JPH04219373A - Production of silicon nitride-based sintered compact - Google Patents

Production of silicon nitride-based sintered compact

Info

Publication number
JPH04219373A
JPH04219373A JP2410991A JP41099190A JPH04219373A JP H04219373 A JPH04219373 A JP H04219373A JP 2410991 A JP2410991 A JP 2410991A JP 41099190 A JP41099190 A JP 41099190A JP H04219373 A JPH04219373 A JP H04219373A
Authority
JP
Japan
Prior art keywords
silicon nitride
firing
si3n4
atm
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2410991A
Other languages
Japanese (ja)
Other versions
JP2710865B2 (en
Inventor
Kiyoshi Yokoyama
清 横山
Hitoshi Matsunosako
等 松之迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2410991A priority Critical patent/JP2710865B2/en
Publication of JPH04219373A publication Critical patent/JPH04219373A/en
Application granted granted Critical
Publication of JP2710865B2 publication Critical patent/JP2710865B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To improve high-temperature strength, high-temperature oxidation resistance and creep resistance at high temperatures by adding a specific sintering assistant to Si3N4 powder with a high beta type Si3N4 content and burning the resultant mixture under a high pressure. CONSTITUTION:Yb2O3 or Er2O3 having 0.5-0.6mum average grain diameter or both, preferably a group IIIa element oxide (hereinafter referred to as RE2O3) as a sintering assistant in an amount of 0.5-3.5mol% based on the Si3N4 powder are added and mixed with Si3N4 powder, containing >=30% (3 type Si3N4 and having 0.8-1.5wt.% oxygen content and 0.3-0.6mum average grain diameter so as to provide 1-2 molar ratio (SiO2/RE2O3). The resultant mixture is then formed into a prescribed shape and subsequently burned under 30-100 atm nitrogen gas pressure in a nonoxidizing atmosphere at 1800-2100 deg.C. Hot isostatic pressure sintering, as necessary, is then carried out at 1500-2000 deg.C under 500-2000 atm to afford the subject sintered compact capable of exhibiting excellent durability even at an operating temperature exceeding 1400 deg.C.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、ガスタービン等の熱機
関構造用部品として用いられる室温、高温における強度
に優れ、且つ高温におけるクリープ特性に優れた窒化珪
素質焼結体の製法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a silicon nitride sintered body, which is used as structural parts of heat engines such as gas turbines and has excellent strength at both room and high temperatures, as well as excellent creep properties at high temperatures.

【0002】0002

【従来技術】従来から、窒化珪素質焼結体は高温におけ
る強度、硬度、熱的化学的安定性に優れた材料として注
目され、エンジニアリングセラミックスとして特に熱機
関用構造材料としての応用が進められている。
[Prior Art] Silicon nitride sintered bodies have long attracted attention as materials with excellent strength, hardness, and thermal and chemical stability at high temperatures, and their application as engineering ceramics, particularly as structural materials for heat engines, has been progressing. There is.

【0003】一般に、窒化珪素はそれ自体、難焼結性で
あることから焼結助剤としてY2 O3 等の希土類元
素酸化物をはじめ、Al2O3 等の添加が必要とされ
ている。
Generally, since silicon nitride itself is difficult to sinter, it is necessary to add rare earth element oxides such as Y2O3 and Al2O3 as sintering aids.

【0004】また、窒化珪素質焼結体は、特にターボロ
ータやガスタービンロータ等の熱機関用構造材料として
用いる場合には、高温における抗折強度が高いこと、ま
た耐酸化性に優れ、室温から高温までの強度の劣化が小
さいことが要求される。
In addition, silicon nitride sintered bodies, especially when used as structural materials for heat engines such as turbo rotors and gas turbine rotors, have high flexural strength at high temperatures, excellent oxidation resistance, and It is required that there is little deterioration in strength from low to high temperatures.

【0005】このような窒化珪素質焼結体は、通常、窒
化珪素粉末に対して前述したような焼結助剤を添加した
混合物を所望の形状に成形し、窒素を含有する非酸化性
雰囲気中で常圧焼成、ホットプレス焼成、窒素ガス加圧
焼成、熱間静水圧焼成等の手法により緻密化が図られて
いる。これらの中でも窒素ガス加圧焼成、熱間静水圧焼
成は熱機関部品のように複雑形状品の高強度の焼結体を
得るに適した焼成法として多用されつつある。
[0005] Such a silicon nitride sintered body is usually produced by molding a mixture of silicon nitride powder with the above-mentioned sintering aid into a desired shape and placing it in a non-oxidizing atmosphere containing nitrogen. Among them, densification is achieved by methods such as normal pressure firing, hot press firing, nitrogen gas pressure firing, and hot isostatic pressure firing. Among these, nitrogen gas pressure firing and hot isostatic pressure firing are increasingly being used as firing methods suitable for obtaining high-strength sintered bodies of complex-shaped products such as heat engine parts.

【0006】また、窒化珪素は、その焼結性の点から用
いる原料粉末としてα型窒化珪素を多量に含むものほど
焼結性が高く、強度の高い焼結体が得られるとして90
%以上のα型窒化珪素を含有する原料が一般に用いられ
ている。
[0006] In addition, from the viewpoint of sintering properties of silicon nitride, it is said that the more α-type silicon nitride is contained in the raw material powder used, the higher the sinterability is, and the higher the strength, the higher the sintered body can be obtained.
% or more of α-type silicon nitride is generally used.

【0007】[0007]

【発明が解決しようとする問題点】これまで窒化珪素質
焼結体は、添加される焼結助剤や焼成条件に対してあら
ゆる検討がなされているが、これらのほとんどは室温お
よび高温での強度や耐酸化性の改良を目的として研究さ
れている。しかしながら、窒化珪素質焼結体はそれ自体
、高温で荷重が付加された状態で長時間保持した時に焼
結体が塑性変形を示すという特性(クリープ特性)があ
ることが知られており、特に熱機関構造用としては、こ
のようなクリープ特性において塑性変形の小さい材料が
要求されている。
[Problems to be solved by the invention] Until now, various studies have been made regarding the sintering aids added and firing conditions for silicon nitride sintered bodies, but most of these have been conducted at room and high temperatures. Research is being conducted to improve strength and oxidation resistance. However, it is known that silicon nitride sintered bodies themselves exhibit plastic deformation (creep characteristics) when held at high temperatures and under load for long periods of time. For heat engine structures, materials with such creep characteristics and low plastic deformation are required.

【0008】しかし、このクリープ特性については、あ
まり検討されておらず、その具体的な解決策もないのが
現状である。例えば、従来のようにα型窒化珪素を多量
に含む原料を用いて焼成すると、焼結過程においてα型
からβ型の窒化珪素へ転移するのに伴い窒化珪素粒子が
粒成長し粒径の大きい粒子が生じ、組織的に不均一にな
り、これによりクリープ特性が劣化し易くなるという問
題があった。
[0008] However, this creep property has not been studied much and there is currently no concrete solution to it. For example, when firing a raw material containing a large amount of α-type silicon nitride as in the past, the silicon nitride particles grow as the α-type transitions to β-type silicon nitride during the sintering process, resulting in a large particle size. There is a problem in that particles are generated and the structure becomes non-uniform, which tends to deteriorate creep characteristics.

【0009】[0009]

【問題点を解決するための手段】本発明者等は、このク
リープ特性について検討を加えた結果、焼結助剤として
Yb2 O3 、Er2 O3 を用い、これをβ型窒
化珪素を比較的多量に含有する窒化珪素粉末に添加混合
し、それを高圧の窒素ガス雰囲気中で焼成することによ
り高温における強度および耐酸化性に優れるとともに、
耐クリープ性に優れた焼結体が得られることを知見し、
本発明に到った。
[Means for Solving the Problems] As a result of studying this creep property, the present inventors used Yb2 O3 and Er2 O3 as sintering aids, and combined these with a relatively large amount of β-type silicon nitride. By adding it to the silicon nitride powder and firing it in a high-pressure nitrogen gas atmosphere, it has excellent strength and oxidation resistance at high temperatures.
It was discovered that a sintered body with excellent creep resistance could be obtained.
We have arrived at the present invention.

【0010】即ち、本発明の窒化珪素質焼結体の製法は
、β型窒化珪素を30%以上含有する窒化珪素粉末にY
b2 O3 および/またはEr2 O3 を添加混合
し、所定の形状に成形した後、窒素ガス圧力30〜10
0atmにて1800〜2100℃の非酸化性雰囲気中
で焼成することを特徴とするもので、さらにかかる焼結
体を500〜2000atmにて1500〜2000℃
で熱間静水圧焼成することを特徴とするものである。
That is, the method for producing a silicon nitride sintered body of the present invention involves adding Y to silicon nitride powder containing 30% or more of β-type silicon nitride.
After adding and mixing b2 O3 and/or Er2 O3 and molding into a predetermined shape, the nitrogen gas pressure is 30 to 10
It is characterized by firing in a non-oxidizing atmosphere at 1800 to 2100°C at 0 atm, and further firing the sintered body at 1500 to 2000°C at 500 to 2000 atm.
It is characterized by hot isostatic pressure firing.

【0011】窒化珪素は、その結晶構造から大きくα型
とβ型の2種に大別されるが、本発明の製法によれば、
用いる原料中の比率により高温でのクリープ特性が変化
するという見地から、窒化珪素原料粉末としてβ型の窒
化珪素を30%以上、特に40〜70%含有する原料を
用いることを大きな特徴とする。
[0011] Silicon nitride is roughly divided into two types, α-type and β-type, depending on its crystal structure, but according to the manufacturing method of the present invention,
From the viewpoint that the creep characteristics at high temperatures change depending on the ratio in the raw material used, a major feature is that a raw material containing 30% or more, particularly 40 to 70%, of β-type silicon nitride is used as the silicon nitride raw material powder.

【0012】この窒化珪素原料中のβ型窒化珪素量を上
記の範囲に設定したのは、その量が30%未満では、耐
クリープ特性、特に1400℃でのクリープ特性が大き
く劣化するからである。また窒化珪素粉末は、通常、酸
素を含有していることが知られているが、この酸素は焼
結性に寄与するものであり、その量が0.8〜1.5重
量%であることが望ましく、さらに平均粒径が0.3〜
0.6μm 程度のものが好適に使用される。
The reason why the amount of β-type silicon nitride in this silicon nitride raw material is set within the above range is that if the amount is less than 30%, the creep resistance, especially the creep property at 1400° C., will be significantly deteriorated. . Furthermore, it is known that silicon nitride powder usually contains oxygen, but this oxygen contributes to sinterability, and the amount of oxygen should be 0.8 to 1.5% by weight. It is desirable that the average particle size is 0.3~
A material having a diameter of about 0.6 μm is preferably used.

【0013】また、窒化珪素粉末に対して添加混合され
る焼結助剤としてはY2 O3 をはじめとする周期律
表第3a族元素酸化物の他にAl2 O3 等の各種の
ものが知られているが、本発明によれば、これらの中で
もYb2 O3 および/またはEr2O3 を必須成
分として添加する。これらの焼結助剤は窒化珪素粉末に
対して0.5〜3.5モル%の割合で添加されることが
望ましい。
[0013] In addition to oxides of Group 3a elements of the periodic table such as Y2O3, various kinds of sintering aids such as Al2O3 are known as sintering aids to be added and mixed with silicon nitride powder. However, according to the present invention, among these, Yb2O3 and/or Er2O3 are added as essential components. These sintering aids are desirably added in a proportion of 0.5 to 3.5 mol % based on the silicon nitride powder.

【0014】また、調合組成に関しては、上記窒化珪素
粉末およびYb2 O3 および/またはEr2 O3
 粉末の系に対して酸化珪素を添加混合することもでき
る。この酸化珪素は、窒化珪素原料粉末中の酸素量をS
iO2 換算した量も含め、1〜10モル%以下の割合
となるように添加することが望ましく、特にこのSiO
2 量と前記Yb2 O3 、Er2 O3 を含む周
期律表第3a族元素酸化物(RE2 O3 )量とのモ
ル比(SiO2 /RE2 O3 )が1〜2であるこ
とが好ましい。
[0014] Regarding the formulation composition, the above silicon nitride powder and Yb2 O3 and/or Er2 O3
Silicon oxide can also be added and mixed into the powder system. This silicon oxide reduces the amount of oxygen in the silicon nitride raw material powder by S
It is desirable to add it in a proportion of 1 to 10 mol%, including the amount converted to iO2.
It is preferable that the molar ratio (SiO2 /RE2 O3) between the amount of SiO2 and the amount of the oxide of Group 3a element of the periodic table (RE2 O3) containing Yb2 O3 and Er2 O3 is 1 to 2.

【0015】これらの原料粉末は、前述した所定の割合
で秤量混合された後に公知の成形手段、例えばプレス成
形、射出成形、押し出し成形、鋳込み成形、冷間静水圧
成形等の方法により所定の形状に成形後、焼成される。
[0015] These raw material powders are weighed and mixed in the predetermined proportions described above, and then shaped into a predetermined shape by known molding means such as press molding, injection molding, extrusion molding, cast molding, and cold isostatic pressing. After being shaped, it is fired.

【0016】次に、この成形体を窒素ガス圧力が30〜
100atm、特に30〜70atmの高圧力雰囲気下
でで焼成する。この焼成における窒素ガス圧力を上記の
範囲に限定したのは、圧力が30atm以下では高温強
度が向上せず、100atmを越えると試料に表面荒れ
が発生するからである。また、焼成温度は、本発明の原
料粉末がβ型窒化珪素を多量に含有していることに起因
し、1800℃より低い温度では緻密化するのが難しい
。一方、焼成温度が2100℃より高いと窒化珪素自体
の分解が生じ焼結体の表面が荒れ強度が劣化する。よっ
て、焼成温度は1800〜2100℃、特に1900〜
2000℃に設定される。
Next, this molded body is heated to a nitrogen gas pressure of 30 to
Firing is performed under a high pressure atmosphere of 100 atm, particularly 30 to 70 atm. The reason why the nitrogen gas pressure in this firing is limited to the above range is because if the pressure is less than 30 atm, the high temperature strength will not improve, and if it exceeds 100 atm, surface roughness will occur on the sample. Furthermore, since the raw material powder of the present invention contains a large amount of β-type silicon nitride, it is difficult to densify the firing temperature at a temperature lower than 1800°C. On the other hand, if the firing temperature is higher than 2100° C., silicon nitride itself will decompose and the surface of the sintered body will become rough and its strength will deteriorate. Therefore, the firing temperature is 1800-2100°C, especially 1900-2100°C.
The temperature is set at 2000°C.

【0017】かかる焼成によれば、対理論密度比95%
以上の高密度の焼結体を得ることができるが、本発明に
よれば、上記の焼成によって得られた焼結体をさらに窒
素ガス圧力500〜2000atmの高圧雰囲気下で1
500〜1900℃の温度で熱間静水圧焼成することに
より、より高密度化が達成されるとともに、強度、およ
び高温での耐クリープ特性をも向上することができる。
According to such firing, the theoretical density ratio is 95%.
According to the present invention, the sintered body obtained by the above sintering is further heated under a high pressure atmosphere of nitrogen gas pressure of 500 to 2000 atm.
By hot isostatic firing at a temperature of 500 to 1900° C., higher density can be achieved, and strength and creep resistance at high temperatures can also be improved.

【0018】さらに、場合によっては、上記の方法によ
り得られた焼結体を適宜1400〜1800℃の非酸化
性雰囲気中で処理することにより粒界の結晶化を図り高
温特性を改善することもできる。
Furthermore, in some cases, the sintered body obtained by the above method may be treated in a non-oxidizing atmosphere at 1400 to 1800°C to crystallize grain boundaries and improve high-temperature properties. can.

【0019】[0019]

【作用】クリープ特性は、焼結体の組織の均質性に大き
く影響される特性であり、特に組織内に粒成長により大
きな粒子が不均一に存在するとクリープ特性は大きく劣
化する。
[Operation] Creep characteristics are greatly affected by the homogeneity of the structure of the sintered body, and in particular, if large particles are unevenly present in the structure due to grain growth, the creep characteristics are greatly deteriorated.

【0020】本発明によれば、原料粉末としてβ型窒化
珪素を多量に含有する窒化珪素原料粉末を用いることに
より、焼成過程でα−β転移による粒成長が小さくなり
、窒化珪素粒子が均一にそろった組織が形成されるため
に、高温クリープ特性を大きく向上することができる。
According to the present invention, by using a silicon nitride raw material powder containing a large amount of β-type silicon nitride as a raw material powder, grain growth due to α-β transition is reduced during the firing process, and silicon nitride particles are uniformly formed. Since a uniform structure is formed, high temperature creep properties can be greatly improved.

【0021】また、焼結助剤として含有されるYb2 
O3 、Er2 O3 は、そのほとんどが焼結体中の
粒界に存在するが、これらの酸化物は一般的に用いられ
ているY2 O3 と比較して粒界の高温での粘性を高
めることができるために、窒化珪素粒子の滑りを抑制す
る作用を成しこれによっても高温クリープ特性を向上す
ることができる。
[0021] Furthermore, Yb2 contained as a sintering aid
Most of O3 and Er2 O3 exist at the grain boundaries in the sintered body, but these oxides can increase the viscosity of the grain boundaries at high temperatures compared to the commonly used Y2 O3. Because of this, it has the effect of suppressing the slippage of silicon nitride particles, which also improves high-temperature creep characteristics.

【0022】また、焼成時の窒素ガス圧力を30atm
以上とした理由は、N2 が窒化珪素粒界相に溶け込み
粒界相の高温での粘性を高めるため、それにより高温ク
リープ特性および高温強度の向上につながるためである
[0022] Also, the nitrogen gas pressure during firing was set to 30 atm.
The reason for the above is that N2 dissolves into the silicon nitride grain boundary phase and increases the viscosity of the grain boundary phase at high temperatures, thereby leading to improvements in high temperature creep properties and high temperature strength.

【0023】[0023]

【実施例】窒化珪素原料粉末として、α型、β型の窒化
珪素原料の含有量の異なる原料を用意した。これらの原
料はいずれも酸素含有量1.0〜1.2重量%であり、
平均粒径0.4〜0.6μm である。
[Example] As silicon nitride raw material powder, raw materials having different contents of α-type and β-type silicon nitride raw materials were prepared. All of these raw materials have an oxygen content of 1.0 to 1.2% by weight,
The average particle size is 0.4 to 0.6 μm.

【0024】この窒化珪素原料に対して平均粒径が0.
5〜0.6μm のYb2 O3 、Er2 O3 、
また比較のためにY2 O3 の粉末を表1、表2に示
す割合で秤量混合した。
[0024] The average particle size of this silicon nitride raw material is 0.
5-0.6μm Yb2O3, Er2O3,
For comparison, Y2O3 powder was weighed and mixed in the proportions shown in Tables 1 and 2.

【0025】この混合粉末に適宜バインダーを添加後、
1ton/cm2の圧力でプレス成形した。次にこの成
形体を表1、表2に示した焼成条件で焼成し各種の焼結
体を得た。
After adding a suitable binder to this mixed powder,
Press molding was performed at a pressure of 1 ton/cm2. Next, this molded body was fired under the firing conditions shown in Tables 1 and 2 to obtain various sintered bodies.

【0026】なお、表1、表2中、試料No,11、1
5、16、21に対して表3に示す条件でさらに熱間静
水圧焼成を行った。
[0026] In Tables 1 and 2, sample Nos. 11 and 1
No. 5, 16, and 21 were further subjected to hot isostatic firing under the conditions shown in Table 3.

【0027】[0027]

【表1】[Table 1]

【0028】[0028]

【表2】[Table 2]

【0029】[0029]

【表3】[Table 3]

【0030】得られた各焼結体に対して、JISR16
01に基づき、1400℃4点曲げ抗折強度、酸化性雰
囲気中に1400℃において24時間保持後の酸化重量
増を測定し、さらに1400℃で1Hr保持できる最大
の荷重を求めた。結果は、表4および表5に示した。
[0030] For each obtained sintered body, JISR16
01, the 4-point bending strength at 1400°C and the oxidized weight gain after being held at 1400°C for 24 hours in an oxidizing atmosphere were measured, and the maximum load that could be held at 1400°C for 1 hour was determined. The results are shown in Tables 4 and 5.

【0031】[0031]

【表4】[Table 4]

【0032】[0032]

【表5】[Table 5]

【0033】表1〜表5の結果によれば、原料中のβ−
Si3 N4 の含有量が30%よりも少ない試料No
,1では、室温強度、高温強度に関してはある程度高い
値を示したが、クリープ特性が特性上低いものである。 また、焼成時の圧力が30atmより低い試料No,3
および焼成温度が2100℃より高い試料No,4では
、いずれも焼結体の表面に窒化珪素の分解によると思わ
れる表面荒れが生じた。また、焼成温度が1750℃で
は焼結することができず、圧力が200atmと高い試
料No,14でも焼結体の表面に荒れが生じた。
According to the results in Tables 1 to 5, β-
Sample No. with Si3N4 content less than 30%
, 1 exhibited somewhat high values for room temperature strength and high temperature strength, but the creep properties were characteristically low. In addition, sample No. 3 where the pressure during firing was lower than 30 atm
In both samples No. 4 in which the firing temperature was higher than 2100° C., surface roughness appeared on the surface of the sintered body, which was thought to be due to decomposition of silicon nitride. In addition, sintering could not be performed at a firing temperature of 1750° C., and roughness occurred on the surface of the sintered body even in sample No. 14 where the pressure was as high as 200 atm.

【0034】なお、焼結助剤としてY2 O3 を用い
た試料No,20では、β−Si3 N4 を含有する
原料を用いても、焼結体表面にシミが観察され、特性的
にも低いものであった。
In addition, in sample No. 20 in which Y2 O3 was used as a sintering aid, stains were observed on the surface of the sintered body even if a raw material containing β-Si3 N4 was used, and the characteristics were also poor. Met.

【0035】これに対して高β−Si3 N4 含有の
原料を用いて所定の高温高圧下で焼成した本発明の試料
は、いずれも室温強度、高温強度および高温クリープ特
性のいずれにおいても優れた特性を有してした。さらに
、焼結体を熱間静水圧焼成することにより特性を向上す
ることができた。
In contrast, the samples of the present invention, which were fired at a predetermined high temperature and high pressure using raw materials containing high β-Si3N4, had excellent properties in terms of room temperature strength, high temperature strength, and high temperature creep properties. I had a Furthermore, the properties could be improved by subjecting the sintered body to hot isostatic pressure firing.

【0036】[0036]

【発明の効果】以上詳述した通り、本発明の窒化珪素質
焼結体の製法によれば、高β型窒化珪素含有の窒化珪素
粉末に対して特定の焼結助剤を添加し、これを高圧下で
焼成することにより、高温強度、高温耐酸化性に優れる
とともに高温での耐クリープ特性に優れた焼結体を得る
ことができる。これにより、ガスタービン等の熱機関材
料としてその作動温度が1400℃を越える使用条件下
でも優れた耐久性を発揮され、より実用化を促進するこ
とができる。
Effects of the Invention As detailed above, according to the method for producing a silicon nitride sintered body of the present invention, a specific sintering aid is added to silicon nitride powder containing high β-type silicon nitride. By firing under high pressure, it is possible to obtain a sintered body that has excellent high-temperature strength and high-temperature oxidation resistance, as well as excellent creep resistance at high temperatures. As a result, it exhibits excellent durability as a material for heat engines such as gas turbines even under conditions of use where the operating temperature exceeds 1400° C., thereby further promoting its practical use.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】β型窒化珪素を30%以上含有する窒化珪
素粉末にYb2 O3 および/またはEr2 O3 
を添加混合し、所定の形状に成形した後、窒素ガス圧力
30〜100atmにて1800〜2100℃の非酸化
性雰囲気中で焼成することを特徴とする窒化珪素質焼結
体の製法。
Claim 1: Yb2 O3 and/or Er2 O3 in silicon nitride powder containing 30% or more of β-type silicon nitride.
A method for producing a silicon nitride sintered body, which comprises adding and mixing the following, forming into a predetermined shape, and then firing in a non-oxidizing atmosphere at a temperature of 1800 to 2100° C. under a nitrogen gas pressure of 30 to 100 atm.
【請求項2】β型窒化珪素を30%以上含有する窒化珪
素粉末に周期律表第3a族元素酸化物を添加混合し、所
定の形状に成形した後、窒素ガス圧力30〜100at
mにて1800〜2100℃の非酸化性雰囲気中で焼成
し、その後500〜2000atmにて1500〜20
00℃で熱間静水圧焼成することを特徴とする窒化珪素
質焼結体の製法。
2. Silicon nitride powder containing 30% or more of β-type silicon nitride is mixed with an oxide of a Group 3a element of the periodic table, and after being molded into a predetermined shape, the mixture is heated to a nitrogen gas pressure of 30 to 100 at.
m in a non-oxidizing atmosphere at 1800-2100°C, and then fired at 500-2000 atm at 1500-20°C.
A method for producing a silicon nitride sintered body characterized by hot isostatic firing at 00°C.
JP2410991A 1990-12-14 1990-12-14 Manufacturing method of silicon nitride sintered body Expired - Fee Related JP2710865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2410991A JP2710865B2 (en) 1990-12-14 1990-12-14 Manufacturing method of silicon nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2410991A JP2710865B2 (en) 1990-12-14 1990-12-14 Manufacturing method of silicon nitride sintered body

Publications (2)

Publication Number Publication Date
JPH04219373A true JPH04219373A (en) 1992-08-10
JP2710865B2 JP2710865B2 (en) 1998-02-10

Family

ID=18520067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2410991A Expired - Fee Related JP2710865B2 (en) 1990-12-14 1990-12-14 Manufacturing method of silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JP2710865B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102795859A (en) * 2012-08-17 2012-11-28 湖北红花高温材料有限公司 SiC-Si3N4 high temperature ceramic furnace bottom plate for annular furnace and preparation method thereof
CN114988882A (en) * 2022-07-11 2022-09-02 中材高新氮化物陶瓷有限公司 Silicon nitride high-temperature ceramic part with complex shape and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102795859A (en) * 2012-08-17 2012-11-28 湖北红花高温材料有限公司 SiC-Si3N4 high temperature ceramic furnace bottom plate for annular furnace and preparation method thereof
CN114988882A (en) * 2022-07-11 2022-09-02 中材高新氮化物陶瓷有限公司 Silicon nitride high-temperature ceramic part with complex shape and preparation method thereof

Also Published As

Publication number Publication date
JP2710865B2 (en) 1998-02-10

Similar Documents

Publication Publication Date Title
JP3091085B2 (en) Rare earth silicate based sintered body and method for producing the same
JPH04219373A (en) Production of silicon nitride-based sintered compact
JP3273099B2 (en) Rare earth composite oxide-based sintered body and method for producing the same
JP2737323B2 (en) Method for producing silicon nitride based sintered body
JP2631115B2 (en) Manufacturing method of silicon nitride sintered body
JP2687632B2 (en) Method for producing silicon nitride sintered body
JP2742619B2 (en) Silicon nitride sintered body
JP3007732B2 (en) Silicon nitride-mixed oxide sintered body and method for producing the same
JPH078746B2 (en) Silicon nitride ceramics and method for producing the same
JP2631102B2 (en) Method for producing silicon nitride based sintered body
JP2658944B2 (en) Silicon nitride-titanium nitride composite ceramics and method for producing the same
JP2960591B2 (en) Silicon carbide-silicon nitride-mixed oxide-based sintered body and method for producing the same
JP2534213B2 (en) Method for producing silicon nitride based sintered body
JP2946593B2 (en) Silicon nitride sintered body and method for producing the same
JPH04238868A (en) Production of silicon nitride-silicon carbide compounded sintered material
JP3176203B2 (en) Method for producing silicon nitride based sintered body
JPH04243972A (en) Sintered substance of silicon nitride
JP2801447B2 (en) Method for producing silicon nitride based sintered body
JPS63195170A (en) Manufacture of silicon nitride sintered body
JP2892244B2 (en) Manufacturing method of silicon nitride sintered body
Gazza et al. Factors influencing the quality of fully dense silicon nitride
JP2694368B2 (en) Method for producing silicon nitride based sintered body
JPH05238829A (en) Sintered silicone nitride ceramic
JPH0248468A (en) Calcined siliceous nitride compact and production thereof
JPS62207769A (en) Manufacture of silicon nitride sintered body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees