JP3273099B2 - Rare earth composite oxide-based sintered body and method for producing the same - Google Patents

Rare earth composite oxide-based sintered body and method for producing the same

Info

Publication number
JP3273099B2
JP3273099B2 JP16917194A JP16917194A JP3273099B2 JP 3273099 B2 JP3273099 B2 JP 3273099B2 JP 16917194 A JP16917194 A JP 16917194A JP 16917194 A JP16917194 A JP 16917194A JP 3273099 B2 JP3273099 B2 JP 3273099B2
Authority
JP
Japan
Prior art keywords
composite oxide
sintered body
periodic table
group
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16917194A
Other languages
Japanese (ja)
Other versions
JPH0826815A (en
Inventor
雨叢 王
祥二 高坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP16917194A priority Critical patent/JP3273099B2/en
Publication of JPH0826815A publication Critical patent/JPH0826815A/en
Application granted granted Critical
Publication of JP3273099B2 publication Critical patent/JP3273099B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は航空宇宙産業や金属産
業、化学産業用をはじめ、発電用や自動車用セラミック
ガスタービン等に至る耐熱構造部材として、好適な高温
強度と優れた高温安定性及び耐酸化性を有する希土類複
合酸化物系焼結体及びその製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION The present invention is applicable to a heat-resistant structural member such as aerospace industry, metal industry, chemical industry, power generation, ceramic gas turbine for automobiles, etc. The present invention relates to a rare earth composite oxide-based sintered body having oxidation resistance and a method for producing the same.

【0002】[0002]

【従来の技術】従来から、耐熱構造部材として、ニッケ
ル(Ni)・コバルト(Co)系合金等の各種耐熱合金
が用いられてきたが、使用環境がますます厳しくなり前
記耐熱合金ではその要求を満足することができなくなっ
ていた。
2. Description of the Related Art Conventionally, various heat-resistant alloys such as nickel (Ni) / cobalt (Co) -based alloys have been used as heat-resistant structural members. I was no longer satisfied.

【0003】そこで、従来の金属材料よりはるかに熱膨
張係数が小さく、機械的強度や耐熱性、耐摩耗性に優
れ、かつ比重が小さく製品の軽量小型化が可能なセラミ
ックスが注目されるようになり、アルミナ(Al23
やジルコニア(ZrO2)、マグネシア(MgO)等の
酸化物系セラミックスをはじめ、炭化珪素(SiC)や
窒化珪素(Si34)等の炭化物系や窒化物系、あるい
は硼化物系等の非酸化物系セラミックスが検討されてき
た。
[0003] Therefore, ceramics that have a much lower coefficient of thermal expansion than conventional metal materials, have excellent mechanical strength, heat resistance, and wear resistance, and have a small specific gravity and are capable of reducing the size and weight of products have been attracting attention. Alumina (Al 2 O 3 )
And zirconia (ZrO 2), magnesia (MgO) including oxide-based ceramics such as silicon carbide (SiC) and silicon nitride (Si 3 N 4) carbide and nitride of the like, or boride-based, etc. Non of Oxide-based ceramics have been studied.

【0004】その結果、前記酸化物系セラミックスや非
酸化物系セラミックスは、従来の他の材料に比べてはる
かに高温での機械的強度と耐酸化性が良好なため、該セ
ラミック焼結体を前記各種耐熱構造部材として利用する
ことが種々研究され提案されるようになってきた(特開
平6−157126号公報参照)。
As a result, the oxide ceramics and the non-oxide ceramics have much higher mechanical strength and oxidation resistance at a much higher temperature than other conventional materials. Utilization as the above-mentioned various heat-resistant structural members has been variously studied and proposed (see JP-A-6-157126).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前記セ
ラミック焼結体を耐熱構造部材として使用した場合、酸
化物系セラミック焼結体は、とりわけ酸化性雰囲気中で
は室温で安定した機械的特性を有するものであるが、高
温では転位の運動が発生し易いことから、軟化して塑性
変形し、一般的に900℃付近の温度で機械的強度が急
激に低下するため、例えば断熱材等のように応力がさほ
ど加わらない部材としてならば実用可能ではあるもの
の、高温に曝され応力が作用する条件下では構造部材と
しては使用できず、信頼性に欠けるという課題があっ
た。
However, when the ceramic sintered body is used as a heat-resistant structural member, the oxide ceramic sintered body has stable mechanical properties at room temperature especially in an oxidizing atmosphere. However, at high temperatures, dislocation motion is likely to occur, so the material softens and plastically deforms, and the mechanical strength generally drops sharply at a temperature around 900 ° C. Although it can be used practically as a member that does not add much, it cannot be used as a structural member under conditions where it is exposed to a high temperature and a stress acts, and there is a problem that reliability is lacking.

【0006】一方、前記炭化物系や窒化物系、あるいは
硼化物系等の非酸化物系セラミック焼結体は、高温でも
優れた機械的特性を有する材料だが、雰囲気との相互作
用により酸化、もしくは分解が起こるため、常温からの
機械的強度の劣化が大きく、これまで、添加助剤の種類
や添加量および焼結条件を調整することが種々検討さ
れ、いくらか材料特性の向上は見られたものの、まだま
だ不十分であり、高温用の耐熱構造部材としては、常温
との機械的強度の劣化が小さいという特性を満足するこ
とが引き続き要求されている。
On the other hand, non-oxide ceramic sintered bodies such as carbide, nitride and boride are materials having excellent mechanical properties even at high temperatures, but are oxidized or Since decomposition occurs, the mechanical strength is significantly deteriorated from room temperature, and until now, various studies have been made on adjusting the type and amount of the additive aid and the sintering conditions, and although some improvement in material properties was observed, However, the heat-resistant structural member for high temperature is still required to satisfy the characteristic that the mechanical strength is not deteriorated at room temperature.

【0007】[0007]

【発明の目的】本発明は前記課題に鑑み成されたもの
で、その目的は、高温での耐酸化性に優れ、その上、室
温から1400℃の高温まで機械的強度の劣化が従来の
セラミック焼結体よりはるかに小さい希土類複合酸化物
系焼結体及びその製造方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a conventional ceramic which is excellent in oxidation resistance at a high temperature and has a mechanical strength which is deteriorated from room temperature to a high temperature of 1400 ° C. An object of the present invention is to provide a rare earth composite oxide-based sintered body much smaller than a sintered body and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】本発明者等は、高温で長
期間使用しても酸化や分解が起こらず、耐酸化性に優れ
た酸化物を、900℃を越える温度でも機械的強度を劣
化させないためには、高温での塑性変形抵抗を増すこと
が、高温でも高い機械的強度を維持する可能性があると
いう見地に基づき検討を重ねた結果、酸化物の中でも結
晶の対称性が低い周期律表第3a族元素(RE)のダイ
シリケート(RE2Si27)とモノシリケート(RE2
SiO5)が有望であることを見い出した。
Means for Solving the Problems The present inventors have developed an oxide having excellent oxidation resistance which does not undergo oxidation or decomposition even when used for a long time at a high temperature, and has a mechanical strength even at a temperature exceeding 900 ° C. As a result of repeated studies based on the view that increasing plastic deformation resistance at high temperatures may maintain high mechanical strength even at high temperatures in order to prevent deterioration, the crystal symmetry is low even among oxides Disilicate (RE 2 Si 2 O 7 ) and monosilicate (RE 2 ) of Group 3a element (RE) of the periodic table
SiO 5 ) has been found to be promising.

【0009】更に、前記ダイシリケート(RE2Si2
7)及び/又はモノシリケート(RE2SiO5)から成
る結晶と、周期律表第3a族元素(RE)とAl、C
r、Hf、Nb、Zr、Ti、V及びTaのいずれか1
種より成る複合酸化物(RExyz、但しx、y、z
は0を含まず、MはAl、Cr、Hf、Nb、Zr、T
i、V及びTaのいずれか1種)である高融点物質とか
ら成ることにより、結晶の塑性変形を更に抑制した希土
類複合酸化物は、室温から1400℃の高温まで優れた
機械的特性を示すことが明らかとなった。
Further, the above-mentioned disilicate (RE 2 Si 2 O)
7 ) and / or a crystal composed of monosilicate (RE 2 SiO 5 ), a group 3a element (RE) of the periodic table and Al, C
any one of r, Hf, Nb, Zr, Ti, V and Ta
Composite oxide consisting of seeds (RE x M y O z, where x, y, z
Does not include 0, and M is Al, Cr, Hf, Nb, Zr, T
i, V and Ta), the rare-earth composite oxide which further suppresses plastic deformation of the crystal by exhibiting high mechanical properties from room temperature to a high temperature of 1400 ° C. It became clear.

【0010】即ち、本発明の希土類複合酸化物系焼結体
は、周期律表第3a族元素(RE)を含有するダイシリ
ケート(RE2Si27)及び/又はモノシリケート
(RE2SiO5)と、総量が酸化物換算で5〜80mo
l%である周期律表第3a族元素(RE)とAl、C
r、Hf、Nb、Zr、Ti、V及びTaのいずれか1
種より成る複合酸化物(RExyz、但しx、y、z
は0を含まず、MはAl、Cr、Hf、Nb、Zr、T
i、V及びTaのいずれか1種)の1種以上とから成る
ことを特徴とするものである。
That is, the rare earth composite oxide-based sintered body of the present invention comprises a disilicate (RE 2 Si 2 O 7 ) and / or a monosilicate (RE 2 SiO) containing a Group 3a element (RE) of the periodic table. 5 ) and the total amount is 5 to 80 mo in terms of oxide
Group 3a element (RE) in the periodic table of 1% and Al, C
any one of r, Hf, Nb, Zr, Ti, V and Ta
Composite oxide consisting of seeds (RE x M y O z, where x, y, z
Does not include 0, and M is Al, Cr, Hf, Nb, Zr, T
i, V, and Ta).

【0011】また、係る希土類複合酸化物系焼結体の製
造方法は、ダイシリケート(RE2Si27)及び/又
はモノシリケート(RE2SiO5)に対して、周期律表
第3a族元素(RE)とAl、Cr、Hf、Nb、Z
r、Ti、V及びTaのいずれか1種より成る複合酸化
物(RExyz、但しx、y、zは0を含まず、Mは
Al、Cr、Hf、Nb、Zr、Ti、V及びTaのい
ずれか1種)の総量が5〜80mol%となるように、
周期律表第3a族元素の酸化物(RE23)と二酸化珪
素(SiO2)及びAl、Cr、Hf、Nb、Zr、T
i、V及びTaの酸化物の1種以上から成る粉体を混合
した後、該混合粉を成形して得られた成形体を焼成する
か、あるいは周期律表第3a族元素(RE)を含有する
ダイシリケート(RE2Si27)及び/又はモノシリ
ケート(RE2SiO5)と、周期律表第3a族元素(R
E)及びAl、Cr、Hf、Nb、Zr、Ti、V及び
Taのいずれか1種より成る複合酸化物(REx
yz、但しx、y、zは0を含まず、MはAl、Cr、
Hf、Nb、Zr、Ti、V及びTaのいずれか1種)
の1種以上とをそれぞれ仮焼して粉砕混合した後、該粉
砕混合粉を成形して得られた成形体を焼成することを特
徴とするものである。
In addition, the method for producing such a rare earth composite oxide-based sintered body is based on the group 3a of the periodic table of disilicate (RE 2 Si 2 O 7 ) and / or monosilicate (RE 2 SiO 5 ). Element (RE) and Al, Cr, Hf, Nb, Z
r, excluding Ti, composite oxide consisting of any one of V and Ta (RE x M y O z , where x, y, z is a 0, M is Al, Cr, Hf, Nb, Zr, Ti , V and Ta) so that the total amount is 5 to 80 mol%,
Oxide (RE 2 O 3 ) of Group 3a element of the periodic table, silicon dioxide (SiO 2 ), Al, Cr, Hf, Nb, Zr, T
After mixing a powder comprising at least one of oxides of i, V and Ta, a compact obtained by molding the mixed powder is fired, or a Group 3a element (RE) of the periodic table is removed. Containing disilicate (RE 2 Si 2 O 7 ) and / or monosilicate (RE 2 SiO 5 ) and a group 3a element of the periodic table (R
E) and a composite oxide (RE x M) composed of any one of Al, Cr, Hf, Nb, Zr, Ti, V and Ta
y O z , where x, y, and z do not include 0, and M is Al, Cr,
Any one of Hf, Nb, Zr, Ti, V and Ta)
Is calcined, pulverized and mixed, and then a molded body obtained by molding the pulverized mixed powder is calcined.

【0012】とりわけ前記製造方法で得た希土類複合酸
化物系焼結体を、1000℃以上それらの焼成温度以下
の温度で熱処理して過飽和の固溶原子を析出させること
が望ましいものである。
In particular, it is desirable that the rare earth composite oxide-based sintered body obtained by the above-mentioned manufacturing method is heat-treated at a temperature of 1000 ° C. or more and a firing temperature thereof or less to precipitate supersaturated solid solution atoms.

【0013】[0013]

【作用】本発明の希土類複合酸化物系焼結体及びその製
造方法によれば、周期律表第3a族元素(RE)を含有
するダイシリケート(RE2Si27)及び/又はモノ
シリケート(RE2SiO5)は、主として単斜結晶構造
を有し、結晶構造の対称性が低いために塑性変形し難
く、1400℃程度の高温でも機械的強度の低下は小さ
くなる。
According to the rare earth composite oxide-based sintered body of the present invention and the method for producing the same, disilicate (RE 2 Si 2 O 7 ) and / or monosilicate containing a Group 3a element (RE) of the periodic table (RE 2 SiO 5 ) mainly has a monoclinic crystal structure and is less likely to be plastically deformed due to the low symmetry of the crystal structure, and the decrease in mechanical strength is small even at a high temperature of about 1400 ° C.

【0014】更に、周期律表第3a族元素(RE)とA
l、Cr、Hf、Nb、Zr、Ti、V及びTaのいず
れか1種より成る複合酸化物(RExyz)は融点が
高く、高温で安定であり、それらと前記ダイシリケート
(RE2Si27)及び/又はモノシリケート(RE2
iO5)とから成る本発明の希土類複合酸化物系焼結体
は、転位の運動による塑性変形が抑制され、900℃を
越える高温での機械的強度が著しく改善され、とりわけ
1400℃程度の高温下での機械的強度の劣化がより小
さくなり、劣化防止の効果はより一層顕著となる。
Further, an element (RE) belonging to Group 3a of the periodic table and A
l, Cr, Hf, Nb, Zr, Ti, composite oxide consisting of any one of V and Ta (RE x M y O z ) has a high melting point, is stable at high temperatures, they and the disilicate ( RE 2 Si 2 O 7 ) and / or monosilicate (RE 2 S)
In the rare-earth composite oxide-based sintered body of the present invention comprising iO 5 ), plastic deformation due to dislocation movement is suppressed, and mechanical strength at a high temperature exceeding 900 ° C. is remarkably improved. The deterioration of the mechanical strength below becomes smaller, and the effect of preventing the deterioration becomes more remarkable.

【0015】また、耐酸化性もアルミナ(Al23)、
ジルコニア(ZrO2)、マグネシア(MgO)等の酸
化物系セラミックスと同等となる。
Also, the oxidation resistance is alumina (Al 2 O 3 ),
This is equivalent to oxide ceramics such as zirconia (ZrO 2 ) and magnesia (MgO).

【0016】[0016]

【実施例】以下、本発明の希土類複合酸化物系焼結体及
びその製造方法を実施例に基づき詳述する。
EXAMPLES The rare earth composite oxide-based sintered body of the present invention and a method for producing the same will now be described in detail with reference to examples.

【0017】本発明の希土類複合酸化物系焼結体は、周
期律表第3a族元素(RE)を含有するダイシリケート
(RE2Si27)及び/又はモノシリケート(RE2
iO5)と、総量が酸化物換算で5〜80mol%であ
る周期律表第3a族元素(RE)とAl、Cr、Hf、
Nb、Zr、Ti、V及びTaのいずれか1種より成る
複合酸化物(RExyz)の1種以上とから成るもの
であって、ダイシリケート(RE2Si27)の結晶構
造は三斜、単斜、斜方のα、β、γ、δ、y型のいずれ
でも良いが、とりわけ高温安定相であるβ、γ、δ相が
好ましい。
The rare earth complex oxide sintered body of the present invention is a disilicate (RE 2 Si 2 O 7 ) and / or monosilicate (RE 2 S) containing a Group 3a element (RE) of the periodic table.
iO 5 ), a group 3a element (RE) of the periodic table having a total amount of 5 to 80 mol% in terms of oxide, Al, Cr, Hf,
Nb, Zr, Ti, and consisted of a 1 or more composite oxides made of any one of V and Ta (RE x M y O z ), disilicate of (RE 2 Si 2 O 7) The crystal structure may be any of triclinic, monoclinic, and oblique α, β, γ, δ, and y forms, but the β, γ, and δ phases, which are high-temperature stable phases, are particularly preferred.

【0018】また、前記周期律表第3a族元素(RE)
及びAl、Cr、Hf、Nb、Zr、Ti、V及びTa
のいずれか1種より成る複合酸化物(RExyz
は、1700℃以上の融点を有し、高温で安定な化合物
であるため、高温まで機械的強度を劣化させないものと
して好適であるが、とりわけMはAl、Cr、Hf及び
Zrのいずれかが最も望ましい。
Further, the element (RE) of Group 3a of the periodic table
And Al, Cr, Hf, Nb, Zr, Ti, V and Ta
Composite oxide consisting of any one of (RE x M y O z)
Is a compound that has a melting point of 1700 ° C. or higher and is stable at high temperatures, and thus is suitable as a material that does not deteriorate mechanical strength up to high temperatures. In particular, M is most preferably any one of Al, Cr, Hf, and Zr. desirable.

【0019】従って、前記複合酸化物の総量が、ダイシ
リケート(RE2Si27)あるいはモノシリケート
(RE2SiO5)の優れた特性が得られ、複合強化の効
果が充分であり、高温強度の改善効果を得るため、5〜
80mol%が重要である。
Therefore, the total amount of the composite oxide is excellent in the properties of disilicate (RE 2 Si 2 O 7 ) or monosilicate (RE 2 SiO 5 ), and the effect of strengthening the composite is sufficient, 5 to improve strength
80 mol% is important.

【0020】尚、本発明に用いられる周期律表第3a族
元素(RE)としては、Sc、Y及びランタノイド元素
が挙げられるが、特にSc、Y及びDy、Er、Ho、
Yb、Luなどの重希土類元素は、イオン半径が小さい
ために形成するシリケートと複合酸化物結晶の結合強度
が強く、従って高温での機械的特性に優れることから、
より好ましい。
The Group 3a element (RE) of the Periodic Table used in the present invention includes Sc, Y and lanthanoid elements, and particularly Sc, Y and Dy, Er, Ho,
Heavy rare earth elements such as Yb and Lu have a small ionic radius, so that the bond strength between the silicate formed and the composite oxide crystal is strong, and therefore, the mechanical properties at high temperatures are excellent.
More preferred.

【0021】次に、本発明の希土類複合酸化物系焼結体
の製造方法について説明する。本発明によれば、出発原
料として主として周期律表第3a族元素である希土類元
素の酸化物(RE23)と二酸化珪素(SiO2)及び
Al、Cr、Hf、Nb、Zr、Ti、V及びTaのい
ずれかの酸化物の各粉末を用いる。
Next, a method for producing the rare earth composite oxide-based sintered body of the present invention will be described. According to the present invention, as starting materials, oxides (RE 2 O 3 ) and silicon dioxide (SiO 2 ) of rare earth elements, which are Group 3a elements of the periodic table, and Al, Cr, Hf, Nb, Zr, Ti, Each powder of an oxide of either V or Ta is used.

【0022】尚、前記出発原料としては、金属元素粉末
を所定の比率に混合後、酸素雰囲気で酸化処理すること
もでき、それら原料粉末の粒子径は0.3〜2.0μm
が適当である。
The starting material may be mixed with a metal element powder at a predetermined ratio and then oxidized in an oxygen atmosphere. The particle diameter of the material powder is 0.3 to 2.0 μm.
Is appropriate.

【0023】また、前記原料粉末を用いて製造した希土
類複合酸化物系焼結体は、周期律表第3a族元素のダイ
シリケート(RE2Si27)やモノシリケート(RE2
SiO5)に換算した量に対して、周期律表第3a族元
素(RE)とAl、Cr、Hf、Nb、Zr、Ti、V
及びTaより成る複合酸化物(RExyz)に換算し
た総量は、前述のように5〜80mol%であることが
重要である。
Further, the rare earth complex oxide-based sintered body produced using the raw material powder is a disilicate (RE 2 Si 2 O 7 ) or a monosilicate (RE 2
SiO 5 ), Al, Cr, Hf, Nb, Zr, Ti, V
And the total amount in terms of the composite oxide (RE x M y O z) made of Ta, it is important to be 5~80Mol% as described above.

【0024】上記割合となるように混合した原料粉末を
所望の成形手段、例えば、金型プレス、鋳込み成形、押
し出し成形、射出成形、冷間静水圧プレス等により任意
の形状に成形する。
The raw material powder mixed in the above ratio is formed into an arbitrary shape by a desired molding means, for example, a die press, a casting molding, an extrusion molding, an injection molding, a cold isostatic pressing and the like.

【0025】次に、この成形体を公知の焼結法、例え
ば、ホットプレス法、常圧焼成法、窒素ガス加圧焼成
法、更にはこれらの焼成後に熱間静水圧処理(HIP)
を施したり、ガラスシール後、熱間静水圧処理(HI
P)を施したりして、対理論密度比95%以上の緻密な
焼結体を得る。
Next, the compact is sintered by a known sintering method, for example, a hot pressing method, a normal pressure sintering method, a nitrogen gas pressurizing sintering method, and a hot isostatic pressure treatment (HIP) after these sintering.
Or after glass sealing, hot isostatic pressure treatment (HI
P) to obtain a dense sintered body having a theoretical density ratio of 95% or more.

【0026】また、焼成温度は機械的強度が高く、緻密
な焼結体を得るためには、1100〜1850℃の温度
で、特に1300〜1750℃の温度で焼成することが
望ましい。
The firing temperature is preferably high at 1100 to 1850 ° C., particularly 1300 to 1750 ° C., in order to obtain a dense sintered body with high mechanical strength.

【0027】一方、周期律表第3a族元素(RE)を含
有するダイシリケート(RE2Si27)及び/又はモ
ノシリケート(RE2SiO5)の1種以上と、周期律表
第3a族元素(RE)及びAl、Cr、Hf、Nb、Z
r、Ti、V及びTaのいずれか1種より成る複合酸化
物(RExyz)の1種以上をそれぞれ仮焼して粉砕
混合した後、該粉砕混合粉を前記同様にして成形して得
られた成形体を、1100〜1850℃の温度で焼成し
て希土類複合酸化物系焼結体を製造することも可能であ
る。
On the other hand, at least one of a disilicate (RE 2 Si 2 O 7 ) and / or a monosilicate (RE 2 SiO 5 ) containing a Group 3a element (RE) of the periodic table and the periodic table 3a Group element (RE) and Al, Cr, Hf, Nb, Z
r, Ti, was crushed and mixed with one or more calcined respective composite oxide consisting of any one of V and Ta (RE x M y O z ), molding the pulverized mixture powder in the same manner the It is also possible to produce a rare earth composite oxide-based sintered body by firing the molded body obtained at a temperature of 1100 to 1850 ° C.

【0028】尚、前記仮焼により得られた複合酸化物
(RExyz)は、一般に該複合酸化物を構成する原
料酸化物粉末より安定で、反応性が低いため、焼成時の
異常粒成長や、ガラス相の生成を抑制し、材料の高温強
度特性が一層向上する。
[0028] Incidentally, the calcined by the resulting composite oxide (RE x M y O z) generally the composite oxide more stable than the raw material oxide powder constituting the, due to low reactivity, at the time of firing Abnormal grain growth and generation of a glass phase are suppressed, and the high-temperature strength characteristics of the material are further improved.

【0029】更に、周期律表第3a族元素(RE)を含
有するダイシリケート(RE2Si27)やモノシリケ
ート(RE2SiO5)中のSiを、Al、Cr、Hf、
Nb、Zr、Ti、V及びTaのいずれか1種で一定量
置換することにより、固溶体型の複合酸化物が形成され
る。
Further, Si in a disilicate (RE 2 Si 2 O 7 ) or monosilicate (RE 2 SiO 5 ) containing a Group 3a element (RE) of the periodic table is converted to Al, Cr, Hf,
By substituting a certain amount of any one of Nb, Zr, Ti, V and Ta, a solid solution type composite oxide is formed.

【0030】即ち、前記製造方法により得られた希土類
複合酸化物系焼結体を、その焼成温度以下、1000℃
以上の温度域で熱処理し、過飽和に固溶した原子をダイ
シリケート(RE2Si27)やモノシリケート(RE2
SiO5)の結晶粒内や結晶粒界に複合酸化物(REx
yz)の形で微細に析出させることができ、該析出処理
により、ナノコンポジットが形成され、材料の高温強度
が向上するのみならず、破壊靱性の向上も実現可能とな
る。
That is, the rare-earth composite oxide-based sintered body obtained by the above-mentioned manufacturing method is heated to a temperature of 1000 ° C. or lower at a firing temperature or lower.
The heat treatment is performed in the above temperature range, and the atoms dissolved in supersaturation are converted into disilicate (RE 2 Si 2 O 7 ) or monosilicate (RE 2
In a crystal grain of SiO 5 ) or in a crystal grain boundary, a composite oxide (RE x M
y O z ), and the precipitation process forms a nanocomposite, which not only improves the high-temperature strength of the material but also improves the fracture toughness.

【0031】前記析出処理、即ち熱処理は、1000℃
より低い温度では、原子の拡散速度の点から析出処理に
長時間を要するため実用的でなく、一方、焼成温度以上
で処理すると結晶粒の粒成長が起こり、材料の特性が低
下することから、熱処理温度は1000℃以上、焼成温
度以下であることが重要である。
The above-mentioned precipitation treatment, that is, heat treatment is performed at 1000 ° C.
At lower temperatures, the precipitation process takes a long time in terms of the diffusion rate of atoms, which is not practical.On the other hand, if the treatment is performed at a temperature higher than the firing temperature, crystal grains will grow and the properties of the material will decrease, It is important that the heat treatment temperature is not lower than 1000 ° C. and not higher than the firing temperature.

【0032】以上のような製造方法により、均質で微粒
かつ緻密な希土類複合酸化物系焼結体が得られる。
By the above manufacturing method, a homogeneous, fine-grained and dense rare earth composite oxide-based sintered body can be obtained.

【0033】本発明の希土類複合酸化物系焼結体及びそ
の製造方法を評価するために、原料粉末として希土類酸
化物(RE23)とSiO2及びAl23、Cr23
HfO2、Nb25、ZrO2、TiO2、V25、Ta2
5を用いて所定の組成比となるように調合した各酸化
物の粉末を、先ず1t/cm2の圧力でプレス成形し、
大気中焼成の試料には更に3t/cm2の圧力で静水圧
処理をして成形体を作製するとともに、併せて前記各酸
化物を表3及び表4に示す組成比となるように調合して
1300℃の温度で1時間仮焼し、粉砕した複合酸化物
を用いて前記同様にして成形体を作製することも併せて
実施した。次に、前記成形体を表1及び表2に示すよう
に、大気中で常圧焼成する場合には各焼成温度に5時間
保持して、またホットプレス焼成する場合には常圧の窒
素(N2)雰囲気中、0.3t/cm2の圧力で各焼成温
度に1時間保持して焼成した。
In order to evaluate the rare-earth composite oxide-based sintered body of the present invention and the method for producing the same, rare-earth oxide (RE 2 O 3 ) and SiO 2 and Al 2 O 3 , Cr 2 O 3 ,
HfO 2 , Nb 2 O 5 , ZrO 2 , TiO 2 , V 2 O 5 , Ta 2
Each oxide powder prepared to have a predetermined composition ratio using O 5 was first press-molded at a pressure of 1 t / cm 2 ,
The sample fired in the air is further subjected to hydrostatic pressure treatment at a pressure of 3 t / cm 2 to produce a molded body, and the above oxides are also prepared so as to have the composition ratios shown in Tables 3 and 4. The composite oxide was calcined at a temperature of 1300 ° C. for 1 hour, and a compact was produced in the same manner as described above using the pulverized composite oxide. Next, as shown in Tables 1 and 2, when the molded body is fired at normal pressure in the air, the temperature is maintained at each firing temperature for 5 hours. In a (N 2 ) atmosphere, firing was performed at a pressure of 0.3 t / cm 2 at each firing temperature for 1 hour.

【0034】更に、1400℃と1500℃の温度で1
0時間の熱処理を一部の試料に施した。
Further, at temperatures of 1400 ° C. and 1500 ° C.,
A 0 hour heat treatment was applied to some of the samples.

【0035】かくして得られた焼結体をJIS−R16
01の規格に準じた所定寸法に研磨して抗折試験片を作
製し、該抗折試験片について室温及び1400℃での4
点曲げ抗折試験を実施した。
The sintered body thus obtained was subjected to JIS-R16
The specimen was polished to a predetermined size in accordance with the standard of No. 01 to prepare a bending test piece, and the bending test piece was subjected to 4 ° C at room temperature and 1400 ° C.
A point bending bending test was performed.

【0036】また、RE25/SiO2/Mmn(Mは
Al、Cr、Hf、Nb、Zr、Ti、V及びTaのい
ずれか、m、nは0を含まない)の組成比、及び周期律
表第3a族元素(RE)とAl、Cr、Hf、Nb、Z
r、Ti、V及びTaのいずれか1種の複合酸化物(R
xyz)のモル%は、前記焼結体を粉砕後、ICP
法によりREとSiとMの重量比を測定し、酸化物換算
で算出した。
Further, the composition of RE 2 O 5 / SiO 2 / M m O n (M is free Al, Cr, Hf, Nb, Zr, Ti, or V and Ta, m, n is 0) Ratio, element of group 3a (RE) of the periodic table and Al, Cr, Hf, Nb, Z
r, a composite oxide of any one of Ti, V and Ta (R
Mol% of E x M y O z) after pulverizing the sintered body, ICP
The weight ratio of RE, Si and M was measured by the method and calculated in terms of oxide.

【0037】更に、前記評価用の希土類複合酸化物系焼
結体をX線回折測定して結晶相を同定したところ、ダイ
シリケート(RE2Si27)やモノシリケート(RE2
SiO5)と、周期律表第3a族元素(RE)とAl、
Cr、Hf、Nb、Zr、Ti、V及びTaのいずれか
1種より成る複合酸化物(RExyz、但しx、y、
zは0を含まず、MはAl、Cr、Hf、Nb、Zr、
Ti、V及びTaのいずれか1種)から成ることを確認
した。以上の結果を表1乃至表4に示す。
Further, when the crystal phase was identified by X-ray diffraction measurement of the rare earth composite oxide-based sintered body for evaluation, disilicate (RE 2 Si 2 O 7 ) and monosilicate (RE 2
SiO 5 ), Group 3a element (RE) of the periodic table and Al,
Cr, Hf, Nb, Zr, Ti, composite oxide consisting of any one of V and Ta (RE x M y O z , where x, y,
z does not include 0, and M is Al, Cr, Hf, Nb, Zr,
Ti, V, and Ta). The above results are shown in Tables 1 to 4.

【0038】[0038]

【表1】 [Table 1]

【0039】[0039]

【表2】 [Table 2]

【0040】[0040]

【表3】 [Table 3]

【0041】[0041]

【表4】 [Table 4]

【0042】表1乃至表4の結果から明らかなように、
複合酸化物を含有しないか、所定量含有しない試料番号
1、6、9、14、19、24、26、29、32、3
7、45、56、60、62、65では、RTでの抗折
強度が390MPa以下と低く、1400℃での抗折強
度も最大120MPaもの極めて大きな劣化を示すのに
対して、本願発明の希土類複合酸化物系焼結体は、いず
れもRTでの抗折強度が400MPa以上と高く、14
00℃での抗折強度の劣化も30MPa以下と大変小さ
いことが分かる。
As is clear from the results of Tables 1 to 4,
Sample Nos. 1, 6, 9, 14, 19, 24, 26, 29, 32, 3 containing no complex oxide or containing a predetermined amount
In 7, 45, 56, 60, 62, and 65, the flexural strength at RT was as low as 390 MPa or less, and the flexural strength at 1400 ° C. showed extremely large deterioration of up to 120 MPa. Each of the composite oxide-based sintered bodies has a high bending strength at RT of 400 MPa or more,
It can be seen that the flexural strength degradation at 00 ° C. is very small, 30 MPa or less.

【0043】[0043]

【発明の効果】以上の如く、本発明の希土類複合酸化物
系焼結体は、周期律表第3a族元素(RE)を含有する
ダイシリケート(RE2Si27)及び/又はモノシリ
ケート(RE2SiO5)と、総量が酸化物換算で5〜8
0mol%である周期律表第3a族元素(RE)Al、
Cr、Hf、Nb、Zr、Ti、V及びTaのいずれか
1種より成る複合酸化物(RExyz、但しx、y、
zは0を含まず、MはAl、Cr、Hf、Nb、Zr、
Ti、V及びTaのいずれか1種)の1種以上とから成
るものであり、転位の運動による塑性変形が抑制され、
900℃を越える高温での機械的強度が著しく改善さ
れ、室温から1400℃の高温まで塑性変形し難く、機
械的強度の劣化が従来のセラミック焼結体よりはるかに
小さく、高温での安定性に優れた希土類複合酸化物系焼
結体を得ることができる。
As described above, the rare earth composite oxide-based sintered body of the present invention is a disilicate (RE 2 Si 2 O 7 ) and / or monosilicate containing a Group 3a element (RE) in the periodic table. (RE 2 SiO 5 ) and the total amount is 5 to 8 in terms of oxide.
An element (RE) Al of Group 3a of the Periodic Table which is 0 mol%,
Cr, Hf, Nb, Zr, Ti, composite oxide consisting of any one of V and Ta (RE x M y O z , where x, y,
z does not include 0, and M is Al, Cr, Hf, Nb, Zr,
Ti, V, and Ta), which suppresses plastic deformation due to dislocation movement.
The mechanical strength at high temperatures exceeding 900 ° C is remarkably improved, it is difficult to plastically deform from room temperature to a high temperature of 1400 ° C, the deterioration of mechanical strength is much smaller than the conventional ceramic sintered body, and the stability at high temperatures is improved. An excellent rare earth composite oxide-based sintered body can be obtained.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】周期律表第3a族元素(RE)を含有する
ダイシリケート(RE2Si27)及び/又はモノシリ
ケート(RE2SiO5)と、総量が酸化物換算で5〜8
0mol%である周期律表第3a族元素(RE)とA
l、Cr、Hf、Nb、Zr、Ti、V及びTaのいず
れか1種より成る複合酸化物(RExyz、但しx、
y、zは0を含まず、MはAl、Cr、Hf、Nb、Z
r、Ti、V及びTaのいずれか1種)の1種以上とか
ら成ることを特徴とする希土類複合酸化物系焼結体。
A total amount of disilicate (RE 2 Si 2 O 7 ) and / or monosilicate (RE 2 SiO 5 ) containing a Group 3a element (RE) of the periodic table is 5 to 8 in terms of oxide.
Group 3a element (RE) of the periodic table which is 0 mol% and A
l, Cr, Hf, Nb, Zr, Ti, composite oxide consisting of any one of V and Ta (RE x M y O z , where x,
y and z do not include 0, and M is Al, Cr, Hf, Nb, Z
a rare earth composite oxide-based sintered body comprising at least one of r, Ti, V and Ta).
【請求項2】ダイシリケート(RE2Si27)及び/
又はモノシリケート(RE2SiO5)に対して、周期律
表第3a族元素(RE)とAl、Cr、Hf、Nb、Z
r、Ti、V及びTaのいずれか1種より成る複合酸化
物(RExyz、但しx、y、zは0を含まず、Mは
Al、Cr、Hf、Nb、Zr、Ti、V及びTaのい
ずれか1種)の総量が5〜80mol%となるように、
周期律表第3a族元素の酸化物(RE23)と二酸化珪
素(SiO2)及びAl、Cr、Hf、Nb、Zr、T
i、V及びTaの酸化物の1種以上から成る粉体を混合
した後、該混合粉を成形して得られた成形体を焼成する
ことを特徴とする希土類複合酸化物系焼結体の製造方
法。
2. Disilicate (RE 2 Si 2 O 7 ) and / or
Or, for a monosilicate (RE 2 SiO 5 ), a group 3a element (RE) of the periodic table and Al, Cr, Hf, Nb, Z
r, excluding Ti, composite oxide consisting of any one of V and Ta (RE x M y O z , where x, y, z is a 0, M is Al, Cr, Hf, Nb, Zr, Ti , V and Ta) so that the total amount is 5 to 80 mol%,
Oxide (RE 2 O 3 ) of Group 3a element of the periodic table, silicon dioxide (SiO 2 ), Al, Cr, Hf, Nb, Zr, T
a powder of at least one of oxides of i, V, and Ta is mixed, and then a molded body obtained by molding the mixed powder is fired; Production method.
【請求項3】周期律表第3a族元素(RE)を含有する
ダイシリケート(RE2Si27)及び/又はモノシリ
ケート(RE2SiO5)と、周期律表第3a族元素(R
E)及びAl、Cr、Hf、Nb、Zr、Ti、V及び
Taのいずれか1種より成る複合酸化物(REx
yz、但しx、y、zは0を含まず、MはAl、Cr、
Hf、Nb、Zr、Ti、V及びTaのいずれか1種)
の1種以上とをそれぞれ仮焼して粉砕混合した後、該粉
砕混合粉を成形して得られた成形体を焼成することを特
徴とする希土類複合酸化物系焼結体の製造方法。
3. A disilicate (RE 2 Si 2 O 7 ) and / or monosilicate (RE 2 SiO 5 ) containing a Group 3a element (RE) of the periodic table, and a Group 3a element (R) of the periodic table.
E) and a composite oxide (RE x M) composed of any one of Al, Cr, Hf, Nb, Zr, Ti, V and Ta
y O z , where x, y, and z do not include 0, and M is Al, Cr,
Any one of Hf, Nb, Zr, Ti, V and Ta)
A method for producing a rare earth composite oxide-based sintered body, comprising calcining and pulverizing and mixing each of at least one of the above, and then baking a compact obtained by molding the pulverized mixed powder.
【請求項4】前記希土類複合酸化物系焼結体をその焼成
温度以下、1000℃以上の温度で熱処理して過飽和の
固溶原子を析出させることを特徴とする請求項2又は3
記載の希土類複合酸化物系焼結体の製造方法。
4. A super-saturated solid solution atom is precipitated by heat-treating said rare earth composite oxide-based sintered body at a temperature not higher than its firing temperature and not lower than 1000 ° C.
A method for producing the rare earth composite oxide-based sintered body according to the above.
JP16917194A 1994-07-21 1994-07-21 Rare earth composite oxide-based sintered body and method for producing the same Expired - Fee Related JP3273099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16917194A JP3273099B2 (en) 1994-07-21 1994-07-21 Rare earth composite oxide-based sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16917194A JP3273099B2 (en) 1994-07-21 1994-07-21 Rare earth composite oxide-based sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0826815A JPH0826815A (en) 1996-01-30
JP3273099B2 true JP3273099B2 (en) 2002-04-08

Family

ID=15881575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16917194A Expired - Fee Related JP3273099B2 (en) 1994-07-21 1994-07-21 Rare earth composite oxide-based sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP3273099B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3320645B2 (en) * 1997-11-06 2002-09-03 株式会社東芝 Manufacturing method of ceramic sintered body
JP5001567B2 (en) * 2006-03-24 2012-08-15 京セラ株式会社 Corrosion resistant ceramic material
JP5575719B2 (en) * 2011-09-16 2014-08-20 信越化学工業株式会社 Sintered body for magneto-optical element and magneto-optical device
CN109467829B (en) * 2018-10-19 2020-11-24 宋光明 Heat insulation wallboard material and manufacturing method thereof
CN114105672B (en) * 2020-08-31 2023-04-18 厦门稀土材料研究所 Zirconium-tantalum composite rare earth-based porous high-entropy ceramic and preparation method thereof
CN114057203B (en) * 2021-09-10 2023-02-17 中国科学院金属研究所 Six-rare-earth principal element disilicate solid solution spherical feed for plasma spraying and preparation method thereof

Also Published As

Publication number Publication date
JPH0826815A (en) 1996-01-30

Similar Documents

Publication Publication Date Title
JP3273099B2 (en) Rare earth composite oxide-based sintered body and method for producing the same
JP3091085B2 (en) Rare earth silicate based sintered body and method for producing the same
JP3145597B2 (en) Alumina sintered body and method for producing the same
JPH08208317A (en) Alumina sintered body and production thereof
JPH07330436A (en) Silicon nitride heat resistant member and its production
JP2687632B2 (en) Method for producing silicon nitride sintered body
JP3124865B2 (en) Silicon nitride sintered body and method for producing the same
JP3124863B2 (en) Silicon nitride sintered body and method for producing the same
JPH0840774A (en) Silicon nitride sintered product
JP3152853B2 (en) Alumina sintered body and method for producing the same
JP3034099B2 (en) Silicon nitride sintered body and method for producing the same
JP3124867B2 (en) Silicon nitride sintered body and method for producing the same
JP2892186B2 (en) Method for producing silicon nitride-silicon carbide composite sintered body
JP2746761B2 (en) Method for producing silicon nitride-silicon carbide composite sintered body
JPH035371A (en) Production of si3n4 sintered compact
JP2801447B2 (en) Method for producing silicon nitride based sintered body
JP2742622B2 (en) Silicon nitride sintered body and method for producing the same
JP2708136B2 (en) Silicon nitride sintered body and method for producing the same
JP2789133B2 (en) Silicon nitride sintered body and method for producing the same
JP3207045B2 (en) Method for producing silicon nitride based sintered body
JPH1059773A (en) Silicon nitride sintered compact and its production
JP2946593B2 (en) Silicon nitride sintered body and method for producing the same
JP2801455B2 (en) Silicon nitride sintered body
JP3207065B2 (en) Silicon nitride sintered body
JP3236733B2 (en) Silicon nitride sintered body

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100125

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees