JP2710865B2 - Manufacturing method of silicon nitride sintered body - Google Patents

Manufacturing method of silicon nitride sintered body

Info

Publication number
JP2710865B2
JP2710865B2 JP2410991A JP41099190A JP2710865B2 JP 2710865 B2 JP2710865 B2 JP 2710865B2 JP 2410991 A JP2410991 A JP 2410991A JP 41099190 A JP41099190 A JP 41099190A JP 2710865 B2 JP2710865 B2 JP 2710865B2
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
firing
temperature
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2410991A
Other languages
Japanese (ja)
Other versions
JPH04219373A (en
Inventor
清 横山
等 松之迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2410991A priority Critical patent/JP2710865B2/en
Publication of JPH04219373A publication Critical patent/JPH04219373A/en
Application granted granted Critical
Publication of JP2710865B2 publication Critical patent/JP2710865B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ガスタービン等の熱機
関構造用部品として用いられる室温、高温における強度
に優れ、且つ高温におけるクリープ特性に優れた窒化珪
素質焼結体の製法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a silicon nitride sintered body having excellent strength at room temperature and high temperature and excellent creep characteristics at high temperature, which is used as a component for a heat engine structure such as a gas turbine.

【0002】[0002]

【従来技術】従来から、窒化珪素質焼結体は高温におけ
る強度、硬度、熱的化学的安定性に優れた材料として注
目され、エンジニアリングセラミックスとして特に熱機
関用構造材料としての応用が進められている。
2. Description of the Related Art Conventionally, silicon nitride-based sintered bodies have attracted attention as materials having excellent strength, hardness and thermochemical stability at high temperatures, and have been applied as engineering ceramics, particularly as structural materials for heat engines. I have.

【0003】一般に、窒化珪素はそれ自体、難焼結性で
あることから焼結助剤としてY2 3 等の希土類元素酸
化物をはじめ、Al23 等の添加が必要とされてい
る。
In general, since silicon nitride itself is difficult to sinter, it is necessary to add a rare earth element oxide such as Y 2 O 3 and an Al 2 O 3 as a sintering aid. .

【0004】また、窒化珪素質焼結体は、特にターボロ
ータやガスタービンロータ等の熱機関用構造材料として
用いる場合には、高温における抗折強度が高いこと、ま
た耐酸化性に優れ、室温から高温までの強度の劣化が小
さいことが要求される。
[0004] Also, when used as a structural material for heat engines such as turbo rotors and gas turbine rotors, silicon nitride based sintered bodies have high flexural strength at high temperatures, excellent oxidation resistance, and low room temperature. It is required that the deterioration of strength from low to high temperature is small.

【0005】このような窒化珪素質焼結体は、通常、窒
化珪素粉末に対して前述したような焼結助剤を添加した
混合物を所望の形状に成形し、窒素を含有する非酸化性
雰囲気中で常圧焼成、ホットプレス焼成、窒素ガス加圧
焼成、熱間静水圧焼成等の手法により緻密化が図られて
いる。これらの中でも窒素ガス加圧焼成、熱間静水圧焼
成は熱機関部品のように複雑形状品の高強度の焼結体を
得るに適した焼成法として多用されつつある。
[0005] Such a silicon nitride-based sintered body is usually formed by molding a mixture obtained by adding a sintering aid as described above to silicon nitride powder into a desired shape, and then forming a nitrogen-containing non-oxidizing atmosphere. Among them, densification is achieved by a method such as normal pressure firing, hot press firing, nitrogen gas pressure firing, hot isostatic pressure firing, and the like. Of these, nitrogen gas pressurized firing and hot isostatic firing are being widely used as firing methods suitable for obtaining high-strength sintered bodies of complicated shapes such as heat engine parts.

【0006】また、窒化珪素は、その焼結性の点から用
いる原料粉末としてα型窒化珪素を多量に含むものほど
焼結性が高く、強度の高い焼結体が得られるとして90
%以上のα型窒化珪素を含有する原料が一般に用いられ
ている。
[0006] In addition, silicon nitride, which contains a large amount of α-type silicon nitride as a raw material powder to be used in view of its sinterability, has a high sinterability and a sintered body having a high strength can be obtained.
% Or more is generally used.

【0007】[0007]

【発明が解決しようとする問題点】これまで窒化珪素質
焼結体は、添加される焼結助剤や焼成条件に対してあら
ゆる検討がなされているが、これらのほとんどは室温お
よび高温での強度や耐酸化性の改良を目的として研究さ
れている。しかしながら、窒化珪素質焼結体はそれ自
体、高温で荷重が付加された状態で長時間保持した時に
焼結体が塑性変形を示すという特性(クリープ特性)が
あることが知られており、特に熱機関構造用としては、
このようなクリープ特性において塑性変形の小さい材料
が要求されている。
Problems to be Solved by the Invention Silicon nitride-based sintered bodies have hitherto been examined with respect to sintering additives to be added and sintering conditions, but most of them are at room temperature and at high temperatures. It has been studied for the purpose of improving strength and oxidation resistance. However, it is known that a silicon nitride-based sintered body itself has a property (creep property) that the sintered body exhibits plastic deformation when held for a long time in a state where a load is applied at a high temperature. For heat engine construction,
A material having small plastic deformation in such creep characteristics is required.

【0008】しかし、このクリープ特性については、あ
まり検討されておらず、その具体的な解決策もないのが
現状である。例えば、従来のようにα型窒化珪素を多量
に含む原料を用いて焼成すると、焼結過程においてα型
からβ型の窒化珪素へ転移するのに伴い窒化珪素粒子が
粒成長し粒径の大きい粒子が生じ、組織的に不均一にな
り、これによりクリープ特性が劣化し易くなるという問
題があった。
However, the creep characteristics have not been studied much and there is no concrete solution at present. For example, when sintering is performed using a raw material containing a large amount of α-type silicon nitride as in the past, silicon nitride particles grow as the transition from α-type to β-type silicon nitride occurs during the sintering process, and the particle size increases. There is a problem in that particles are generated and become non-uniform in structure, whereby the creep characteristics are easily deteriorated.

【0009】[0009]

【問題点を解決するための手段】本発明者等は、このク
リープ特性について検討を加えた結果、焼結助剤として
Yb2 3 、Er2 3 を用い、これをβ型窒化珪素を
比較的多量に含有する窒化珪素粉末に添加混合し、それ
を高圧の窒素ガス雰囲気中で焼成することにより高温に
おける強度および耐酸化性に優れるとともに、耐クリー
プ性に優れた焼結体が得られることを知見し、本発明に
到った。
[Means for Solving the Problems] The present inventors have studied the creep characteristics and found that Yb 2 O 3 and Er 2 O 3 were used as sintering aids, and β-type silicon nitride was used. By adding and mixing to a relatively large amount of silicon nitride powder and firing it in a high-pressure nitrogen gas atmosphere, a sintered body with excellent strength and oxidation resistance at high temperatures and excellent creep resistance can be obtained. This led to the present invention.

【0010】即ち、本発明の窒化珪素質焼結体の製法
は、β型窒化珪素を30%以上含有する窒化珪素粉末に
Yb2 3 および/またはEr2 3 を添加混合し、所
定の形状に成形した後、窒素ガス圧力30〜100at
mにて1800〜2100℃の非酸化性雰囲気中で焼成
することを特徴とするもので、さらにかかる焼結体を5
00〜2000atmにて1500〜2000℃で熱間
静水圧焼成することを特徴とするものである。
That is, according to the method for producing a silicon nitride sintered body of the present invention, Yb 2 O 3 and / or Er 2 O 3 are added to silicon nitride powder containing β-type silicon nitride of 30% or more and mixed. After molding into a shape, nitrogen gas pressure 30 ~ 100at
m in a non-oxidizing atmosphere at 1800 to 2100 ° C.
It is characterized by hot isostatic firing at 1500 to 2000 ° C. at 00 to 2000 atm.

【0011】窒化珪素は、その結晶構造から大きくα型
とβ型の2種に大別されるが、本発明の製法によれば、
用いる原料中の比率により高温でのクリープ特性が変化
するという見地から、窒化珪素原料粉末としてβ型の窒
化珪素を30%以上、特に40〜70%含有する原料を
用いることを大きな特徴とする。
[0011] Silicon nitride is roughly classified into two types, α-type and β-type, based on its crystal structure.
In view of the fact that the creep characteristics at high temperatures change depending on the ratio in the raw materials used, a major feature is that a raw material containing 30% or more, particularly 40 to 70%, of β-type silicon nitride is used as the silicon nitride raw material powder.

【0012】この窒化珪素原料中のβ型窒化珪素量を上
記の範囲に設定したのは、その量が30%未満では、耐
クリープ特性、特に1400℃でのクリープ特性が大き
く劣化するからである。また窒化珪素粉末は、通常、酸
素を含有していることが知られているが、この酸素は焼
結性に寄与するものであり、その量が0.8〜1.5重
量%であることが望ましく、さらに平均粒径が0.3〜
0.6μm 程度のものが好適に使用される。
The reason that the amount of β-type silicon nitride in the silicon nitride raw material is set in the above range is that if the amount is less than 30%, the creep resistance characteristics, particularly the creep characteristics at 1400 ° C., are greatly deteriorated. . It is known that silicon nitride powder usually contains oxygen. This oxygen contributes to sinterability, and the amount is 0.8 to 1.5% by weight. Is desirable, and the average particle size is 0.3 to
Those having a diameter of about 0.6 μm are preferably used.

【0013】また、窒化珪素粉末に対して添加混合され
る焼結助剤としてはY2 3 をはじめとする周期律表第
3a族元素酸化物の他にAl2 3 等の各種のものが知
られているが、本発明によれば、これらの中でもYb2
3 および/またはEr2 3 を必須成分として添加す
る。これらの焼結助剤は窒化珪素粉末に対して0.5〜
3.5モル%の割合で添加されることが望ましい。
[0013] Further, it is added and mixed with the silicon nitride powder.
Y as a sintering aidTwoOThreeAnd other periodic tables
Al in addition to Group 3a element oxidesTwoOThreeKnow various things
According to the present invention, among these, YbTwo
OThreeAnd / or ErTwoO ThreeAdd as an essential component
You. These sintering aids are used in an amount of 0.5 to
It is desirable to add at a ratio of 3.5 mol%.

【0014】また、調合組成に関しては、上記窒化珪素
粉末およびYb2 3 および/またはEr2 3 粉末の
系に対して酸化珪素を添加混合することもできる。この
酸化珪素は、窒化珪素原料粉末中の酸素量をSiO2
算した量も含め、1〜10モル%以下の割合となるよう
に添加することが望ましく、特にこのSiO2 量と前記
Yb2 3 、Er2 3 を含む周期律表第3a族元素酸
化物(RE2 3 )量とのモル比(SiO2 /RE2
3 )が1〜2であることが好ましい。
As for the composition, silicon oxide can be added to the above-mentioned system of silicon nitride powder and Yb 2 O 3 and / or Er 2 O 3 powder. This silicon oxide, including amounts SiO 2 by converting the oxygen content of the silicon nitride raw material powder, it is desirable to add such a ratio of less than 10 mol%, particularly the Yb 2 O and the amount of SiO 2 3 , the molar ratio (SiO 2 / RE 2 O) to the oxide of a group 3a element of the periodic table containing Er 2 O 3 (RE 2 O 3 )
3 ) is preferably 1 to 2.

【0015】これらの原料粉末は、前述した所定の割合
で秤量混合された後に公知の成形手段、例えばプレス成
形、射出成形、押し出し成形、鋳込み成形、冷間静水圧
成形等の方法により所定の形状に成形後、焼成される。
These raw material powders are weighed and mixed at the above-mentioned predetermined ratio, and then mixed to a predetermined shape by a known molding means, for example, a method such as press molding, injection molding, extrusion molding, casting molding, or cold isostatic pressing. After forming into a shape, it is fired.

【0016】次に、この成形体を窒素ガス圧力が30〜
100atm、特に30〜70atmの高圧力雰囲気下
でで焼成する。この焼成における窒素ガス圧力を上記の
範囲に限定したのは、圧力が30atm以下では高温強
度が向上せず、100atmを越えると試料に表面荒れ
が発生するからである。また、焼成温度は、本発明の原
料粉末がβ型窒化珪素を多量に含有していることに起因
し、1800℃より低い温度では緻密化するのが難し
い。一方、焼成温度が2100℃より高いと窒化珪素自
体の分解が生じ焼結体の表面が荒れ強度が劣化する。よ
って、焼成温度は1800〜2100℃、特に1900
〜2000℃に設定される。
Next, the compact is subjected to a nitrogen gas pressure of 30 to 30.
The firing is performed under a high pressure atmosphere of 100 atm, particularly 30 to 70 atm. The reason why the nitrogen gas pressure in this firing is limited to the above range is that if the pressure is 30 atm or less, the high temperature strength does not improve, and if it exceeds 100 atm, the sample becomes rough. In addition, the firing temperature is caused by the fact that the raw material powder of the present invention contains a large amount of β-type silicon nitride, and it is difficult to densify at a temperature lower than 1800 ° C. On the other hand, if the firing temperature is higher than 2100 ° C., the silicon nitride itself is decomposed, and the surface of the sintered body is roughened and the strength is deteriorated. Therefore, the sintering temperature is 1800 to 2100 ° C., particularly 1900
Set to ~ 2000 ° C.

【0017】かかる焼成によれば、対理論密度比95%
以上の高密度の焼結体を得ることができるが、本発明に
よれば、上記の焼成によって得られた焼結体をさらに窒
素ガス圧力500〜2000atmの高圧雰囲気下で1
500〜1900℃の温度で熱間静水圧焼成することに
より、より高密度化が達成されるとともに、強度、およ
び高温での耐クリープ特性をも向上することができる。
According to this firing, the ratio of the theoretical density to 95%
According to the present invention, the sintered body obtained by the above-mentioned sintering can be further subjected to a nitrogen gas pressure of 500 to 2000 atm under a high-pressure atmosphere.
By performing hot isostatic firing at a temperature of 500 to 1900 ° C., higher densification can be achieved, and strength and creep resistance at high temperatures can be improved.

【0018】さらに、場合によっては、上記の方法によ
り得られた焼結体を適宜1400〜1800℃の非酸化
性雰囲気中で処理することにより粒界の結晶化を図り高
温特性を改善することもできる。
Further, in some cases, the sintered body obtained by the above method may be appropriately treated in a non-oxidizing atmosphere at 1400 to 1800 ° C. to improve crystallization of grain boundaries and improve high-temperature characteristics. it can.

【0019】[0019]

【作用】クリープ特性は、焼結体の組織の均質性に大き
く影響される特性であり、特に組織内に粒成長により大
きな粒子が不均一に存在するとクリープ特性は大きく劣
化する。
The creep characteristics are greatly affected by the homogeneity of the structure of the sintered body. In particular, if large particles are non-uniformly present in the structure due to grain growth, the creep characteristics are greatly deteriorated.

【0020】本発明によれば、原料粉末としてβ型窒化
珪素を多量に含有する窒化珪素原料粉末を用いることに
より、焼成過程でα−β転移による粒成長が小さくな
り、窒化珪素粒子が均一にそろった組織が形成されるた
めに、高温クリープ特性を大きく向上することができ
る。
According to the present invention, by using a silicon nitride raw material powder containing a large amount of β-type silicon nitride as the raw material powder, the grain growth due to α-β transition is reduced in the firing process, and the silicon nitride particles are uniformly formed. Since a uniform structure is formed, high-temperature creep characteristics can be greatly improved.

【0021】また、焼結助剤として含有されるYb2
3 、Er2 3 は、そのほとんどが焼結体中の粒界に存
在するが、これらの酸化物は一般的に用いられているY
2 3 と比較して粒界の高温での粘性を高めることがで
きるために、窒化珪素粒子の滑りを抑制する作用を成し
これによっても高温クリープ特性を向上することができ
る。
In addition, Yb 2 O contained as a sintering aid
3, Er 2 O 3 is mostly present in the grain boundaries in the sintered body, these oxides are commonly used Y
Since the viscosity of the grain boundary at a high temperature can be increased as compared with 2 O 3 , the effect of suppressing the slip of the silicon nitride particles can be obtained, and the high temperature creep characteristics can be also improved.

【0022】また、焼成時の窒素ガス圧力を30atm
以上とした理由は、N2 が窒化珪素粒界相に溶け込み粒
界相の高温での粘性を高めるため、それにより高温クリ
ープ特性および高温強度の向上につながるためである。
Further, the nitrogen gas pressure during firing is 30 atm.
The reason described above is because N 2 dissolves in the silicon nitride grain boundary phase and increases the viscosity of the grain boundary phase at high temperatures, thereby leading to improvement in high temperature creep characteristics and high temperature strength.

【0023】[0023]

【実施例】窒化珪素原料粉末として、α型、β型の窒化
珪素原料の含有量の異なる原料を用意した。これらの原
料はいずれも酸素含有量1.0〜1.2重量%であり、
平均粒径0.4〜0.6μm である。
EXAMPLES As silicon nitride raw material powders, raw materials having different contents of α-type and β-type silicon nitride raw materials were prepared. All of these raw materials have an oxygen content of 1.0 to 1.2% by weight,
The average particle size is 0.4 to 0.6 μm.

【0024】この窒化珪素原料に対して平均粒径が0.
5〜0.6μm のYb2 3 、Er2 3 、また比較の
ためにY2 3 の粉末を表1、表2に示す割合で秤量混
合した。
The silicon nitride raw material has an average particle size of 0.
Powders of 5 to 0.6 μm of Yb 2 O 3 and Er 2 O 3 , and for comparison, Y 2 O 3 powder were weighed and mixed in proportions shown in Tables 1 and 2.

【0025】この混合粉末に適宜バインダーを添加後、
1ton/cm2の圧力でプレス成形した。次にこの成
形体を表1、表2に示した焼成条件で焼成し各種の焼結
体を得た。
After appropriately adding a binder to this mixed powder,
Press molding was performed under a pressure of 1 ton / cm 2 . Next, this molded body was fired under the firing conditions shown in Tables 1 and 2 to obtain various sintered bodies.

【0026】なお、表1、表2中、試料No,11、1
5、16、21に対して表3に示す条件でさらに熱間静
水圧焼成を行った。
In Tables 1 and 2, samples No. 11, 11, 1
5, 16 and 21 were further subjected to hot isostatic firing under the conditions shown in Table 3.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】[0029]

【表3】 [Table 3]

【0030】得られた各焼結体に対して、JISR16
01に基づき、1400℃4点曲げ抗折強度、酸化性雰
囲気中に1400℃において24時間保持後の酸化重量
増を測定し、さらに1400℃で1Hr保持できる最大
の荷重を求めた。結果は、表4および表5に示した。
For each of the obtained sintered bodies, JISR16
Based on No. 01, the four-point bending strength at 1400 ° C. and the increase in oxidized weight after being kept in an oxidizing atmosphere at 1400 ° C. for 24 hours were measured, and the maximum load that could be held at 1400 ° C. for 1 hour was determined. The results are shown in Tables 4 and 5.

【0031】[0031]

【表4】 [Table 4]

【0032】[0032]

【表5】 [Table 5]

【0033】表1〜表5の結果によれば、原料中のβ−
Si3 4 の含有量が30%よりも少ない試料No,1で
は、室温強度、高温強度に関してはある程度高い値を示
したが、クリープ特性が特性上低いものである。また、
焼成時の圧力が30atmより低い試料No,3および焼
成温度が2100℃より高い試料No,4では、いずれも
焼結体の表面に窒化珪素の分解によると思われる表面荒
れが生じた。また、焼成温度が1750℃では焼結する
ことができず、圧力が200atmと高い試料No,14
でも焼結体の表面に荒れが生じた。
According to the results shown in Tables 1 to 5, β-
Sample No. 1 containing less than 30% of Si 3 N 4 exhibited room temperature strength and high temperature strength to some extent, but had low creep characteristics in terms of characteristics. Also,
In samples No. 3 and 3 having a firing pressure lower than 30 atm and samples No. 4 having a firing temperature higher than 2100 ° C., the surface of the sintered body had surface roughness which was considered to be due to decomposition of silicon nitride. When the firing temperature is 1750 ° C., sintering cannot be performed, and the pressure of the sample No. 14 is as high as 200 atm.
However, the surface of the sintered body was rough.

【0034】なお、焼結助剤としてY2 3 を用いた試
料No,20では、β−Si3 4 を含有する原料を用い
ても、焼結体表面にシミが観察され、特性的にも低いも
のであった。
In Sample No. 20 using Y 2 O 3 as a sintering aid, even when a raw material containing β-Si 3 N 4 was used, stains were observed on the surface of the sintered body, and the characteristic Was also low.

【0035】これに対して高β−Si3 4 含有の原料
を用いて所定の高温高圧下で焼成した本発明の試料は、
いずれも室温強度、高温強度および高温クリープ特性の
いずれにおいても優れた特性を有してした。さらに、焼
結体を熱間静水圧焼成することにより特性を向上するこ
とができた。
On the other hand, the sample of the present invention fired at a predetermined high temperature and high pressure using a raw material containing high β-Si 3 N 4
All had excellent properties in room temperature strength, high temperature strength and high temperature creep properties. Furthermore, the properties could be improved by hot isostatic firing of the sintered body.

【0036】[0036]

【発明の効果】以上詳述した通り、本発明の窒化珪素質
焼結体の製法によれば、高β型窒化珪素含有の窒化珪素
粉末に対して特定の焼結助剤を添加し、これを高圧下で
焼成することにより、高温強度、高温耐酸化性に優れる
とともに高温での耐クリープ特性に優れた焼結体を得る
ことができる。これにより、ガスタービン等の熱機関材
料としてその作動温度が1400℃を越える使用条件下
でも優れた耐久性を発揮され、より実用化を促進するこ
とができる。
As described in detail above, according to the method for producing a silicon nitride-based sintered body of the present invention, a specific sintering aid is added to silicon nitride powder containing high β-type silicon nitride. By baking under high pressure, a sintered body having excellent high-temperature strength and high-temperature oxidation resistance and excellent high-temperature creep resistance can be obtained. As a result, excellent durability is exhibited even under operating conditions in which the operating temperature of the heat engine material for a gas turbine or the like exceeds 1400 ° C., and practical use can be further promoted.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】β型窒化珪素を30%以上含有する窒化珪
素粉末にYb2 3 および/またはEr2 3 を添加混
合し、所定の形状に成形した後、窒素ガス圧力30〜1
00atmにて1800〜2100℃の非酸化性雰囲気
中で焼成することを特徴とする窒化珪素質焼結体の製
法。
1. A method in which Yb 2 O 3 and / or Er 2 O 3 is added to silicon nitride powder containing 30% or more of β-type silicon nitride and mixed to form a predetermined shape.
A method for producing a silicon nitride-based sintered body, characterized in that firing is performed in a non-oxidizing atmosphere at 1800 to 2100 ° C. at 00 atm.
【請求項2】β型窒化珪素を30%以上含有する窒化珪
素粉末に周期律表第3a族元素酸化物を添加混合し、所
定の形状に成形した後、窒素ガス圧力30〜100at
mにて1800〜2100℃の非酸化性雰囲気中で焼成
し、その後500〜2000atmにて1500〜20
00℃で熱間静水圧焼成することを特徴とする窒化珪素
質焼結体の製法。
2. A silicon nitride powder containing 30% or more of β-type silicon nitride is mixed with an oxide of an element belonging to Group 3a of the periodic table, and molded into a predetermined shape.
m in a non-oxidizing atmosphere at 1800 to 2100 ° C., and then 1500 to 20 at 500 to 2000 atm.
A method for producing a silicon nitride-based sintered body, characterized by performing hot isostatic firing at 00 ° C.
JP2410991A 1990-12-14 1990-12-14 Manufacturing method of silicon nitride sintered body Expired - Fee Related JP2710865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2410991A JP2710865B2 (en) 1990-12-14 1990-12-14 Manufacturing method of silicon nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2410991A JP2710865B2 (en) 1990-12-14 1990-12-14 Manufacturing method of silicon nitride sintered body

Publications (2)

Publication Number Publication Date
JPH04219373A JPH04219373A (en) 1992-08-10
JP2710865B2 true JP2710865B2 (en) 1998-02-10

Family

ID=18520067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2410991A Expired - Fee Related JP2710865B2 (en) 1990-12-14 1990-12-14 Manufacturing method of silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JP2710865B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102795859A (en) * 2012-08-17 2012-11-28 湖北红花高温材料有限公司 SiC-Si3N4 high temperature ceramic furnace bottom plate for annular furnace and preparation method thereof
CN114988882A (en) * 2022-07-11 2022-09-02 中材高新氮化物陶瓷有限公司 Silicon nitride high-temperature ceramic part with complex shape and preparation method thereof

Also Published As

Publication number Publication date
JPH04219373A (en) 1992-08-10

Similar Documents

Publication Publication Date Title
JP2829229B2 (en) Silicon nitride ceramic sintered body
JP2710865B2 (en) Manufacturing method of silicon nitride sintered body
JP3091085B2 (en) Rare earth silicate based sintered body and method for producing the same
JP2736386B2 (en) Silicon nitride sintered body
JP3454993B2 (en) Silicon nitride sintered body and method for producing the same
JP3454994B2 (en) Silicon nitride sintered body and method for producing the same
JP2980342B2 (en) Ceramic sintered body
JP3426823B2 (en) Silicon nitride sintered body and method for producing the same
US5545362A (en) Production method of sintered silicon nitride
JP2631115B2 (en) Manufacturing method of silicon nitride sintered body
JP2687632B2 (en) Method for producing silicon nitride sintered body
JP3124865B2 (en) Silicon nitride sintered body and method for producing the same
JP2892186B2 (en) Method for producing silicon nitride-silicon carbide composite sintered body
JP2801447B2 (en) Method for producing silicon nitride based sintered body
JP2534213B2 (en) Method for producing silicon nitride based sintered body
JP2746761B2 (en) Method for producing silicon nitride-silicon carbide composite sintered body
JP3445345B2 (en) High heat-resistant water sialon-based sintered body
JP3318466B2 (en) Silicon nitride sintered body and method for producing the same
JP2734755B2 (en) Method for producing high-temperature high-strength silicon nitride sintered body
JP2708136B2 (en) Silicon nitride sintered body and method for producing the same
JP2777051B2 (en) Method for producing silicon nitride based sintered body
JP3176203B2 (en) Method for producing silicon nitride based sintered body
JP2946593B2 (en) Silicon nitride sintered body and method for producing the same
JP3236739B2 (en) Silicon nitride sintered body and method for producing the same
JP2783711B2 (en) Silicon nitride sintered body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees