JPH09157028A - Silicon nitride sintered compact and its production - Google Patents

Silicon nitride sintered compact and its production

Info

Publication number
JPH09157028A
JPH09157028A JP7312542A JP31254295A JPH09157028A JP H09157028 A JPH09157028 A JP H09157028A JP 7312542 A JP7312542 A JP 7312542A JP 31254295 A JP31254295 A JP 31254295A JP H09157028 A JPH09157028 A JP H09157028A
Authority
JP
Japan
Prior art keywords
weight
silicon nitride
strength
terms
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7312542A
Other languages
Japanese (ja)
Other versions
JP3454994B2 (en
Inventor
Takeo Fukutome
武郎 福留
Masahiro Sato
政宏 佐藤
Masashi Sakagami
勝伺 坂上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP31254295A priority Critical patent/JP3454994B2/en
Publication of JPH09157028A publication Critical patent/JPH09157028A/en
Application granted granted Critical
Publication of JP3454994B2 publication Critical patent/JP3454994B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sintered compact excellent in high-temp. strength at 1,200 deg.C and oxidation resistance at 1,000 deg.C by firing at a low temp. of <=1,850 deg.C. SOLUTION: A compact based on Si3 N4 and contg. 1-20wt.% (expressed in terms of oxide) at least one selected from among Y and rare earth elements, 0.01-1wt.% (expressed in terms of oxides) Mn and/or Cu and 0.1-5wt.% (expressed in terms of oxides) W and/or Mo as auxiliary components is fired at <=1,850 deg.C in a nonoxidizing atmosphere contg. nitrogen to obtain the objective silicon nitride sintered compact having such superior characteristics as >=1,050MPa strength at ordinary temp., >=950MPa strength at 1,200 deg.C and <=0.1mg/cm<2> increase in quantity by oxidation after an oxidation test at 1,000 deg.C for 1,000hr.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、室温から高温まで
の強度特性および靭性に優れ、特にピストンピン、エン
ジンバルブ等の自動車用部品やガスタービンエンジン用
部品等に使用される窒化珪素質焼結体と、その製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is excellent in strength characteristics and toughness from room temperature to high temperature, and in particular, silicon nitride sintered material used for automobile parts such as piston pins and engine valves, gas turbine engine parts and the like. The present invention relates to a body and a manufacturing method thereof.

【0002】[0002]

【従来技術】従来から、窒化珪素質焼結体は、耐熱性、
耐熱衝撃性および耐酸化性に優れることからエンジニア
リングセラミックス、特にタ−ボロ−タ−等の熱機関用
として応用が進められている。
2. Description of the Related Art Conventionally, a silicon nitride sintered body has been known to have heat resistance,
Due to its excellent thermal shock resistance and oxidation resistance, it is being applied to engineering ceramics, especially for heat engines such as turbochargers.

【0003】この窒化珪素質焼結体を作製するには、焼
結助剤としてY2 3 等の希土類元素酸化物や、Al2
3 、AlNなどのアルミニウム化合物、SiO2 など
を添加して、常圧や、窒素加圧雰囲気中で焼成して緻密
化することが特公昭52−3649号、特公昭58−5
190号にてすでに提案されている。
To produce this silicon nitride sintered material, rare earth element oxides such as Y 2 O 3 and Al 2 are used as sintering aids.
It is possible to add aluminum compounds such as O 3 and AlN, SiO 2 and the like, and densify by firing under atmospheric pressure or a nitrogen pressure atmosphere.
No. 190 has already been proposed.

【0004】また、窒化珪素質焼結体は、その用途に応
じて、添加する助剤の選択がなされている。例えば、希
土類元素酸化物を必須として、これにAl2 3 やMg
O等を添加すると低温で液相が生成されるために、18
00℃以下の比較的低温の常圧で焼成して緻密化するこ
とができ、この方法によれば、室温強度の高い焼結体を
得ることができるため、室温で使用される用途に多用さ
れている。
[0004] In addition, for the silicon nitride-based sintered body, an additive to be added is selected according to its use. For example, a rare earth element oxide is essential, and Al 2 O 3 or Mg
Since the liquid phase is generated at a low temperature when O or the like is added, 18
It can be densified by firing at a relatively low temperature of 00 ° C. or lower and normal pressure. According to this method, a sintered body having high room temperature strength can be obtained, and therefore it is often used for applications used at room temperature. ing.

【0005】ところが、上記の焼結体では、生成された
液相により窒化珪素結晶粒間に生成されたガラス相は、
1000℃を越える温度では軟化してしまうため、14
00℃以上の温度に曝されるガスタービン用部品には応
用できない。
However, in the above-mentioned sintered body, the glass phase generated between the silicon nitride crystal grains by the generated liquid phase is
Since it softens at temperatures over 1000 ° C, 14
It cannot be applied to parts for gas turbines that are exposed to temperatures above 00 ° C.

【0006】そこで、高温強度を高めるために、Al2
3 やMgO等を添加することなく、希土類元素酸化物
とSiO2 成分との複合化によって、粒界を融点の高い
結晶相により構成することが提案されているが、かかる
焼結体は、1900℃以上の窒素加圧雰囲気中で焼成す
ることが必要である。
Therefore, in order to increase the high temperature strength, Al 2
It has been proposed to form the grain boundary by a crystal phase having a high melting point by compounding a rare earth element oxide and a SiO 2 component without adding O 3 or MgO. It is necessary to perform firing in a nitrogen pressure atmosphere of 1900 ° C. or higher.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、従来の
希土類元素酸化物とAl2 3 やMgOを添加した系で
は、組成によっては1800℃以下の低温で焼成可能で
あり室温強度はある程度高いものの、高温域では徐々に
強度が低下し1200℃ではせいぜい500MPa程度
の強度しかなく、かかる焼結体を1200℃もの高温域
で使用する部品には適用できない。また、かかる焼結体
は、1000℃における耐酸化性が実用上不十分であっ
た。
However, in the conventional system in which the rare earth element oxide and Al 2 O 3 or MgO are added, depending on the composition, it can be fired at a low temperature of 1800 ° C. or less and the room temperature strength is high to some extent. The strength gradually decreases in the high temperature region, and at 1200 ° C, the strength is only about 500 MPa at most, and such a sintered body cannot be applied to parts used in the high temperature region of 1200 ° C. Further, such a sintered body was insufficient in practical use in oxidation resistance at 1000 ° C.

【0008】また、助剤としてAl2 3 やMgOを添
加しないことによりある程度の高温強度の改善が可能で
ある。特に粒界を結晶化させた系では、1200℃もの
高温において800MPa以上の高い強度を得ることが
報告されているが、このような系は、製法上、1900
℃以上の高温で焼成する必要があるため、高温焼成が可
能な特殊な設備が必要となる等、製造コストが高い等の
問題があった。
Further, by not adding Al 2 O 3 or MgO as an auxiliary agent, it is possible to improve the high temperature strength to some extent. In particular, it has been reported that a system in which grain boundaries are crystallized has a high strength of 800 MPa or more at a temperature as high as 1200 ° C. However, such a system has a production method of 1900.
Since it has to be fired at a high temperature of ℃ or more, there is a problem that the manufacturing cost is high, such as the need for special equipment capable of high temperature firing.

【0009】また、上記のいずれの系においても100
0℃の酸化性雰囲気中に暴露された場合、酸化が急激に
進行するという現象があり、この中温域での耐酸化性に
ついては良好な特性を得るのが難しかった。
In any of the above systems, 100
When exposed to an oxidizing atmosphere at 0 ° C., there is a phenomenon in which oxidation rapidly progresses, and it was difficult to obtain good characteristics with respect to oxidation resistance in the medium temperature range.

【0010】よって、本発明の目的は、室温から120
0℃の高温まで自動車用部品やガスタ−ビンエンジン用
部品等で使用されるに充分な機械的特性を有するととも
に、1000℃における耐酸化特性に優れ、且つ185
0℃以下で焼成可能な窒化珪素質焼結体と、その製造方
法を提供するにある。
Therefore, the object of the present invention is to obtain a temperature from room temperature to 120
It has sufficient mechanical properties to be used in automobile parts, gas turbine engine parts, etc. up to a high temperature of 0 ° C, and has excellent oxidation resistance at 1000 ° C, and 185
It is to provide a silicon nitride-based sintered body that can be fired at 0 ° C. or lower, and a method for manufacturing the same.

【0011】[0011]

【課題を解決するための手段】本発明者は上記問題点に
対し鋭意研究を重ねた結果、Si3 4 への添加成分と
して、Y、希土類酸化物と、Mnおよび/またはCu
と、Wおよび/またはMoとを特定の割合で添加した焼
結体によって、上記目的が達成されることを知見し、本
発明に至った。
As a result of intensive studies on the above problems, the present inventor has found that Y, a rare earth oxide, and Mn and / or Cu are added as components to Si 3 N 4 .
The inventors have found that the above object can be achieved by a sintered body to which W and / or Mo are added at a specific ratio, and have reached the present invention.

【0012】即ち、本発明の窒化珪素質焼結体は、Si
3 4 を主成分とし、助剤成分としてY、希土類元素の
群から選ばれる少なくとも1種を酸化物換算で1〜20
重量%、Mnおよび/またはCuを酸化物換算で0.0
1〜1重量%、Wおよび/またはMoを酸化物換算で
0.1〜5重量%の割合で含有することを特徴とするも
のである。さらに、本発明の窒化珪素質焼結体によれ
ば、Si3 4 を主成分とし、助剤成分としてY、希土
類元素の群から選ばれる少なくとも1種を酸化物換算で
1〜20重量%、Mnおよび/またはCuを酸化物換算
で0.01〜1重量%、Wおよび/またはMoを酸化物
換算で0.1〜5重量%の割合で含有する成形体を、窒
素を含有する非酸化性雰囲気中で1850℃以下で焼成
することを特徴とするものである。
That is, the silicon nitride sintered body of the present invention is made of Si
3 N 4 as a main component, Y as an auxiliary component, and at least one selected from the group of rare earth elements in an amount of 1 to 20 in terms of oxide.
% By weight, Mn and / or Cu in terms of oxides of 0.0
It is characterized by containing 1 to 1% by weight, and W and / or Mo at a rate of 0.1 to 5% by weight in terms of oxide. Further, according to the silicon nitride sintered body of the present invention, at least one selected from the group consisting of Si 3 N 4 as a main component, Y as an auxiliary component, and a rare earth element is 1 to 20 wt% in terms of oxide. , Mn and / or Cu in an amount of 0.01 to 1% by weight in terms of oxide, and W and / or Mo in an amount of 0.1 to 5% by weight in terms of an oxide. It is characterized by being fired at 1850 ° C. or lower in an oxidizing atmosphere.

【0013】[0013]

【作用】本発明によれば、助剤成分としてYおよび/ま
たは希土類元素の化合物に加え、Mnおよび/またはC
uを添加することにより、従来に比較して低温での焼成
が可能となり、窒化珪素粒子の粒成長を抑制することが
できる。
According to the present invention, in addition to the compound of Y and / or the rare earth element as an auxiliary component, Mn and / or C
By adding u, it becomes possible to perform firing at a lower temperature than in the conventional case, and it is possible to suppress grain growth of silicon nitride particles.

【0014】しかしながら、Mnおよび/またはCuの
添加では、Mnおよび/またはCuが高温時に低融点の
液相を生成するために1200℃もの高温では強度が低
下してしまう。そこで、本発明では、さらにWおよび/
またはMoの化合物を添加することにより高温強度の低
下を抑制できる。
However, when Mn and / or Cu is added, Mn and / or Cu form a liquid phase having a low melting point at a high temperature, so that the strength decreases at a high temperature of 1200 ° C. Therefore, in the present invention, W and / or
Alternatively, the addition of a Mo compound can suppress the decrease in high temperature strength.

【0015】これは、Wおよび/またはMoと、Mnお
よび/またはCuを同時に添加することにより、焼成過
程ではMnおよび/またはCuが低融点の液相を生成し
て緻密化を促進し、焼結後の焼結体中ではWおよび/ま
たはMoと、Mnおよび/またはCuと、Siが化合物
を形成するか、あるいはWおよび/またはMoの珪化物
中にMnおよび/またはCuが固溶するために高温時に
低融点の液相を生成することがなく、高温時の強度劣化
が抑制されるのである。
This is because by adding W and / or Mo and Mn and / or Cu at the same time, Mn and / or Cu form a liquid phase having a low melting point in the firing process to promote densification and In the sintered body after binding, W and / or Mo, Mn and / or Cu, and Si form a compound, or Mn and / or Cu forms a solid solution in the silicide of W and / or Mo. Therefore, the liquid phase having a low melting point is not generated at high temperature, and the strength deterioration at high temperature is suppressed.

【0016】かかる構成により、本発明によれば、異常
粒成長の発生がなく、微細な組織を持ち、高温時に低融
点の液相を生成することがないために高温強度の劣化が
ない窒化珪素質焼結体を得ることができるのである。し
かも、かかる焼結体は、1000℃における耐酸化性に
対しても高い耐久性を有するものである。これは、焼結
体の組織が微細であるため、粒界相の影響を受けにくい
ためである。
With this structure, according to the present invention, abnormal grain growth does not occur, a fine structure is not generated, and a liquid phase having a low melting point is not generated at a high temperature, so that high-temperature strength is not deteriorated. A quality sintered body can be obtained. Moreover, such a sintered body also has high durability against oxidation resistance at 1000 ° C. This is because the sintered body has a fine structure and is not easily affected by the grain boundary phase.

【0017】[0017]

【発明の実施の形態】本発明によれば、Si3 4 に対
する第1の助剤成分として、YおよびSm、Er,Y
b、Lu等の希土類元素の群から選ばれる少なくとも1
種の化合物を酸化物換算で1〜20重量%、特に3〜1
5重量%、第2の助剤成分として、Mnおよび/または
Cuを酸化物換算で0.01〜1重量%、特に0.05
〜0.5重量%、第3の助剤成分として、Wおよび/ま
たはMoを酸化物換算で0.1〜5重量%、特に0.5
〜3重量%の割合で含むことが重要である。
According to the present invention, Y and Sm, Er, Y are used as the first auxiliary component for Si 3 N 4 .
at least 1 selected from the group of rare earth elements such as b and Lu
1 to 20% by weight, in particular 3-1
5% by weight, 0.01 to 1% by weight of Mn and / or Cu as a second auxiliary component in terms of oxide, particularly 0.05
˜0.5 wt%, as a third auxiliary component, W and / or Mo is 0.1 to 5 wt%, especially 0.5
It is important to include in a proportion of ˜3% by weight.

【0018】これらの成分の含有量を上記の範囲に限定
したのは、まず上記第1の成分量が1重量%より少ない
と焼結過程で液相が不足し、緻密体を得るためには高温
焼成が必要となり、そのため窒化珪素粒子の成長が起こ
り強度低下を引き起こすこととなり、20重量%より多
いと、焼結体中に粒界相が多くなり、1200℃の高温
強度の低下と1000℃における酸化特性の劣化を招い
てしまう。
The content of these components is limited to the above range. First, if the amount of the first component is less than 1% by weight, the liquid phase becomes insufficient in the sintering process, and in order to obtain a dense body. High temperature calcination is necessary, which causes the growth of silicon nitride particles and causes a decrease in strength. If it exceeds 20% by weight, the grain boundary phase increases in the sintered body, resulting in a decrease in high temperature strength of 1200 ° C and 1000 ° C. Deterioration of the oxidation characteristics in the above.

【0019】また、第2の助剤成分としてのMnおよび
/またはCuの酸化物換算量が0.01重量%より少な
いと、Mnおよび/またはCuの上記添加効果が得られ
ずに、低温での焼成によって緻密体が得られにくくしか
も常温強度が低くなり、1重量%より多いとWおよび/
またはMoを添加しても高温強度が低下する。
When the oxide conversion amount of Mn and / or Cu as the second auxiliary component is less than 0.01% by weight, the above-described effect of adding Mn and / or Cu cannot be obtained, and the Mn and / or Cu cannot be added at low temperature. It is difficult to obtain a dense body and the strength at room temperature is lowered by the firing of, and if it exceeds 1% by weight, W and / or
Alternatively, even if Mo is added, the high temperature strength decreases.

【0020】さらに、第3の助剤成分としてのWおよび
/またはMoの酸化物換算量が0.1重量%より少ない
と、Wおよび/またはMo添加の効果が得られずにMn
および/またはCu添加の弊害で高温強度が低下してし
まい、5重量%より多いと、高温強度の低下と酸化特性
の劣化を招いてしまう。
Further, when the oxide conversion amount of W and / or Mo as the third auxiliary component is less than 0.1% by weight, the effect of adding W and / or Mo cannot be obtained and Mn is not obtained.
And / or the adverse effect of the addition of Cu lowers the high temperature strength, and if it is more than 5% by weight, the high temperature strength and the oxidation property are deteriorated.

【0021】また、本発明によれば、上記第1〜第3の
助剤成分の他にAlを酸化物換算で7重量%以下含有し
て同様の効果が得られる。
Further, according to the present invention, in addition to the above-mentioned first to third auxiliary components, Al is contained in an amount of 7% by weight or less in terms of oxide, and the same effect can be obtained.

【0022】なお、本発明の窒化珪素質焼結体は、組織
上、β−窒化珪素からなる主結晶相と、Yあるいは希土
類元素と、Wおよび/またはMoと、Cuおよび/また
はMnと、珪素と、酸素を含む粒界相から構成される。
この粒界相は非晶質からなるが、場合によっては、ダイ
シリケート、H−phase(アパタイト)、K−ph
ase(ウォラストナイト)などの結晶相が存在する場
合もある。また、Al化合物を添加した場合には、Al
も粒界相に存在したり、β−窒化珪素結晶相中には、わ
ずかにアルミニウムが固溶してβ−サイアロンを形成す
る場合もある。
The silicon nitride-based sintered body of the present invention has a structure in which a main crystalline phase of β-silicon nitride, Y or a rare earth element, W and / or Mo, Cu and / or Mn, It is composed of a grain boundary phase containing silicon and oxygen.
This grain boundary phase is amorphous, but in some cases, disilicate, H-phase (apatite), K-ph.
There may be a crystal phase such as ase (wollastonite). When an Al compound is added, Al
May also exist in the grain boundary phase, or a small amount of aluminum may form a solid solution in the β-silicon nitride crystal phase to form β-sialon.

【0023】主結晶相は、針状結晶として存在し、その
短径が0.1〜3μmで平均アスペクト比(長径/短
径)は2〜10の粒子である。
The main crystal phase exists as acicular crystals and is a particle having a minor axis of 0.1 to 3 μm and an average aspect ratio (major axis / minor axis) of 2 to 10.

【0024】本発明における窒化珪素質焼結体の製造方
法によれば、まず、Si3 4 を主成分とし、第1の助
剤成分としてY、希土類元素の群から選ばれる少なくと
も1種を酸化物換算で1〜20重量%、特に3〜15重
量%、第2の助剤成分としてMnおよび/またはCuを
酸化物換算で0.01〜1重量%、特に0.05〜0.
5重量%、第3の助剤成分としてWおよび/またはMo
を酸化物換算で0.1〜5重量%、特に0.5〜3重量
%の割合で含有する成形体を作製する。
According to the method for manufacturing a silicon nitride sintered body of the present invention, first, at least one selected from the group consisting of Si 3 N 4 as a main component and Y as a first auxiliary component and a rare earth element is used. 1 to 20% by weight, particularly 3 to 15% by weight, in terms of oxide, and 0.01 to 1% by weight, particularly 0.05 to 0. 0, in terms of oxide of Mn and / or Cu as a second auxiliary component.
5% by weight, W and / or Mo as third auxiliary component
A molded body containing 0.1 to 5% by weight, particularly 0.5 to 3% by weight, in terms of oxide is produced.

【0025】上記成形体を作製するにあたり、窒化珪素
粉末はそれ自体α−Si3 4 、β−Si3 4 のいず
れでも用いることができ、それらの粒径は0.4〜1.
2μm、酸素含有量が0.5〜1.5重量%が好まし
い。
In producing the above-mentioned molded body, the silicon nitride powder itself may be either α-Si 3 N 4 or β-Si 3 N 4 , and the particle size thereof is 0.4 to 1.
It is preferably 2 μm and the oxygen content is 0.5 to 1.5% by weight.

【0026】窒化珪素粉末に添加される助剤成分は、い
ずれも酸化物形態で添加することが望ましいが、焼結過
程で酸化物を形成し得る炭酸塩、硝酸塩、酢酸塩、金属
元素含有有機化合物等を用いることができる。ただし、
Wおよび/またはMoについては、炭化物、珪化物、窒
化物のいずれを用いても構わない。
It is desirable that all of the auxiliary components added to the silicon nitride powder be added in the form of oxides, but carbonates, nitrates, acetates, metal-element-containing organic compounds capable of forming oxides during the sintering process. A compound or the like can be used. However,
Regarding W and / or Mo, any of carbide, silicide and nitride may be used.

【0027】窒化珪素粉末に、上記助剤成分を上記の割
合となるように添加混合した後、これを所望の成形手
段、例えば、金型プレス、冷間静水圧プレス、押出し成
形、射出成形等により任意の形状に成形する。
The above-mentioned auxiliary components are added to and mixed with the silicon nitride powder in the above proportions, and the mixture is mixed with a desired molding means such as a die press, cold isostatic pressing, extrusion molding, injection molding and the like. To form an arbitrary shape.

【0028】また、他の方法として、窒化珪素の80重
量%相当分を珪素粉末に窒化により得るように、窒化珪
素粉末と、珪素粉末と、助剤成分とを混合した後、上記
のようにして成形し、これを1100〜1400℃の窒
素中で窒化して珪素を窒化珪素に変換して上記の成形体
を作製することもできる。この方法によれば、Mnおよ
び/またはCuはSiの窒化助剤として作用し、比較的
低温、短時間での窒化が可能な上に、低温で窒化を行っ
た場合α−Si3 4 が生成されやすく、窒化体のα分
率が高くなり焼結体の強度が高くなる作用も働くためで
ある。
As another method, the silicon nitride powder, the silicon powder, and the auxiliary component are mixed as described above so that 80% by weight of silicon nitride can be obtained by nitriding the silicon powder into the silicon powder. It is also possible to produce the above-mentioned molded body by forming the above-mentioned formed body by nitriding it in nitrogen at 1100-1400 ° C. to convert silicon into silicon nitride. According to this method, Mn and / or Cu act as a nitriding aid for Si, permitting nitriding at a relatively low temperature for a short time, and when nitriding at a low temperature, α-Si 3 N 4 is generated. This is because it is easily generated, and the α-fraction of the nitride increases, and the strength of the sintered body also increases.

【0029】次に、得られた成形体を公知の焼成方法、
例えばホットプレス法、常圧焼成、窒素ガス圧焼成、さ
らには、これらの焼成後、熱間静水圧(HIP)焼成し
たり、上記の成形体をガラスによりシールしHIP焼成
することもできる。
Next, the obtained molded body is subjected to a known firing method,
For example, hot pressing, normal pressure firing, nitrogen gas pressure firing, and further, after these firings, hot isostatic pressing (HIP) firing, or the above-mentioned molded body can be sealed with glass to perform HIP firing.

【0030】本発明によれば、この時の焼成温度を18
50℃以下、特に1650〜1800℃においても緻密
で且つ特性に優れた焼結体を得ることができる。なお、
この時の窒素圧力は、窒化珪素が分解しないように分解
平衡圧以上に設定されることは当然である。
According to the present invention, the firing temperature at this time is 18
Even at 50 ° C. or lower, particularly 1650 to 1800 ° C., a dense and excellent sintered body can be obtained. In addition,
Of course, the nitrogen pressure at this time is set to be equal to or higher than the decomposition equilibrium pressure so that the silicon nitride is not decomposed.

【0031】また、望ましい焼成方法としては、160
0〜1800℃の低温で窒素圧力1〜5気圧で焼成した
後、1700〜1850℃に高めるとともに5気圧以上
の高圧窒素中で焼成することが緻密化に最もよい。
A preferable firing method is 160
It is best to densify by firing at a low temperature of 0 to 1800 ° C. at a nitrogen pressure of 1 to 5 atm, then raising the temperature to 1700 to 1850 ° C. and firing in high pressure nitrogen at 5 atm or more.

【0032】[0032]

【実施例】原料粉末として窒化珪素粉末(BET比表面
積9m2 /g,α率95%、酸素量1.0重量%)、S
i粉末、Yまたは希土類酸化物粉末、W及び/またはM
oの酸化物粉末、Mnおよび/またはCuの酸化物粉
末、SiO2 粉末を用いて表1,2に示す組成になるよ
うに調合、混合後、1t/cm2 で金型成形した。
EXAMPLES Silicon nitride powder (BET specific surface area 9 m 2 / g, α ratio 95%, oxygen amount 1.0% by weight) as raw material powder, S
i powder, Y or rare earth oxide powder, W and / or M
The oxide powder of o, the oxide powder of Mn and / or Cu, and the SiO 2 powder were blended so as to have the compositions shown in Tables 1 and 2, and then mixed at 1 t / cm 2 for molding.

【0033】得られた成形体を炭化珪素質のこう鉢に入
れて、カーボンヒータを用い、窒素中で焼成した。Si
粉末を含まない場合、1750℃(N2 :1.2at
m)で5時間保持後、1800℃(9atm)まで昇温
し、5時間保持後炉冷して焼結体を得た。また、Si粉
末を含む場合、1200℃で5時間保持して窒化を行
い、その後1750℃(N2 :1.2atm)で5時間
保持後1800℃(9atm)まで昇温し、5時間保持
後炉冷して焼結体を得た。また、試料No.23〜25に
ついては最終焼成条件を表1,2の温度に設定する以外
は上記と同様な条件で焼成した。
The molded body thus obtained was placed in a silicon carbide based bowl and baked in nitrogen using a carbon heater. Si
When powder is not included, 1750 ° C (N 2 : 1.2 at
m) for 5 hours, the temperature was raised to 1800 ° C. (9 atm), and the furnace was cooled for 5 hours to obtain a sintered body. Further, when Si powder is included, it is held at 1200 ° C. for 5 hours to perform nitriding, then held at 1750 ° C. (N 2 : 1.2 atm) for 5 hours, heated to 1800 ° C. (9 atm), and held for 5 hours. Furnace cooling was performed to obtain a sintered body. Further, Sample Nos. 23 to 25 were fired under the same conditions as above except that the final firing conditions were set to the temperatures shown in Tables 1 and 2.

【0034】得られた焼結体をJISR1601に示さ
れる形状まで加工した。得られた試料で、アルキメデス
法に基づく比重測定、JISR1601に基づき室温お
よび1200℃での4点曲げ抗折強度試験を実施すると
共に、1000℃、1000時間の酸化試験後の酸化増
量を測定した。測定結果を表1,2に示した。
The obtained sintered body was processed into the shape shown in JIS R1601. A specific gravity measurement based on the Archimedes method and a four-point bending bending strength test at room temperature and 1200 ° C. based on JISR1601 were performed on the obtained sample, and the oxidation weight gain after the oxidation test at 1000 ° C. for 1000 hours was measured. The measurement results are shown in Tables 1 and 2.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】表1、2の結果によると、Mnおよび/ま
たはCuを添加していない試料No.26、33およびY
および/または希土類元素の添加量の少ない試料No.2
8では、緻密化が十分ではなく常温強度、1200℃強
度ともに低い。また、Wおよび/またはMoを添加して
いない試料No.27、32は、Mnおよび/またはCu
の効果で常温強度は高いが、高温強度が大きく劣化して
いる。また、Yおよび/または希土類元素の添加量の多
い試料No.29では、高温強度および酸化特性が大きく
劣化している。また、Wおよび/またはMo添加量の多
い試料No.30は、酸化特性が劣化している。
According to the results of Tables 1 and 2, samples No. 26, 33 and Y containing no Mn and / or Cu were added.
And / or sample No. 2 with a small amount of rare earth element added
In No. 8, the densification is not sufficient and both the room temperature strength and the 1200 ° C. strength are low. In addition, samples No. 27 and 32 in which W and / or Mo were not added were Mn and / or Cu.
Due to the effect, the normal temperature strength is high, but the high temperature strength is greatly deteriorated. Further, in the sample No. 29 containing a large amount of Y and / or the rare earth element added, the high temperature strength and the oxidation characteristics were significantly deteriorated. The sample No. 30 containing a large amount of W and / or Mo was deteriorated in oxidation characteristics.

【0038】これらの比較例に対して、本発明の試料は
いずれも常温強度1050MPa以上、1200℃強度
950MPa以上、1000℃、1000時間の酸化試
験後の酸化増量0.1mg/cm2 以下と室温から高温
まで優れた強度を有し、さらに、優れた酸化特性を有し
ていた。
In contrast to these comparative examples, all the samples of the present invention have room temperature strength of 1050 MPa or more, 1200 ° C. strength of 950 MPa or more, oxidation increase of 0.1 mg / cm 2 or less after oxidation test at 1000 ° C. for 1000 hours, and room temperature. It had excellent strength from high temperature to high temperature, and also had excellent oxidation characteristics.

【0039】[0039]

【発明の効果】以上詳述したように、本発明によれば、
室温から1200℃まで高い強度を有し、さらには、1
000℃において優れた酸化特性を有する窒化珪素質焼
結体を提供できる。よって、かかる焼結体をピストンピ
ンやエンジンバルブなどのような室温から高温まで高強
度を必要とする自動車部品、ガスタービンエンジン用部
品に適用することにより、信頼性を高めることができ
る。
As described in detail above, according to the present invention,
It has high strength from room temperature to 1200 ° C, and moreover, 1
It is possible to provide a silicon nitride sintered body having excellent oxidation characteristics at 000 ° C. Therefore, reliability can be improved by applying such a sintered body to automobile parts such as piston pins and engine valves that require high strength from room temperature to high temperatures, and parts for gas turbine engines.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】Si3 4 を主成分とし、助剤成分として
Y、希土類元素の群から選ばれる少なくとも1種を酸化
物換算で1〜20重量%、Mnおよび/またはCuを酸
化物換算で0.01〜1重量%、Wおよび/またはMo
を酸化物換算で0.1〜5重量%の割合で含有すること
を特徴とする窒化珪素質焼結体。
1. A main component is Si 3 N 4 , at least one selected from the group consisting of Y as an auxiliary component and a rare earth element in an amount of 1 to 20% by weight in terms of oxide, and Mn and / or Cu in terms of an oxide. 0.01 to 1% by weight, W and / or Mo
Is contained at a ratio of 0.1 to 5% by weight in terms of oxide.
【請求項2】Si3 4 を主成分とし、助剤成分として
Y、希土類元素の群から選ばれる少なくとも1種を酸化
物換算で1〜20重量%、Mnおよび/またはCuを酸
化物換算で0.01〜1重量%、Wおよび/またはMo
を酸化物換算で0.1〜5重量%の割合で含有する成形
体を、窒素を含有する非酸化性雰囲気中で1850℃以
下で焼成することを特徴とする窒化珪素質焼結体の製造
方法。
2. Si 3 N 4 as a main component, Y as an auxiliary component, and at least one selected from the group of rare earth elements in an amount of 1 to 20% by weight in terms of oxide, and Mn and / or Cu in terms of oxide. 0.01 to 1% by weight, W and / or Mo
Of a silicon nitride sintered body, characterized in that a molded body containing 0.1 to 5% by weight in terms of oxide is fired at 1850 ° C. or lower in a non-oxidizing atmosphere containing nitrogen. Method.
JP31254295A 1995-11-30 1995-11-30 Silicon nitride sintered body and method for producing the same Expired - Fee Related JP3454994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31254295A JP3454994B2 (en) 1995-11-30 1995-11-30 Silicon nitride sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31254295A JP3454994B2 (en) 1995-11-30 1995-11-30 Silicon nitride sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH09157028A true JPH09157028A (en) 1997-06-17
JP3454994B2 JP3454994B2 (en) 2003-10-06

Family

ID=18030481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31254295A Expired - Fee Related JP3454994B2 (en) 1995-11-30 1995-11-30 Silicon nitride sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP3454994B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001206774A (en) * 2000-01-24 2001-07-31 Kyocera Corp Silicon nitride sintered compact
JP2003300780A (en) * 2002-04-04 2003-10-21 Toshiba Corp Wear resistant member made of silicon nitride and production method therefor
JP2006127995A (en) * 2004-10-29 2006-05-18 Ngk Spark Plug Co Ltd Ceramic heater and its manufacturing method, and glow plug
JP2006169702A (en) * 2004-12-20 2006-06-29 Kyocera Corp Papermaking screen support member, method for producing the same, and papermaking machine given by using the same
JP2010090029A (en) * 2010-01-12 2010-04-22 Toshiba Corp Method of manufacturing silicon nitride wear resistant member

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001206774A (en) * 2000-01-24 2001-07-31 Kyocera Corp Silicon nitride sintered compact
JP4651144B2 (en) * 2000-01-24 2011-03-16 京セラ株式会社 Silicon nitride sintered body
JP2003300780A (en) * 2002-04-04 2003-10-21 Toshiba Corp Wear resistant member made of silicon nitride and production method therefor
JP4497787B2 (en) * 2002-04-04 2010-07-07 株式会社東芝 Rolling ball
JP2006127995A (en) * 2004-10-29 2006-05-18 Ngk Spark Plug Co Ltd Ceramic heater and its manufacturing method, and glow plug
JP4562029B2 (en) * 2004-10-29 2010-10-13 日本特殊陶業株式会社 Ceramic heater, manufacturing method thereof, and glow plug
JP2006169702A (en) * 2004-12-20 2006-06-29 Kyocera Corp Papermaking screen support member, method for producing the same, and papermaking machine given by using the same
JP2010090029A (en) * 2010-01-12 2010-04-22 Toshiba Corp Method of manufacturing silicon nitride wear resistant member

Also Published As

Publication number Publication date
JP3454994B2 (en) 2003-10-06

Similar Documents

Publication Publication Date Title
JP3454994B2 (en) Silicon nitride sintered body and method for producing the same
JP3454993B2 (en) Silicon nitride sintered body and method for producing the same
JP3231944B2 (en) Method for manufacturing silicon nitride heat-resistant member
JP3426823B2 (en) Silicon nitride sintered body and method for producing the same
JP3034100B2 (en) Silicon nitride sintered body and method for producing the same
JP2736386B2 (en) Silicon nitride sintered body
JP3152790B2 (en) Method for producing silicon nitride based sintered body
JP3124865B2 (en) Silicon nitride sintered body and method for producing the same
JP2980342B2 (en) Ceramic sintered body
JP3318466B2 (en) Silicon nitride sintered body and method for producing the same
JP3271123B2 (en) Method for producing composite of silicon nitride and boron nitride
JP3124867B2 (en) Silicon nitride sintered body and method for producing the same
JP2746761B2 (en) Method for producing silicon nitride-silicon carbide composite sintered body
JP3034099B2 (en) Silicon nitride sintered body and method for producing the same
JP3236739B2 (en) Silicon nitride sintered body and method for producing the same
JP3216973B2 (en) Silicon nitride sintered body and method for producing the same
JP3124864B2 (en) Silicon nitride sintered body and method for producing the same
JP3236733B2 (en) Silicon nitride sintered body
JP3667145B2 (en) Silicon nitride sintered body
JPH10212167A (en) Silicon nitride-base composite sintered compact and its production
JP2671539B2 (en) Method for producing silicon nitride sintered body
JPH05117040A (en) Production of beta-sialon-based sintered compact
JP3207045B2 (en) Method for producing silicon nitride based sintered body
JP3207065B2 (en) Silicon nitride sintered body
JP2801447B2 (en) Method for producing silicon nitride based sintered body

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees