JP3271123B2 - Method for producing composite of silicon nitride and boron nitride - Google Patents

Method for producing composite of silicon nitride and boron nitride

Info

Publication number
JP3271123B2
JP3271123B2 JP27494892A JP27494892A JP3271123B2 JP 3271123 B2 JP3271123 B2 JP 3271123B2 JP 27494892 A JP27494892 A JP 27494892A JP 27494892 A JP27494892 A JP 27494892A JP 3271123 B2 JP3271123 B2 JP 3271123B2
Authority
JP
Japan
Prior art keywords
powder
silicon nitride
boron nitride
nitride
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27494892A
Other languages
Japanese (ja)
Other versions
JPH06100369A (en
Inventor
則和 指田
一右 南澤
達也 塩貝
一成 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP27494892A priority Critical patent/JP3271123B2/en
Publication of JPH06100369A publication Critical patent/JPH06100369A/en
Application granted granted Critical
Publication of JP3271123B2 publication Critical patent/JP3271123B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、窒化珪素と窒化硼素と
の複合体の製造方法に関し、特に、得られる複合体の耐
熱衝撃性を向上させた、窒化珪素と窒化硼素との複合体
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a composite of silicon nitride and boron nitride, and more particularly to a method of producing a composite of silicon nitride and boron nitride in which the resultant composite has improved thermal shock resistance. It relates to a manufacturing method.

【0002】[0002]

【従来の技術】従来より、機械的強度が高く耐熱性に優
れた窒化珪素と、耐熱衝撃性に優れた窒化硼素とを複合
化した材料が存在し、該材料は、溶融金属耐蝕材料、或
いは連続鋳造用耐火物等として使用されている。
2. Description of the Related Art Conventionally, there is a composite material of silicon nitride having high mechanical strength and excellent heat resistance and boron nitride having excellent thermal shock resistance. It is used as a refractory for continuous casting.

【0003】ここで、従来の上記窒化珪素と窒化硼素と
の複合体の製造方法は、窒化珪素粉末と窒化硼素粉末と
の混合物に、希土類元素の酸化物、或いはAl2 3
の酸化物焼結助剤を添加混合し、該混合物を成形した
後、焼結する方法が採られている。
[0003] Here, the above-mentioned conventional method for producing a composite of silicon nitride and boron nitride is based on a method in which a mixture of silicon nitride powder and boron nitride powder is mixed with an oxide of a rare earth element or an oxide such as Al 2 O 3 . A method is employed in which a sintering aid is added and mixed, the mixture is shaped, and then sintered.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述し
た従来の製造方法により得られた窒化珪素と窒化硼素と
の複合体にあっては、原料粉末である窒化珪素の難焼結
性を補うために添加混合した上記希土類元素の酸化物、
或いはAl2 3 等の酸化物焼結助剤が、焼結後、母材
である窒化珪素及び窒化硼素の焼結体の粒界相に、ガラ
ス質或いは結晶質の酸化物として残存し、これらの酸化
物が、窒化珪素或いは窒化硼素の焼結体に比し、その耐
熱衝撃性が格段に劣ることから、結果として得られた窒
化珪素と窒化硼素との複合体も、十分な耐熱衝撃性を示
さないという課題が存在した。
However, in the composite of silicon nitride and boron nitride obtained by the above-described conventional manufacturing method, it is necessary to compensate for the difficulty in sintering of silicon nitride as a raw material powder. An oxide of the rare earth element added and mixed,
Alternatively, an oxide sintering aid such as Al 2 O 3 remains as a glassy or crystalline oxide in a grain boundary phase of a sintered body of silicon nitride and boron nitride as a base material after sintering, Since these oxides have much lower thermal shock resistance than a sintered body of silicon nitride or boron nitride, the resulting composite of silicon nitride and boron nitride also has a sufficient thermal shock resistance. There was a problem of not showing sex.

【0005】本発明は、上述した従来の製造方法によっ
て得られた複合体が有する課題に鑑みなされたものであ
って、その目的は、得られる複合体が十分な耐熱衝撃性
を有するものとなる、窒化珪素と窒化硼素との複合体の
製造方法を提供することにある。
[0005] The present invention has been made in view of the problems of the composite obtained by the above-mentioned conventional manufacturing method, and an object of the present invention is to obtain a composite having a sufficient thermal shock resistance. It is another object of the present invention to provide a method for producing a composite of silicon nitride and boron nitride.

【0006】[0006]

【課題を解決するための手段】本発明者らは、種々の試
験・研究の結果、窒化珪素の難焼結性を補うために添加
混合する焼結助剤として、βサイアロン粉末、窒化アル
ミニウム粉末及び希土類元素の酸化物粉末を用いた場合
に、形成される窒化珪素と窒化硼素との複合体の耐熱衝
撃性が、大幅に向上することを見いだし本発明を完成さ
せた。
As a result of various tests and studies, the present inventors have found that β sialon powder and aluminum nitride powder are used as sintering aids to be added and mixed in order to supplement the sinterability of silicon nitride. Further, the present inventors have found that the thermal shock resistance of the composite of silicon nitride and boron nitride formed when the oxide powder of a rare earth element is used is greatly improved, and completed the present invention.

【0007】即ち、本発明は、窒化珪素粉末と窒化硼素
粉末とを重量比で90:10〜70:30の割合で混合
した混合物に、該混合物との合計量に対する内比で、β
サイアロン粉末を10〜30重量%、窒化アルミニウム
粉末を1〜6重量%、そして希土類元素の酸化物粉末を
1〜8重量%の割合で各々焼結助剤として添加混合し、
該混合物を成形した後、焼結する窒化珪素と窒化硼素と
の複合体の製造方法にある。
That is, according to the present invention, a silicon nitride powder and a boron nitride powder are mixed at a weight ratio of 90:10 to 70:30.
In the mixture obtained, the internal ratio to the total amount with the mixture, β
10-30% by weight of sialon powder , 1-6% by weight of aluminum nitride powder , and oxide powder of rare earth element
1-8% by weight of each was added and mixed as a sintering aid,
The present invention provides a method for producing a composite of silicon nitride and boron nitride, which is formed and then sintered.

【0008】上記した本発明にかかる窒化珪素と窒化硼
素との複合体の製造方法よれば、得られる窒化珪素と窒
化硼素との複合体は、その耐熱衝撃性が大幅に向上した
ものとなる。
According to the method for producing a composite of silicon nitride and boron nitride according to the present invention described above, the resultant composite of silicon nitride and boron nitride has significantly improved thermal shock resistance.

【0009】これは、添加混合した上記焼結助剤の内、
βサイアロン粉末中の酸素は、焼結後はβサイアロン結
晶として安定化し、希土類元素の酸化物粉末は、母材で
ある窒化珪素及び他に焼結助剤として添加した窒化アル
ミニウム粉末と反応し、焼結後は、一般式:MX (S
i,Al)12(O,N)16(式中、Mは希土類元素、X
≦2)で示される、αサイアロン結晶として安定化する
と考えられ、これらのαサイアロン結晶、及びβサイア
ロン結晶は共に、従来方法において焼結体の粒界相に残
存することとなった上記酸化物結晶、或いは酸化物ガラ
スに比し、その耐熱衝撃性が優れており、その結果、得
られる窒化珪素と窒化硼素との複合体の耐熱衝撃性も、
従来のものより高くなったと考えられる。
This is because, of the sintering aids added and mixed,
The oxygen in the β-sialon powder is stabilized as β-sialon crystals after sintering, and the oxide powder of the rare earth element reacts with silicon nitride as a base material and aluminum nitride powder added as a sintering aid, after sintering, the general formula: M X (S
i, Al) 12 (O, N) 16 (where M is a rare earth element, X
≦ 2), which is considered to be stabilized as α-sialon crystals, and both of these α-sialon crystals and β-sialon crystals remain in the grain boundary phase of the sintered body in the conventional method. Compared to crystal or oxide glass, its thermal shock resistance is excellent, and as a result, the thermal shock resistance of the resulting composite of silicon nitride and boron nitride is
It is thought that it became higher than the conventional one.

【0010】ここで、上記窒化珪素粉末としては、通常
市販されているα型窒化珪素粉末を用い、その平均粒径
は、2μm以下であることが好ましい。また、窒化硼素
粉末としては、六方晶窒化硼素粉末を用い、上記窒化珪
素と該窒化硼素との配合割合は、その重量比で90:1
0〜70:30の範囲とする。これは、上記範囲より窒
化硼素の割合が少ないと、窒化硼素の複合効果、即ち得
られる複合体の耐熱衝撃性を向上させる効果が少なく、
また、上記範囲より窒化硼素の割合が多いと、得られる
複合体の機械的強度が低くなるためである。
Here, as the silicon nitride powder, a commercially available α-type silicon nitride powder is used, and its average particle size is preferably 2 μm or less. Hexagonal boron nitride powder was used as the boron nitride powder, and the mixing ratio of the silicon nitride and the boron nitride was 90: 1 by weight.
The range is 0 to 70:30. This is because if the proportion of boron nitride is smaller than the above range, the composite effect of boron nitride, that is, the effect of improving the thermal shock resistance of the obtained composite is small,
Further, when the proportion of boron nitride is larger than the above range, the mechanical strength of the obtained composite becomes low.

【0011】また、上記焼結助剤として添加するβサイ
アロン粉末は、一般式:Si6-Z Alz Z 8-Z (Z
≦4.2)で示される粉末であり、いかなる方法で製造
されたものであっても良く、例えば、SiO2 −Al2
3 系原料に、炭素粉末を添加混合し、窒素気流中で焼
成する還元窒化法により得られる、βサイアロン粉末が
挙げられる。
The β-sialon powder to be added as the sintering aid has a general formula: Si 6 -Z Al z O Z N 8-Z (Z
≦ 4.2), which may be produced by any method, for example, SiO 2 —Al 2
Β-sialon powder obtained by a reductive nitridation method in which carbon powder is added to and mixed with an O 3 -based raw material and calcined in a nitrogen stream is exemplified.

【0012】さらに、上記窒化アルミニウム粉末として
は、通常市販されている粉末を用い、また希土類元素の
酸化物粉末としては、Y2 3 、Yb2 3 、Nd2
3 、Er2 3 等を用いることができる。これらの焼結
助剤として添加混合する原料、即ち上記βサイアロン粉
末、窒化アルミニウム粉末及び希土類元素の酸化物粉末
は、均一混合性及び焼結効率の観点から、その平均粒径
が5μm以下であることが好ましい。
Further, as the above-mentioned aluminum nitride powder, a commercially available powder is used, and as the rare earth element oxide powder, Y 2 O 3 , Yb 2 O 3 , Nd 2 O
3 , Er 2 O 3 or the like can be used. The raw materials to be added and mixed as these sintering aids, that is, the above β-sialon powder, aluminum nitride powder and rare earth element oxide powder have an average particle size of 5 μm or less from the viewpoint of uniform mixing and sintering efficiency. Is preferred.

【0013】また、上記焼結助剤の各々の添加混合量と
しては、窒化珪素と窒化硼素との合計量に対する内比
で、βサイアロン粉末が10〜30重量%、窒化アルミ
ニウム粉末が1〜6重量%、そして希土類元素の酸化物
粉末が1〜8重量%の割合で添加され。これは、何れ
の成分についても、上記範囲よりもその添加量が少ない
場合には、その後の混合物の焼結が不十分となり、得ら
れる窒化珪素と窒化硼素との複合体の機械的強度が低く
なり、また、上記範囲よりもその添加量が多い場合に
は、複合体の耐熱衝撃性が悪くなるためである。
The amount of each of the above-mentioned sintering aids is 10 to 30% by weight of β-sialon powder and 1 to 6% of aluminum nitride powder in an internal ratio to the total amount of silicon nitride and boron nitride. wt%, and oxide powder of rare earth element Ru is added in an amount of 1-8% by weight. This is because, for any of the components, if the addition amount is smaller than the above range , the subsequent sintering of the mixture becomes insufficient, and the mechanical strength of the resulting composite of silicon nitride and boron nitride is low. In addition, when the amount of addition is larger than the above range , the thermal shock resistance of the composite becomes poor.

【0014】以上、記載した原料粉末である窒化珪素、
窒化硼素、及び焼結助剤であるβサイアロン粉末、窒化
アルミニウム粉末及び希土類元素の酸化物粉末の混合、
成型及び焼結の各工程は、いずれも慣用の手段により行
なうことができ、例えば、窒化珪素、窒化硼素、及び焼
結助剤の各々の成分をポットミル等で混合後、所望の形
状にプレス成形し、窒素雰囲気中において1650〜1
900°Cで焼結することにより、耐熱衝撃性に優れた
窒化珪素と窒化硼素との複合体を製造することができ
る。
The raw material powder described above, silicon nitride,
Mixing of boron nitride, and β sialon powder, aluminum nitride powder and oxide powder of rare earth element which are sintering aids,
Each of the steps of molding and sintering can be performed by conventional means. For example, each component of silicon nitride, boron nitride, and a sintering aid is mixed by a pot mill or the like, and then pressed into a desired shape. And 1650 to 1 in a nitrogen atmosphere.
By sintering at 900 ° C., a composite of silicon nitride and boron nitride having excellent thermal shock resistance can be manufactured.

【0015】[0015]

【実施例】以下、本発明を、実施例を挙げて詳細に説明
する。
The present invention will be described below in detail with reference to examples.

【0016】まず、焼結助剤として使用するβサイアロ
ンの粉末を合成した。合成方法は、SiO2 微粉末、ア
ルミニウムイソプロポキシド、及びカーボンブラックの
Si、Al、及びCの原子比が、1:0.9:3になる
ようにこれらを配合し、イソプロピルアルコール中で溶
解混合した。その混合液に、水を添加し加水分解した後
乾燥し、窒素雰囲気中において1500°Cで6時間加
熱した。その後、空気中において700°Cで5時間酸
化処理を行い、残余のカーボンを除去した。得られた粉
末を、化学分析及びX線回折により測定したところ、S
3 Al3 35 の組成のβサイアロン粉末であるこ
とが確認できた。そして、その平均粒径は0.7μmで
あった。
First, powder of β-sialon used as a sintering aid was synthesized. Synthesis method, SiO 2 fine powder, aluminum isopropoxide, and Si of the carbon black, Al, and the atomic ratio of C is 1: 0.9: to become 3 are blended, dissolved in isopropyl alcohol Mixed. The mixture was hydrolyzed by adding water, dried, and heated at 1500 ° C. for 6 hours in a nitrogen atmosphere. Thereafter, oxidation treatment was performed in air at 700 ° C. for 5 hours to remove residual carbon. The obtained powder was measured by chemical analysis and X-ray diffraction.
It was confirmed that the powder was a β-sialon powder having a composition of i 3 Al 3 O 3 N 5 . And the average particle size was 0.7 μm.

【0017】次ぎに、平均粒径が0.8μmのα型窒化
珪素粉末(Si3 4 )、平均粒径8μmの六方晶窒化
硼素粉末(BN)、平均粒径1.5μmの窒化アルミニ
ウム粉末(AlN)、希土類元素の酸化物粉末として平
均粒径1.5μmのY2 3粉末、或いは平均粒径2μ
mのYb2 3 粉末、上記合成したβサイアロン粉末、
或いは平均粒径0.8μmのAl2 3 粉末を、各々表
1に示す割合で配合し、メタノールを分散媒としてポッ
トミルで混合し、その後乾燥して焼結用原料を得た。
Next, α-type silicon nitride powder (Si 3 N 4 ) having an average particle diameter of 0.8 μm, hexagonal boron nitride powder (BN) having an average particle diameter of 8 μm, and aluminum nitride powder having an average particle diameter of 1.5 μm (AlN), Y 2 O 3 powder having an average particle size of 1.5 μm as an oxide powder of a rare earth element, or an average particle size of 2 μm
m, Yb 2 O 3 powder, β-sialon powder synthesized above,
Alternatively, Al 2 O 3 powders having an average particle size of 0.8 μm were blended in the proportions shown in Table 1, mixed with a pot mill using methanol as a dispersion medium, and then dried to obtain a raw material for sintering.

【0018】得られた焼結用原料を、プレス成形により
幅50mm、長さ50mm、厚さ7mmの成形体にした
後、窒素雰囲気中において1780°Cで3時間常圧焼
結し、得られた焼結体を、JIS R 1601の「フ
ァインセラミックスの曲げ強度試験方法」に規定する、
試験片に加工した。
The obtained raw material for sintering is formed into a molded body having a width of 50 mm, a length of 50 mm, and a thickness of 7 mm by press molding, and then is sintered under normal pressure at 1780 ° C. for 3 hours in a nitrogen atmosphere. The sintered body is specified in JIS R 1601 “Method for testing bending strength of fine ceramics”.
The test piece was processed.

【0019】上記試験片によって、まず室温における3
点曲げ強度を測定し、この値を各々の試験片の基準強度
とした。つづいて、該試験片を所定温度に保持した電気
炉内に入れ、10分間保持した後氷水中に落下させ、熱
衝撃を加えた後の3点曲げ強度を測定し、その強度が、
上記基準強度の2分の1に低下する炉内温度から、氷水
温度を減じた温度(ΔT値)をもって、耐熱衝撃性とし
て評価した。その結果を表1に示す。
First, at room temperature, 3
The point bending strength was measured, and this value was used as the reference strength of each test piece. Subsequently, the test piece was placed in an electric furnace maintained at a predetermined temperature, held for 10 minutes, dropped into ice water, and subjected to a thermal shock to measure the three-point bending strength.
The temperature (ΔT value) obtained by subtracting the ice water temperature from the in-furnace temperature which was reduced to half of the reference strength was evaluated as thermal shock resistance. Table 1 shows the results.

【0020】[0020]

【表1】 [Table 1]

【0021】表1より、本発明にかかる窒化珪素と窒化
硼素との複合体の製造方法により得られた試験片1〜8
は、従来の製造方法によって得られた試験片9に比し、
その耐熱衝撃性が向上していることが判明する。
From Table 1, it can be seen that test pieces 1 to 8 obtained by the method for producing a composite of silicon nitride and boron nitride according to the present invention.
Is smaller than the test piece 9 obtained by the conventional manufacturing method,
It turns out that the thermal shock resistance is improved.

【0022】また、窒化珪素と窒化硼素との配合比が、
その重量比で90:10〜70:30の範囲を逸脱する
割合で配合された試験片10,11、或いは焼結助剤の
各々の添加量が、窒化珪素と窒化硼素との合計量に対す
る内比で、βサイアロン粉末が10〜30重量%、窒化
アルミニウム粉末が1〜6重量%、そして希土類元素の
酸化物粉末が1〜8重量%の割合を逸脱する範囲で添加
された試験片12〜16は、耐熱衝撃性或いは曲げ強度
のいずれかの特性が、低下していることが判明する。
The mixing ratio of silicon nitride and boron nitride is as follows:
The amount of each of the test pieces 10, 11 or the sintering aid blended at a weight ratio out of the range of 90:10 to 70:30 is determined based on the total amount of silicon nitride and boron nitride. In terms of the ratio, the test piece 12 to which the β sialon powder was added in a range of 10 to 30% by weight, the aluminum nitride powder in the range of 1 to 6% by weight, and the rare earth oxide powder in the range of 1 to 8% by weight were added. In No. 16, it is found that either the thermal shock resistance or the bending strength is deteriorated.

【0023】[0023]

【発明の効果】以上、説明した本発明にかかる窒化珪素
と窒化硼素との複合体の製造方法によれば、得られる複
合体の機械的強度を低下させることなく、耐熱衝撃性を
大幅に向上させることができ、該複合体材料の工業的利
用分野を拡大させることができる。
According to the above-described method for producing a composite of silicon nitride and boron nitride according to the present invention, the thermal shock resistance is greatly improved without lowering the mechanical strength of the obtained composite. And the industrial application field of the composite material can be expanded.

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C04B 35/583 - 35/596 Continuation of front page (58) Field surveyed (Int.Cl. 7 , DB name) C04B 35/583-35/596

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 窒化珪素粉末と窒化硼素粉末とを重量比
で90:10〜70:30の割合で混合した混合物に、
該混合物との合計量に対する内比で、βサイアロン粉末
を10〜30重量%、窒化アルミニウム粉末を1〜6重
量%、そして希土類元素の酸化物粉末を1〜8重量%の
割合で各々焼結助剤として添加混合し、該混合物を成形
した後、焼結することを特徴とする窒化珪素と窒化硼素
との複合体の製造方法。
1. A weight ratio of silicon nitride powder to boron nitride powder.
To a mixture mixed at a ratio of 90:10 to 70:30 ,
Β Sialon powder in internal ratio to the total amount with the mixture
10 to 30% by weight , aluminum nitride powder 1 to 6 layers
%, And 1 to 8% by weight of the rare earth oxide powder.
A method for producing a composite of silicon nitride and boron nitride, comprising adding and mixing sintering aids in respective proportions, forming the mixture, and sintering the mixture.
JP27494892A 1992-09-18 1992-09-18 Method for producing composite of silicon nitride and boron nitride Expired - Fee Related JP3271123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27494892A JP3271123B2 (en) 1992-09-18 1992-09-18 Method for producing composite of silicon nitride and boron nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27494892A JP3271123B2 (en) 1992-09-18 1992-09-18 Method for producing composite of silicon nitride and boron nitride

Publications (2)

Publication Number Publication Date
JPH06100369A JPH06100369A (en) 1994-04-12
JP3271123B2 true JP3271123B2 (en) 2002-04-02

Family

ID=17548790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27494892A Expired - Fee Related JP3271123B2 (en) 1992-09-18 1992-09-18 Method for producing composite of silicon nitride and boron nitride

Country Status (1)

Country Link
JP (1) JP3271123B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6289406B2 (en) * 2015-03-18 2018-03-07 三菱電機株式会社 Ceramic composite and flying body radome
CN113929472A (en) * 2021-11-24 2022-01-14 福州赛瑞特新材料技术开发有限公司 Preparation method of composite boron nitride ceramic nozzle

Also Published As

Publication number Publication date
JPH06100369A (en) 1994-04-12

Similar Documents

Publication Publication Date Title
JPH0930866A (en) Siliceous nitride sintered compact having high thermal conductivity, its production and insulating base made of siliceous nitride sintered compact
JP2002097005A5 (en)
JPH11314969A (en) High heat conductivity trisilicon tetranitride sintered compact and its production
JP3270792B2 (en) Method for producing silicon nitride based sintered body
JP3271123B2 (en) Method for producing composite of silicon nitride and boron nitride
JP3454994B2 (en) Silicon nitride sintered body and method for producing the same
JP3454993B2 (en) Silicon nitride sintered body and method for producing the same
JP2736386B2 (en) Silicon nitride sintered body
JP2649220B2 (en) Silicon nitride / silicon carbide composite powder, composite compact, method for producing them, and method for producing silicon nitride / silicon carbide composite sintered body
JPH0543333A (en) Production of high-strength sialon-based sintered compact
JP3152790B2 (en) Method for producing silicon nitride based sintered body
JP3426823B2 (en) Silicon nitride sintered body and method for producing the same
JP3290685B2 (en) Silicon nitride based sintered body
JP3034100B2 (en) Silicon nitride sintered body and method for producing the same
JP3124865B2 (en) Silicon nitride sintered body and method for producing the same
JP2980342B2 (en) Ceramic sintered body
JPH11322438A (en) High thermal conductive silicon nitride sintered compact and its production
JP3241215B2 (en) Method for producing silicon nitride based sintered body
JP3318466B2 (en) Silicon nitride sintered body and method for producing the same
JP3124867B2 (en) Silicon nitride sintered body and method for producing the same
JP3216973B2 (en) Silicon nitride sintered body and method for producing the same
JP3236739B2 (en) Silicon nitride sintered body and method for producing the same
JP3034099B2 (en) Silicon nitride sintered body and method for producing the same
JP3124862B2 (en) Method for producing silicon nitride based sintered body
JP3236733B2 (en) Silicon nitride sintered body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees