nitrogen is partially crystallized or solidified. Therefore, even when used under conditions where heat treatment or heat is applied, the grain boundary phase is insufficiently crystallized, resulting in silicon nitride crystals. This is because the thickness of the amorphous phase 3 between the phases 1 cannot be 2 nm or less, and the thickness of the amorphous phase 4 between the silicon nitride crystal phase 1 and the grain boundary crystal phase 2 cannot be 5 nm or less.
[0033]
That is, according to the present invention, by rapid cooling after firing, crystallization of a grain boundary phase composed of rare earth elements, silicon, oxygen, and nitrogen is suppressed to an amorphous state, and the composition of the grain boundary is made uniform. It is preferable to keep it.
[0034]
Thereafter, the obtained silicon nitride sintered body is subjected to heat treatment in the range of 1000 to 1500 ° C. This heat treatment can also be accomplished by using it in an atmosphere where heat of 1000 ° C. or higher is applied. By such heat treatment, the grain boundary phase composed of rare earth elements, silicon, oxygen and nitrogen in the sintered body is crystallized, and the thickness of the amorphous phase 3 between the silicon nitride crystal phases 1 is 2 nm or less, and The thickness of the amorphous phase 4 between the silicon nitride crystal phase 1 and the grain boundary crystal phase 2 can be made 5 nm or less, and as a result, a silicon nitride-based sintered body excellent in durability with a long repeated fatigue life can be obtained. Can do.
[0035]
Furthermore, according to the production method of the present invention, 10 to 80% by weight of silicon nitride powder as a starting material can be replaced with silicon powder. In this case, the molded body is 1000 1000 under a nitrogen atmosphere before firing. The Si powder may be heat treated at a temperature of ˜1400 ° C. to form silicon nitride to increase the density of the molded body, and then fired under the firing conditions. According to this manufacturing method, shrinkage during firing can be suppressed, and a dense silicon nitride sintered body with high dimensional accuracy can be obtained.
[0036]
【Example】
Example 1
A silicon nitride powder having a BET specific surface area of 9 m 2 / g, silicon nitride α ratio of 98%, oxygen content of 1.2% by weight, a rare earth element oxide powder having an average particle size of 1.5 μm as a sintering aid, An aluminum oxide powder having a purity of 99.9% and an average particle diameter of 2 μm, a silicon oxide powder having a purity of 99.9% and an average particle diameter of 2 μm, and a Si powder having a purity of 99% and an average particle diameter of 5.0 μm as required. After blending as shown in Table 1, adding a binder and a solvent and kneading and drying, a molded body was formed by a cold isostatic pressing method at a pressure of 1 t / cm 2 .
[0037]
Next, the obtained molded body was put into a slag bowl made of silicon carbide, held at 1300 ° C. for 5 hours in a nitrogen atmosphere at normal pressure, and further fired at a temperature of 1750 ° C. for 5 hours. Thereafter, the temperature was raised to 1950 ° C. and held for 5 hours. Thereafter, the silicon nitride sintered body was obtained by cooling at a rate of 80 ° C./min. Thereafter, this silicon nitride sintered body was heat-treated at 1200 ° C. for 5 hours in a nitrogen atmosphere at normal pressure.
[0038]
And while confirming a composition about the obtained silicon nitride sintered body by ICP analysis and oxygen analysis, a part of sintered body is cut out and heat-treated at a temperature of 1100 ° C. for about 10 hours in a nitrogen atmosphere. Then, polishing is performed on the surface of the silicon nitride-based sintered body, and the thickness L of the grain boundary amorphous phase 3 between the silicon nitride crystal phase 1 and the silicon nitride crystal phase 1 and the grain boundary crystal are measured by a transmission electron microscope. The thickness W of the amorphous phase 4 between the phases 2 was measured. The measurement conditions used a 500,000-fold lattice image, 10 measurement points, and the average values are shown in Table 1.
[0039]
The particle size was calculated by observing the structure with a scanning electron microscope, and from the micrograph, area ratios of 10 μm or less, 40 to 100 μm, and 100 μm or more were determined by image analysis. Further, toughness (K 1c ) was measured according to JIS 1607, and 4-point bending strength measurement at 1000 ° C. was performed according to JIS 1607.
[0040]
Further, the obtained silicon nitride-based sintered body was subjected to a four-point bending test under a stress ratio of 0.1 and a frequency of 40 Hz under a high temperature atmosphere of 1000 ° C., and a repeated fatigue life was measured. did.
[0041]
The results are as shown in Table 1.
[0042]
[Table 1]
Figure 0003810236
[0043]
First, sample No. 1 of the present invention obtained by adding 5% by weight of various rare earth element oxides. 1-7, L is 1 nm or less, W is 3 nm or less, silicon nitride particles of 10 μm or less are 80-90%, particles of 40-100 μm are 10-20%, and as a result, strength at 1000 ° C. Has excellent characteristics of 900 MPa or more, fracture toughness of 8 MPa · m 1/2 or more, and fatigue life of 7 × 10 7 times or more.
[0044]
In addition, as shown in Table 1, sample Nos. 1 and 2 in which Y 2 O 3 was used as the rare earth element and the amount of SiO 2 and the amount of Al 2 O 3 as the silicon oxide equivalent amount of excess oxygen were changed. As apparent from 8 to 29, the amount of Y 2 O 3, the amount of SiO 2, the amount of Al 2 O 3 , the SiO 2 / Y 2 O 3 ratio and the Al 2 O 3 / Y 2 O 3 ratio are within the scope of the present invention. Sample No. 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28 and 29 all have the thickness L of the amorphous phase between the β-type silicon nitride crystal phases in the silicon nitride sintered body. 2 nm or less, and the thickness W of the amorphous phase between the β-type silicon nitride crystal phase and the grain boundary crystal phase is 5 nm or less. As a result, the strength at 1000 ° C. is 800 MPa or more and 700 MPa in a high temperature atmosphere of 1000 ° C. It was confirmed that the repeated fatigue life when the above load was applied could be increased to 10 7 times or more. Further, the toughness value is increased to 7 MPa · m 1/2 or more by dispersing 10 to 30% of 40 to 100 μm β-type silicon nitride crystal in 70 to 90% of a matrix composed of β-type silicon nitride crystal phase of 10 μm or less. I was able to confirm.
[0045]
Further, the silicon nitride powder as a starting material is replaced with silicon powder within a range of 10 to 80% by weight, and the molded body is heat-treated at a temperature of 1000 to 1400 ° C. in a nitrogen atmosphere before firing to obtain a Si powder. Sample No. 1 was formed by nitriding to produce silicon nitride, increasing the density of the compact, and firing. 28 and 29 are 80 to 90% of silicon nitride particles having L of 1 nm or less, W of 2 nm or less and 10 μm or less, and 15 to 25% of particles of 40 to 100 μm, and as a result, the strength at 1000 ° C. is 1000 MPa. As described above, the fracture toughness was 8.5 MPa · m 1/2 or more and the fatigue life was 8 × 10 7 times or more.
[0046]
On the other hand, Sample No. having a rare earth oxide content of less than 2% by weight. Sample Nos. Over 10 and 10% by weight. 11, Sample No. with a silicon oxide content of less than 0.5% by weight. Sample Nos. Over 14 and 5% by weight. 15, Sample No. having an alumina amount of less than 2% by weight. Sample No. over 18 and 5%. 19, Sample No. with SiO 2 / Y 2 O 3 ratio smaller than 0.2. Sample Nos. Greater than 22 and 0.7. 23, and Sample No. with an Al 2 O 3 / Y 2 O 3 ratio of less than 0.2. Sample Nos. Greater than 26 and 0.7. In No. 27, L and W are larger than 2 nm and 5 nm, respectively, the amount of silicon nitride of 10 μm or less is outside the range of 70 to 90%, and the amount of 40 to 100 μm is outside the range of 10 to 30%. The toughness and fatigue life were as low as 640 MPa or less, 6.2 MPa · m 1/2 or less, and 8 × 10 6 times or less, respectively.
Example 2
Next, after firing a silicon nitride-like molded body containing 5% by weight of Y 2 O 3, 3 % by weight of SiO 2 and 3% by weight of Al 2 O 3 at normal temperature firing at a temperature of 1750 ° C. , Fired at 20 ° C. in a temperature range of 1950 ° C., heat-treated at 1000 ° C. for 100 hours, cooled to 1000 ° C. at the cooling rate shown in Table 2, and subjected to the same high temperature strength, fatigue life and fracture toughness as in Example 1. The value was measured. The results are shown in Table 2.
[0047]
[Table 2]
Figure 0003810236
[0048]
As a result, Sample No. with a cooling rate of up to 1000 ° C. was 50 ° C./min or more. 30 to 32 were able to disperse 10 to 30% of 40 to 100 μm β-type silicon nitride crystals in 70 to 90% of a matrix composed of a β-type silicon nitride crystal phase of 10 μm or less. The thickness of the amorphous phase between the β-type silicon nitride crystal phases in the silicon nitride-based sintered body is 2 nm or less, and the thickness of the amorphous phase between the β-type silicon nitride crystal phase and the grain boundary crystal phase is 5 nm or less. And was able to.
[0049]
As a result, the strength at 1000 ° C. is 800 MPa or more, the toughness value is 7 MPa · m 1/2 or more, and the repeated fatigue life when a 700 MPa load is applied in a high temperature atmosphere of 1000 ° C. is 10 7 times or more. I was able to.
[0050]
On the other hand, Sample No. with a cooling rate to 1000 ° C. is slower than 50 ° C./min. 33 and 34, the thickness of the amorphous phase between the β-type silicon nitride crystal phase exceeds 2 nm, and the thickness of the amorphous phase between the β-type silicon nitride crystal phase and the grain boundary crystal phase exceeds 5 nm. Out of the range, the high-temperature strength, fracture toughness, and fatigue life were low values of less than 800 MPa, less than 7 MPa · m 1/2, and less than 10 7 times, respectively.
[0051]
From the above results, all the silicon nitride sintered bodies of the present invention achieved a high temperature strength at 1000 ° C. of 800 MPa or more, a fracture toughness of 7 MPa · m 1/2 or more, and a fatigue life of 10 7 times or more.
[0052]
【The invention's effect】
According to the present invention, the crystallization of the grain boundary phase is promoted to reduce the thickness of the amorphous phase, and the silicon nitride particles are dispersed in a predetermined amount of columnar silicon nitride particles in a fine matrix. Thus, it is possible to improve the toughness, to obtain a silicon nitride-based sintered body having excellent high temperature strength, a long fatigue life, and a high toughness.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a crystal structure of a silicon nitride sintered body of the present invention.
[Explanation of symbols]
1 .. Silicon nitride crystal phase 2 .. Grain boundary crystal phase 3.. Amorphous phase between silicon nitride crystal phases 4.. Amorphous phase between silicon nitride crystal phase and grain boundary crystal phase

Claims (2)

窒化珪素を主成分とし、希土類元素が酸化物換算で2〜10重量%、アルミニウムが酸化物換算で2〜5重量%、さらに過剰酸素が酸化珪素換算で0.5〜5重量%で、かつ前記希土類元素の酸化物換算量に対するアルミニウムの酸化物換算量の比が0.2〜0.7、前記希土類元素の酸化物換算量に対する過剰酸素の酸化珪素換算量の比が0.2〜0.7となる窒化珪素質焼結体において、β型窒化珪素結晶相と、希土類元素、珪素、アルミニウム、酸素及び窒素とからなる粒界結晶相並びに粒界非晶質相よりなり、長径が10μm以下のβ型窒化珪素結晶粒子が面積比率で70〜90%、長径が40〜100μmのβ型窒化珪素結晶粒子を10〜30%含み、かつ窒化珪素結晶相間の非晶質相の厚みが2nm以下で、かつ前記β型窒化珪素結晶相と前記粒界結晶相間の非晶質相の厚みが5nm以下であることを特徴とする窒化珪素質焼結体。Mainly silicon nitride, rare earth element 2 to 10% by weight in terms of oxide, aluminum 2 to 5% by weight in terms of oxide, excess oxygen 0.5 to 5% by weight in terms of silicon oxide, and The ratio of the oxide equivalent of aluminum to the oxide equivalent of the rare earth element is 0.2 to 0.7, and the ratio of the silicon oxide equivalent of excess oxygen to the oxide equivalent of the rare earth element is 0.2 to 0. The silicon nitride-based sintered body of .7 is composed of a β-type silicon nitride crystal phase, a grain boundary crystal phase composed of rare earth elements, silicon, aluminum, oxygen and nitrogen, and a grain boundary amorphous phase, and has a major axis of 10 μm. The following β-type silicon nitride crystal particles contain 70-90% by area ratio, 10-30% β-type silicon nitride crystal particles having a major axis of 40-100 μm, and the thickness of the amorphous phase between the silicon nitride crystal phases is 2 nm. And the β-type silicon nitride crystal Phase silicon nitride sintered material, wherein the thickness of the amorphous phase is 5nm or less between the grain boundary crystal phase. 窒化珪素を主成分とし、希土類元素酸化物が2〜10重量%、酸化アルミニウムが2〜5重量%、さらに過剰酸素が酸化珪素換算で0.5〜5重量%で、かつ前記希土類元素酸化物量に対する酸化アルミニウム量の比が0.2〜0.7、前記希土類元素酸化物量に対する過剰酸素の酸化珪素換算量の比が0.2〜0.7となるようにそれぞれ添加してなる成形体を、非酸化性雰囲気下にて常圧で1700〜1800℃の温度で焼成し、その後窒素圧5気圧以上で1900〜2000℃の温度域で焼成し、しかるのち1000℃まで50℃/分以上の速度で急冷したあと、1000〜1500℃の熱処理をすることで焼結体の粒界相を結晶化することを特徴とする窒化珪素質焼結体の製造方法。Mainly silicon nitride, 2 to 10% by weight of rare earth element oxide, 2 to 5% by weight of aluminum oxide, and 0.5 to 5% by weight of excess oxygen in terms of silicon oxide, and the amount of the rare earth element oxide A molded body obtained by adding a ratio of the amount of aluminum oxide to 0.2 to 0.7 and a ratio of the amount of excess oxygen to the amount of silicon oxide equivalent to the amount of rare earth element oxide to be 0.2 to 0.7, respectively. Baked at a pressure of 1700 to 1800 ° C. under normal pressure in a non-oxidizing atmosphere, and then baked in a temperature range of 1900 to 2000 ° C. at a nitrogen pressure of 5 atm. A method for producing a silicon nitride sintered body, characterized by crystallizing a grain boundary phase of a sintered body by performing heat treatment at 1000 to 1500 ° C. after rapid cooling at a speed.
JP27329999A 1999-09-27 1999-09-27 Silicon nitride sintered body and manufacturing method thereof Expired - Fee Related JP3810236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27329999A JP3810236B2 (en) 1999-09-27 1999-09-27 Silicon nitride sintered body and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27329999A JP3810236B2 (en) 1999-09-27 1999-09-27 Silicon nitride sintered body and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001089244A JP2001089244A (en) 2001-04-03
JP3810236B2 true JP3810236B2 (en) 2006-08-16

Family

ID=17525933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27329999A Expired - Fee Related JP3810236B2 (en) 1999-09-27 1999-09-27 Silicon nitride sintered body and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3810236B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04285070A (en) * 1991-03-14 1992-10-09 Riken Corp Silicon nitride sintered body and its production
JP3034106B2 (en) * 1991-11-29 2000-04-17 京セラ株式会社 Method for producing silicon nitride based sintered body
JPH06305834A (en) * 1993-04-16 1994-11-01 Noritake Co Ltd Sintered silicon nitride having crystallized grain boundary and its production
JP3810183B2 (en) * 1997-06-30 2006-08-16 京セラ株式会社 Silicon nitride sintered body
JPH1129361A (en) * 1997-07-09 1999-02-02 Noritake Co Ltd Silicon nitride sintered product and its production

Also Published As

Publication number Publication date
JP2001089244A (en) 2001-04-03

Similar Documents

Publication Publication Date Title
JP5238161B2 (en) Silicon nitride sintered body and method for manufacturing the same, member for molten metal, member for hot working, member for excavation
JPH0925166A (en) Aluminum nitride sintered compact and its production
JP3270792B2 (en) Method for producing silicon nitride based sintered body
JP4651144B2 (en) Silicon nitride sintered body
JP3810236B2 (en) Silicon nitride sintered body and manufacturing method thereof
JP3231944B2 (en) Method for manufacturing silicon nitride heat-resistant member
JP3667145B2 (en) Silicon nitride sintered body
JP3810806B2 (en) Sintered silicon nitride ceramics
US6297184B1 (en) Sintered product of silicon nitride
JP2000247748A (en) High-toughness silicon nitride-based sintered compact
JPH1087370A (en) Silicon nitride-base composite ceramics and production thereof
JPH09157028A (en) Silicon nitride sintered compact and its production
JP2892186B2 (en) Method for producing silicon nitride-silicon carbide composite sintered body
JP4671524B2 (en) Method for producing silicon nitride sintered body
JP2826080B2 (en) Silicon nitride / silicon carbide composite sintered body and method for producing composite powder
JP3236739B2 (en) Silicon nitride sintered body and method for producing the same
JP2881189B2 (en) Method for producing silicon nitride-silicon carbide composite ceramics
JP2801447B2 (en) Method for producing silicon nitride based sintered body
JP3207065B2 (en) Silicon nitride sintered body
JP3981510B2 (en) Method for producing silicon nitride sintered body
JP3207045B2 (en) Method for producing silicon nitride based sintered body
JPH10182237A (en) Silicon nitride-base composite sintered compact and its production
JP3667064B2 (en) Silicon nitride-based sintered body and method for producing the same
JP3236733B2 (en) Silicon nitride sintered body
JPH08325061A (en) Silicon nitride sintered compact and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060523

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090602

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130602

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees