JP2687632B2 - Method for producing silicon nitride sintered body - Google Patents

Method for producing silicon nitride sintered body

Info

Publication number
JP2687632B2
JP2687632B2 JP1301320A JP30132089A JP2687632B2 JP 2687632 B2 JP2687632 B2 JP 2687632B2 JP 1301320 A JP1301320 A JP 1301320A JP 30132089 A JP30132089 A JP 30132089A JP 2687632 B2 JP2687632 B2 JP 2687632B2
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
powder
sintering
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1301320A
Other languages
Japanese (ja)
Other versions
JPH03164472A (en
Inventor
慎二 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP1301320A priority Critical patent/JP2687632B2/en
Publication of JPH03164472A publication Critical patent/JPH03164472A/en
Application granted granted Critical
Publication of JP2687632B2 publication Critical patent/JP2687632B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ガスタービン部品やデイーゼルエンジン部
品などの耐熱性の構造材料として使用できる窒化珪素焼
結体の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a silicon nitride sintered body that can be used as a heat-resistant structural material for gas turbine parts, diesel engine parts, and the like.

[従来の技術] 従来、窒化珪素焼結体は、窒化珪素粉末にイットリ
ヤ、スピネルとイットリヤ、イットリヤとアルミナなど
の焼結助剤の微粉末を加えて成形し、得られる成形体を
ホットプレスや加圧下で窒素雰囲気中で焼結して製造さ
れている。
[Prior Art] Conventionally, a silicon nitride sintered body is molded by adding fine powder of a sintering aid such as yttria, spinel and yttria, yttria and alumina to silicon nitride powder, and the resulting compact is hot pressed or hot pressed. It is manufactured by sintering in a nitrogen atmosphere under pressure.

たとえば特開昭57-77072号公報には、スピネルを焼結
助剤として窒化珪素粉末に添加して成形し、常圧より高
い窒素雰囲気中で焼結することで高密度で高強度の焼結
体が得られる旨の開示がある。
For example, in Japanese Patent Laid-Open No. 57-77072, spinel is added to silicon nitride powder as a sintering aid to be molded, and sintered in a nitrogen atmosphere higher than normal pressure to achieve high density and high strength sintering. There is a disclosure that the body can be obtained.

しかしながら、上記の焼結助剤は焼結時に液相を形成
して窒化珪素の焼結を促進するが、焼結後はガラス相を
形成して焼結体中の粒界に残存している。このため焼結
体が高温にさらされると粒界に存在する焼結助剤成分が
再度液相を形成するため焼結体の強度を低下させるので
高温度で使用される部品としての使用は好ましくない。
すなわち窒化珪素−スピネル系の焼結体では、粒界相が
非晶質相を形成している。このため1200℃以上で使用す
るには、この非晶質相を結晶化しないかぎり焼結体の強
度低下を防ぐことができない。
However, the above-mentioned sintering aid forms a liquid phase at the time of sintering to promote the sintering of silicon nitride, but after the sintering, it forms a glass phase and remains at the grain boundaries in the sintered body. . Therefore, when the sintered body is exposed to a high temperature, the sintering aid component existing in the grain boundaries again forms a liquid phase, which lowers the strength of the sintered body, and therefore is preferably used as a component used at high temperature. Absent.
That is, in the silicon nitride-spinel system sintered body, the grain boundary phase forms an amorphous phase. Therefore, when used at 1200 ° C. or higher, the strength of the sintered body cannot be prevented from decreasing unless the amorphous phase is crystallized.

セラミックス製のガスタービンエンジン部品は、使用
時の温度が1300〜1400℃の高い温度域となる。このため
1400℃においても強度の低下の少ない窒化珪素焼結体を
製造することが必要となる。
Gas turbine engine parts made of ceramics have a high operating temperature range of 1300 to 1400 ° C. For this reason
It is necessary to manufacture a silicon nitride sintered body whose strength is not significantly reduced even at 1400 ° C.

[発明が解決しようとする課題] 本発明は、上記の事情に鑑みてなされたもので、1400
℃の温度域においても強度の低下の少ない窒化珪素焼結
体とすることを目的とする。
[Problems to be Solved by the Invention] The present invention has been made in view of the above circumstances.
It is an object of the present invention to provide a silicon nitride sintered body whose strength is not significantly reduced even in the temperature range of ° C.

[課題を解決するための手段] 本発明の窒化珪素焼結体の製造方法は、窒化珪素粉末
と焼結助剤粉末との混合粉末から成形体を成形する成形
工程と、該成形体を非酸化性雰囲気で焼結して焼結体と
する焼結工程とからなる窒化珪素焼結体の製造方法にお
いて、該成形工程では、該混合粉末を100重量%とした
場合、該窒化珪素粉末99〜93重量%に、酸化イッテルビ
ウム(Yb2O3)粉末とスピネル(MgAl2O4)粉末の比率が
5/2〜2/2の割合で混合した該焼結助剤粉末1〜7重量%
を配合して該混合粉末とすることを特徴とする。
[Means for Solving the Problems] A method for manufacturing a silicon nitride sintered body according to the present invention comprises a forming step of forming a formed body from a mixed powder of silicon nitride powder and a sintering aid powder, and In a method for producing a silicon nitride sintered body, which comprises a sintering step of sintering in an oxidizing atmosphere to obtain a sintered body, in the molding step, when the mixed powder is 100% by weight, the silicon nitride powder 99 The ratio of ytterbium oxide (Yb 2 O 3 ) powder to spinel (MgAl 2 O 4 ) powder is up to 93% by weight.
1 to 7% by weight of the sintering aid powder mixed in a ratio of 5/2 to 2/2
Is mixed to obtain the mixed powder.

本発明の窒化珪素焼結体の製造方法は、窒化珪素粉末
に特定の組成割合の焼結助剤微粉末を配合して成形体を
形成し、次いでその成形体を焼結する方法である。
The method for producing a silicon nitride sintered body of the present invention is a method in which silicon nitride powder is mixed with a sintering aid fine powder having a specific composition ratio to form a molded body, and then the molded body is sintered.

この製造に用いる窒化珪素粉末は、平均粒径が1.0μ
m以下の微粉末を用いるのが、焼結性を高め緻密な焼結
体を形成するために好ましい。窒化珪素粉末の量は、99
〜93重量%である。窒化珪素の量が99重量%を超えると
焼結助剤の量が不足して焼結性が高まらず、かつ焼結助
剤による粒界結晶相が生成できず好ましくない。窒化珪
素の量が93重量%未満であると、焼結助剤が多くなりす
ぎて焼結性が高まり相対密度は高くなるが、焼結体中に
非晶質相の粒界が多くなり高温度域での強度が低下する
ので好ましくない。
The silicon nitride powder used for this production has an average particle size of 1.0μ.
It is preferable to use a fine powder of m or less in order to improve the sinterability and form a dense sintered body. The amount of silicon nitride powder is 99
~ 93% by weight. If the amount of silicon nitride exceeds 99% by weight, the amount of the sintering aid is insufficient, the sinterability is not improved, and the grain boundary crystal phase cannot be generated by the sintering aid, which is not preferable. If the amount of silicon nitride is less than 93% by weight, the sintering aid will be too much to increase the sinterability and the relative density will be high, but the grain boundaries of the amorphous phase in the sintered body will be high and the high density. It is not preferable because the strength in the temperature range decreases.

焼結助剤は、酸化イッテルビウム(Yb2O3)粉末とス
ピネル(MgAl2O4)粉末の混合物で形成される。その混
合比率は、酸化イッテルビウム:スピネルが5:2〜2:2の
範囲の割合とする。酸化イッテルビウムの量が多くその
比率が5:2を超えると相対密度が低下し高温度での強度
が低下するので好ましくない。また酸化イッテルビウム
の量が少なくその比率が2:2より小さいと高温度の強度
がさらに低下するので好ましくない。さらにこの焼結助
剤の混合粉末の合計量が1〜7重量%の範囲であること
が、焼結体の高温度での強度を保持するために必要であ
る。焼結助剤の量が1重量%未満では、粒界にYb4Si2N2
O7の粒界結晶相が生成せず、また7重量%を越えると粒
界相の量が多くなり非晶質相が生成するためかえって曲
げ強度が低下するので好ましくない。この焼結助剤は平
均粒径が0.5μm以下の微粉末であることが焼結性を高
めるために好ましい。
The sintering aid is formed of a mixture of ytterbium oxide (Yb 2 O 3 ) powder and spinel (MgAl 2 O 4 ) powder. The mixing ratio is ytterbium oxide: spinel in the range of 5: 2 to 2: 2. If the amount of ytterbium oxide is large and the ratio thereof exceeds 5: 2, the relative density decreases and the strength at high temperature decreases, which is not preferable. Further, if the amount of ytterbium oxide is small and the ratio is smaller than 2: 2, the strength at high temperature is further lowered, which is not preferable. Further, it is necessary for the total amount of the mixed powder of the sintering aid to be in the range of 1 to 7% by weight in order to maintain the strength of the sintered body at high temperatures. If the amount of the sintering aid is less than 1% by weight, Yb 4 Si 2 N 2 will be present at the grain boundaries.
The grain boundary crystal phase of O 7 is not generated, and if it exceeds 7% by weight, the amount of the grain boundary phase is increased and an amorphous phase is generated, so that the bending strength is rather lowered, which is not preferable. This sintering aid is preferably a fine powder having an average particle size of 0.5 μm or less in order to improve sinterability.

焼結工程は通常の条件、たとえば非酸化性の窒素雰囲
気中で1750〜1850℃で常圧または加圧下でおこなうこと
ができる。焼結温度が1750℃未満では充分に緻密化した
焼結体とならず、1850℃を超えると異常粒成長により組
織が微細化せず曲げ強度が低下するので好ましくない。
The sintering step can be performed under normal conditions, for example, in a non-oxidizing nitrogen atmosphere at 1750 to 1850 ° C. under normal pressure or pressure. If the sintering temperature is less than 1750 ° C., the sintered body will not be sufficiently densified, and if it exceeds 1850 ° C., the grain size will not be refined due to abnormal grain growth and bending strength will decrease, which is not preferable.

得られる焼結体は、静的酸化試験(1400℃、空気中、
300hr.)において酸化増量が少なく、従来の窒化珪素焼
結体よりも耐酸化性が向上する。この理由は充分解明さ
れていないが、粒界の結晶質相であるYb4Si2N2O7が生成
するため、非晶質界のSi3N4が酸化されにくくなってい
るものと推測される。
The obtained sintered body was subjected to a static oxidation test (1400 ° C, in air,
In 300 hr.), The increase in oxidation is small, and the oxidation resistance is improved as compared with the conventional silicon nitride sintered body. The reason for this has not been fully clarified, but it is presumed that the amorphous phase Si 3 N 4 is hard to be oxidized because Yb 4 Si 2 N 2 O 7, which is a crystalline phase of the grain boundary, is generated. To be done.

[作用] 本発明の窒化珪素焼結体の製造方法では、酸化イッテ
ルビウムとスピネルを特定割合で混合した混合粉末を焼
結助剤として窒化珪素を焼結する。その結果得られる焼
結体の粒界では、焼結助剤と窒化珪素とにより形成され
るYb4Si2N2O7が存在するため、液相部分が少なくなり高
温度域に於ける焼結体の強度低下が少なくなる。
[Operation] In the method for manufacturing a silicon nitride sintered body of the present invention, silicon nitride is sintered using a mixed powder obtained by mixing ytterbium oxide and spinel in a specific ratio as a sintering aid. At the grain boundaries of the resulting sintered body, Yb 4 Si 2 N 2 O 7 formed by the sintering aid and silicon nitride is present, so that the liquid phase portion is reduced and the sintering in the high temperature range occurs. The decrease in strength of the knot is reduced.

さらに粒界に結晶質相であるYb4Si2N2O7が存在するた
め窒化珪素の耐酸化性が向上する。
Further, since the crystalline phase of Yb 4 Si 2 N 2 O 7 is present at the grain boundaries, the oxidation resistance of silicon nitride is improved.

[実施例] 以下、実施例により具体的に説明する。[Examples] Hereinafter, specific examples will be described.

成形工程は、平均粒径が0.5μmの高純度の窒化珪素
粉末に、焼結助剤として平均粒径が0.2μmの酸化イッ
テルビウム(Yb2O3)とスピネル(MgAl2O4)の粉末を表
に示す割合で秤量した混合粉末を加え、さらにエタノー
ルを加えてボールミル中で混合をおこなった。エタノー
ルを除去し乾燥した混合粉末を金型で角棒状に成形し
た。得られた成形体を二次成形として3000kg/cm2の静水
圧を負荷して(5×4×50mm)の成形体を作製した。
In the molding process, high-purity silicon nitride powder with an average particle size of 0.5 μm and ytterbium oxide (Yb 2 O 3 ) and spinel (MgAl 2 O 4 ) powder with an average particle size of 0.2 μm were used as sintering aids. The mixed powders weighed in the ratios shown in the table were added, ethanol was further added, and mixing was performed in a ball mill. The ethanol-removed and dried mixed powder was molded into a square rod shape with a mold. The obtained molded body was subjected to secondary molding to apply a hydrostatic pressure of 3000 kg / cm 2 to prepare a molded body (5 × 4 × 50 mm).

焼結工程は、上記の成形体を窒素雰囲気下で圧力9kgf
/cm2で1750〜1850℃で焼結して焼結体を作製した。
In the sintering process, the above-mentioned compact was pressed under a nitrogen atmosphere at a pressure of 9 kgf.
Sintered body was prepared by sintering at 1750 to 1850 ° C./cm 2 .

表に各試料の原料の組成割合と焼結温度と焼結体の相
対密度および4点曲げ強度(室温、1200℃、1400℃)を
示す。
In the table, the composition ratio of the raw material of each sample, the sintering temperature, the relative density of the sintered body, and the four-point bending strength (room temperature, 1200 ° C, 1400 ° C) are shown.

相対密度は、アルキメデス法により測定した。 The relative density was measured by the Archimedes method.

4点曲げ強度は、JIS規格の曲げ試験片(3×4×36m
m)に加工し、JIS規格に基づき室温、1200℃、1400℃の
曲げ強度を測定した。
4-point bending strength is based on JIS standard bending test pieces (3 x 4 x 36 m
Then, the bending strength at room temperature, 1200 ° C and 1400 ° C was measured according to JIS standard.

その結果、実施例のNo.1〜10は、相対密度が98.0%TD
以上あり、曲げ強度は、室温で865〜790(MPa)あり、1
200℃では690〜750(MPa)あり、1400℃では585〜635
(MPa)で低下の度合が著しく少ない。特にNo.5は温度
による強度の低下が少ない焼結体である。
As a result, in Nos. 1 to 10 of the examples, the relative density was 98.0% TD.
Above, bending strength is 865 ~ 790 (MPa) at room temperature, 1
690-750 (MPa) at 200 ℃, 585-635 at 1400 ℃
(MPa), the degree of decrease is extremely small. In particular, No. 5 is a sintered body whose strength is not significantly reduced by temperature.

一方比較例No.1ではスピネル量が少ないため1400℃の
強度低下が著しく、また相対密度も97.0%で緻密性にか
ける。No.2は逆にスピネルが多い場合で、1400℃におけ
る強度低下が大きい。No.3は焼結助剤が本発明の範囲よ
り多い場合で、やはり1400℃の強度が低い。No.4は従来
のスピネルとイットリアを焼結助剤とした場合で1200℃
の強度が低い。No.5、6は従来の焼結助剤の量と割合を
変えた場合で、高温度での強度が低下が大きい。
On the other hand, in Comparative Example No. 1, since the amount of spinel is small, the strength is significantly reduced at 1400 ° C, and the relative density is 97.0%, which is poor in compactness. On the contrary, No. 2 has a large amount of spinel, and the strength decrease at 1400 ° C is large. No. 3 is a case where the sintering aid is more than the range of the present invention, and the strength at 1400 ° C is also low. No. 4 is 1200 ° C when conventional spinel and yttria are used as sintering aids.
Has low strength. Nos. 5 and 6 are the cases where the amount and the ratio of the conventional sintering aid are changed, and the strength at high temperature is largely reduced.

[効果] 本発明の窒化珪素焼結体の製造方法によれば、焼結助
剤に酸化イッテルビウムとスピネルとを特定組成割合の
混合物を用いることにより粒界にYb4Si2N2O7の結晶質相
が形成されるので、焼結体の高温度での強度低下が抑制
できる。また従来の焼結体より酸化増量が少なく高温度
での強度の低下が少ないのでエンジン部品としての使用
が可能となる。
[Effect] According to the method for producing a silicon nitride sintered body of the present invention, by using a mixture of ytterbium oxide and spinel in a specific composition ratio as a sintering aid, Yb 4 Si 2 N 2 O 7 can be added to grain boundaries. Since the crystalline phase is formed, it is possible to suppress the strength reduction of the sintered body at high temperature. In addition, since the amount of increased oxidation is smaller than that of the conventional sintered body and the decrease in strength at high temperature is small, it can be used as an engine part.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】窒化珪素粉末と焼結助剤粉末との混合粉末
から成形体を成形する成形工程と、該成形体を非酸化性
雰囲気で焼結して焼結体とする焼結工程とからなる窒化
珪素焼結体の製造方法において、 該成形工程では、該混合粉末を100重量%とした場合、
該窒化珪素粉末99〜93重量%に、酸化イッテルビウム
(Yb2O3)粉末とスピネル(MgAl2O4)粉末との比率が5/
2〜2/2の割合で混合した該焼結助剤粉末1〜7重量%を
配合して該混合粉末とすることを特徴とする窒化珪素焼
結体の製造方法。
1. A molding step of molding a molded body from a mixed powder of silicon nitride powder and a sintering aid powder, and a sintering step of sintering the molded body in a non-oxidizing atmosphere to form a sintered body. In the method for producing a silicon nitride sintered body consisting of, in the molding step, when the mixed powder is 100% by weight,
The ratio of ytterbium oxide (Yb 2 O 3 ) powder to spinel (MgAl 2 O 4 ) powder was 5/9 in the silicon nitride powder of 99 to 93% by weight.
A method for producing a silicon nitride sintered body, characterized in that 1 to 7% by weight of the sintering aid powder mixed in a ratio of 2 to 2/2 is blended to obtain the mixed powder.
JP1301320A 1989-11-20 1989-11-20 Method for producing silicon nitride sintered body Expired - Fee Related JP2687632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1301320A JP2687632B2 (en) 1989-11-20 1989-11-20 Method for producing silicon nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1301320A JP2687632B2 (en) 1989-11-20 1989-11-20 Method for producing silicon nitride sintered body

Publications (2)

Publication Number Publication Date
JPH03164472A JPH03164472A (en) 1991-07-16
JP2687632B2 true JP2687632B2 (en) 1997-12-08

Family

ID=17895441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1301320A Expired - Fee Related JP2687632B2 (en) 1989-11-20 1989-11-20 Method for producing silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JP2687632B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0987037A (en) * 1995-07-18 1997-03-31 Ngk Spark Plug Co Ltd Silicon nitride-base sintered compact and its production
US5921725A (en) * 1996-03-13 1999-07-13 Kashiwagi; Tetsuya Sintered silicon nitride articles for tools and method of preparation
WO2019008711A1 (en) 2017-07-05 2019-01-10 株式会社村田製作所 Method for producing sintered body

Also Published As

Publication number Publication date
JPH03164472A (en) 1991-07-16

Similar Documents

Publication Publication Date Title
JP2842723B2 (en) Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same
JP2687632B2 (en) Method for producing silicon nitride sintered body
JP2736386B2 (en) Silicon nitride sintered body
JP2687633B2 (en) Method for producing silicon nitride sintered body
US5545362A (en) Production method of sintered silicon nitride
JPH0826815A (en) Rare earth compound oxide-based sintered compact and its production
JPH07330436A (en) Silicon nitride heat resistant member and its production
JP2892186B2 (en) Method for producing silicon nitride-silicon carbide composite sintered body
JP2970131B2 (en) Method for producing silicon nitride sintered body
JP2746761B2 (en) Method for producing silicon nitride-silicon carbide composite sintered body
JPH09157028A (en) Silicon nitride sintered compact and its production
JP2687634B2 (en) Method for producing silicon nitride sintered body
JP2710865B2 (en) Manufacturing method of silicon nitride sintered body
JP2742622B2 (en) Silicon nitride sintered body and method for producing the same
JPH05139840A (en) Siliceous nitride sintered compact and its production
JP2671539B2 (en) Method for producing silicon nitride sintered body
JPH035371A (en) Production of si3n4 sintered compact
JP2734755B2 (en) Method for producing high-temperature high-strength silicon nitride sintered body
JP2801447B2 (en) Method for producing silicon nitride based sintered body
JP2694368B2 (en) Method for producing silicon nitride based sintered body
JP2783702B2 (en) Silicon nitride sintered body
JP2777051B2 (en) Method for producing silicon nitride based sintered body
JP3176203B2 (en) Method for producing silicon nitride based sintered body
JP2811493B2 (en) Silicon nitride sintered body
JP2746760B2 (en) Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees