JP3152853B2 - Alumina sintered body and method for producing the same - Google Patents

Alumina sintered body and method for producing the same

Info

Publication number
JP3152853B2
JP3152853B2 JP29007194A JP29007194A JP3152853B2 JP 3152853 B2 JP3152853 B2 JP 3152853B2 JP 29007194 A JP29007194 A JP 29007194A JP 29007194 A JP29007194 A JP 29007194A JP 3152853 B2 JP3152853 B2 JP 3152853B2
Authority
JP
Japan
Prior art keywords
alumina
metal oxide
sintered body
atmosphere
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29007194A
Other languages
Japanese (ja)
Other versions
JPH08151253A (en
Inventor
雨叢 王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP29007194A priority Critical patent/JP3152853B2/en
Publication of JPH08151253A publication Critical patent/JPH08151253A/en
Application granted granted Critical
Publication of JP3152853B2 publication Critical patent/JP3152853B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高温強度特性,高温安
定性,耐酸化性に優れたアルミナ質焼結体およびその製
法に関わり、特に、航空・宇宙業界,製練業界,化学業
界等で用いられたり、ガスタ−ビンエンジン用部品等に
使用される耐高温構造材料のアルミナ質焼結体およびそ
の製法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alumina sintered body having excellent high-temperature strength characteristics, high-temperature stability, and oxidation resistance and a method for producing the same, and particularly to the aerospace and space industries, the kneading industry, and the chemical industry. The present invention relates to an alumina-based sintered body of a high temperature resistant structural material used for a gas turbine engine part or the like and a method for producing the same.

【0002】[0002]

【従来の技術】従来から、アルミナは、耐高温の構造部
材として、耐環境性,高温強度ともに優れることで注目
されてきた。また、その高温強度と破壊靭性をさらに向
上させるために、種々の複合化が試みられている。例え
ば、Al2 3 −SiCナノコンポジィット、Al2
3 −ZrO2 複合材料が知られており(特開昭61−1
22164号公報,特開昭63−139044号公報等
参照)、このような複合材料によれば、純粋なアルミナ
質焼結体よりも強度および靭性を向上することができ
る。
2. Description of the Related Art Alumina has been attracting attention as a high-temperature resistant structural member because of its excellent environmental resistance and high-temperature strength. Further, in order to further improve the high temperature strength and the fracture toughness, various composites have been attempted. For example, Al 2 O 3 —SiC nanocomposite, Al 2 O
3 -ZrO 2 and the composite material is known (JP-61-1
22164, JP-A-63-139044, etc.), and the strength and toughness of such a composite material can be improved as compared with a pure alumina sintered body.

【0003】[0003]

【発明が解決しようとする問題点】しかしながら、上記
Al2 3 −SiCナノコンポジィットでは、Al2
3中に非酸化物のSiCを分散させているために、酸化
雰囲気において高温状態で使用される場合には耐酸化性
に欠けるという問題があった。
[INVENTION point problem, however, in the above Al 2 O 3 -SiC nano components Jie Tsu DOO, Al 2 O
Since the non-oxide SiC is dispersed in 3 , when used in a high temperature state in an oxidizing atmosphere, there is a problem that it lacks oxidation resistance.

【0004】また、Al2 3 −ZrO2 複合材料は9
00℃付近の温度で強度が急激に低下するため、高温下
において応力が作用するような状態での使用には適しな
いという問題があった。
The Al 2 O 3 —ZrO 2 composite material is 9
Since the strength sharply decreases at a temperature around 00 ° C., there is a problem that it is not suitable for use in a state where a stress acts at a high temperature.

【0005】本発明は、高温での耐酸化性に優れ、さら
に、破壊靭性と高温強度に優れたアルミナ質焼結体およ
びその製法を提供することを目的とするものである。
An object of the present invention is to provide an alumina-based sintered body which is excellent in oxidation resistance at a high temperature, excellent in fracture toughness and high-temperature strength, and a method for producing the same.

【0006】[0006]

【問題点を解決するための手段】本発明者は、アルミナ
を高温構造材料として実用化するために、高温強度およ
び破壊靭性を改善する方法について鋭意検討した結果、
雰囲気の違いによりアルミナでの固溶限界量が変化する
金属酸化物原料をアルミナに添加し、焼成した焼結体を
雰囲気を制御して熱処理し、アルミナ結晶粒内に微細な
アルミナと金属酸化物の複合酸化物を分散析出させるこ
とにより、塑性変形抵抗を向上させて高温強度を向上す
ることができるとともに、クラックの進展を妨害し、破
壊エネルギーを吸収する組織構成とし、これにより破壊
靱性を向上することができることを見出し、本発明に至
った。
Means for Solving the Problems The present inventors have conducted intensive studies on methods for improving high-temperature strength and fracture toughness in order to put alumina into practical use as a high-temperature structural material.
The metal oxide raw material whose solid solubility limit changes in alumina due to the difference in atmosphere is added to alumina, and the fired sintered body is heat-treated by controlling the atmosphere, and fine particles are formed in the alumina crystal grains.
By dispersing and depositing a composite oxide of alumina and metal oxide , plastic deformation resistance can be improved and high-temperature strength can be improved.At the same time, the structure has a structure that prevents the propagation of cracks and absorbs fracture energy. It has been found that the fracture toughness can be improved by the method, and the present invention has been achieved.

【0007】即ち、本発明のアルミナ質焼結体は、雰囲
気の違いによりアルミナへの固溶限界量が変化する金属
酸化物を含むアルミナ質焼結体であって、アルミナ結晶
粒内にアルミナと前記金属酸化物との複合酸化物が1μ
m以下の平均粒径で分散析出しているものである。
た、アルミナ結晶粒内に前記金属酸化物が1μm以下の
平均粒径で分散析出していることが望ましい。特に、
属酸化物が酸化チタン、前記複合酸化物がAl 2 TiO 5
であることが望ましい。
Namely, the alumina sintered body of the present invention is a alumina sintered body comprising a metal oxide solid solution limit of the alumina by the difference in the atmosphere is changed, and alumina in the alumina crystal grains 1 μm of the composite oxide with the metal oxide
The particles are dispersed and precipitated with an average particle size of m or less. Ma
In addition, the metal oxide is 1 μm or less in the alumina crystal grains.
It is desirable that the particles are dispersed and precipitated with an average particle size. In particular, the metal oxide is titanium oxide , and the composite oxide is Al 2 TiO 5
It is desirable that

【0008】本発明においては、雰囲気の違いによりア
ルミナへの固溶限界量が変化する金属酸化物あるいはア
ルミナと前記金属酸化物との複合酸化物からなる第2相
が、アルミナの粒内に1μm以下の平均粒径で分散する
ことが重要である。第2相が粒界に分散する場合には室
温強度と破壊靭性は向上する可能性があるが、材料の高
温強度が低下する。また、第2相をアルミナの粒内に1
μm以下の平均粒径で分散させたのは、第2相の平均粒
径が1μmよりも大きくなると、高温強度および破壊靱
性が著しく低下するからである。第2相の粒径は、0.
5μm以下であることが望ましい。特に、前記金属酸化
物が酸化チタン、前記複合酸化物がAl 2 TiO 5 である
と共に、前記成形体を還元雰囲気で、1500℃以上の
温度で焼成した後、この焼結体を酸化雰囲気で、160
0℃以上の温度で熱処理し、アルミナ結晶粒内および/
または粒界にAl 2 TiO 5 を析出させることが望まし
い。
In the present invention, the second phase composed of a metal oxide or a composite oxide of alumina and the above-described metal oxide whose solid solubility limit in alumina changes due to a difference in atmosphere has a particle size of 1 μm in the alumina grains. It is important to disperse with the following average particle size. When the second phase is dispersed at the grain boundaries, room temperature strength and fracture toughness may be improved, but the high temperature strength of the material is reduced. In addition, the second phase is contained in the alumina grains.
The reason why the particles are dispersed with an average particle diameter of not more than μm is that when the average particle diameter of the second phase is larger than 1 μm, the high temperature strength and the fracture toughness are remarkably reduced. The particle size of the second phase is between 0.
It is desirable that the thickness be 5 μm or less. In particular, the metal oxidation
Things titanium oxide, the composite oxide is Al 2 TiO 5
At the same time, the compact is heated in a reducing atmosphere at a temperature of 1500 ° C. or more.
After sintering at a temperature, the sintered body is heated in an oxidizing atmosphere at 160
Heat treatment at a temperature of 0 ° C. or more, and within the alumina crystal grains and / or
Alternatively, it is desirable to deposit Al 2 TiO 5 at the grain boundaries.
No.

【0009】雰囲気の違いによりアルミナへの固溶限界
量が変化する金属酸化物としては、TiO2 ,Fe2
3 ,MgTiO3 等があり、この中でもTiO2 が最も
望ましい。
Metal oxides whose solid solubility limit in alumina varies depending on the atmosphere include TiO 2 and Fe 2 O.
3 , MgTiO 3 and the like, among which TiO 2 is most desirable.

【0010】また、本発明のアルミナ質焼結体は、例え
ば、雰囲気の違いによりアルミナへの固溶限界量が変化
する金属酸化物原料をアルミナ中に添加、混合し、成形
した後、該成形体を金属酸化物のアルミナへの固溶限界
量が多くなる雰囲気で焼成して前記金属酸化物がアルミ
ナ結晶粒内に固溶した焼結体を作製した後、この焼結体
を前記金属酸化物のアルミナへの固溶限界量が少なくな
る雰囲気中で熱処理し、アルミナ結晶粒内に平均粒径1
μm以下のアルミナと前記金属酸化物との複合酸化物を
析出させることにより製造される。
Further, the alumina-based sintered body of the present invention is prepared by, for example, adding a metal oxide raw material whose solid solubility limit to alumina changes due to a difference in atmosphere into alumina, mixing and molding the alumina, and then forming the same. After sintering the sintered body in an atmosphere in which the solid solubility limit of the metal oxide in alumina increases, a sintered body in which the metal oxide forms a solid solution in the alumina crystal grains is produced. Heat treatment in an atmosphere in which the solid solubility limit of the product in alumina is reduced, and an average particle size of 1
It is produced by depositing a composite oxide of alumina having a size of not more than μm and the metal oxide .

【0011】上記金属酸化物原料は、金属酸化物粉末,
金属粉末,当該金属を含む有機,無機物およびその溶液
のいずれでも良い。添加量は、金属酸化物のアルミナ中
への固溶量が低い雰囲気での固溶限界量以上であれば、
希望の組織に調整できるが、充分な強靭化効果を得るた
めには、金属酸化物原料を金属酸化物に換算して全量中
0.5mol%以上添加することが望ましい。
The above-mentioned metal oxide raw material includes metal oxide powder,
Any of a metal powder, an organic or inorganic substance containing the metal, and a solution thereof may be used. If the amount of addition is not less than the solid solution limit in an atmosphere where the amount of metal oxide solid solution in alumina is low,
Although the structure can be adjusted to a desired structure, in order to obtain a sufficient toughening effect, it is desirable to add the metal oxide raw material to the metal oxide in an amount of 0.5 mol% or more based on the total amount.

【0012】この金属酸化物原料をアルミナ粉末に添加
混合した混合原料を所望の成型手段、例えば、金型プレ
ス,鋳込み成型,押出成型,射出成型,冷間静水圧プレ
ス等の公知の成形手段により任意の形状に成形する。
The mixed raw material obtained by adding the metal oxide raw material to the alumina powder is mixed by a desired molding means, for example, a known molding means such as a die press, a casting molding, an extrusion molding, an injection molding, a cold isostatic pressing and the like. Form into any shape.

【0013】次に、この成形体を公知の焼結法、例え
ば、ホットプレス法,常圧焼成法,ガス加圧焼成法,更
に、これらの焼成後に熱間静水圧処理(HIP)処理、
およびガラスシール後HIP処理して、対理論密度比9
5%以上の緻密な焼結体を得る。本発明によれば、焼成
雰囲気は金属酸化物がアルミナ中により多く固溶できる
雰囲気であることが重要である。
Next, this molded body is sintered by a known sintering method, for example, a hot pressing method, a normal pressure sintering method, a gas pressure sintering method, and a hot isostatic pressure (HIP) treatment after sintering.
And HIP treatment after glass sealing, to a theoretical density ratio of 9
A dense sintered body of 5% or more is obtained. According to the present invention, it is important that the sintering atmosphere is an atmosphere in which the metal oxide can be more solid-dissolved in alumina.

【0014】そして、本発明によれば、この焼結体を、
金属酸化物のアルミナへの固溶限界量が少ない雰囲気に
おいて1100〜1800℃で10分以上熱処理するこ
とが重要である。この処理により、アルミナ結晶中に過
飽和に固溶している金属イオンが、アルミナ結晶粒内に
金属酸化物或はアルミナと金属酸化物の複合酸化物の形
で微細に分散析出させることができる。
According to the present invention, this sintered body is
It is important to perform a heat treatment at 1100 to 1800 ° C. for 10 minutes or more in an atmosphere having a small solid solubility limit of the metal oxide in alumina. By this treatment, the metal ions supersaturated in the alumina crystal can be finely dispersed and precipitated in the alumina crystal grains in the form of a metal oxide or a composite oxide of alumina and a metal oxide.

【0015】例えば、チタン酸化物では、酸化雰囲気で
TiO2の形で存在し、普通の焼成法ではアルミナにほ
とんど固溶しないが、還元雰囲気でのチタンイオンはT
4+→Ti3+に変化し、アルミナ中に数mol%固溶で
きる。よって、上記したように、金属酸化物がTiO2
の場合には、H2等の還元雰囲気において1500℃〜
1800℃の温度で0.5時間焼成し、大気中等の酸化
雰囲気において、1600〜1800℃で10分間以上
熱処理することにより、アルミナ結晶粒内および/また
は粒界にAl2TiO5を1μm以下の平均粒径で存在さ
せることが可能となる。
For example, titanium oxide is present in the form of TiO 2 in an oxidizing atmosphere, and hardly forms a solid solution with alumina by a normal firing method.
It changes from i 4+ → Ti 3+ , and a solid solution of several mol% in alumina can be obtained. Therefore, as described above, the metal oxide is TiO 2
In the case of 1,500 ° C. in a reducing atmosphere such as H 2
Baking at a temperature of 1800 ° C. for 0.5 hour, and in an oxidizing atmosphere such as the air at 1600 to 1800 ° C. for 10 minutes or more
By performing the heat treatment , Al 2 TiO 5 can be present in the alumina crystal grains and / or in the grain boundaries with an average particle size of 1 μm or less.

【0016】ここで、析出量が少なければアルミナに対
する強度、靱性向上の効果を十分達成できないから、析
出相は全量中0.5体積%以上であることが望ましい。
Here, if the amount of precipitation is small, the effect of improving the strength and toughness with respect to alumina cannot be sufficiently achieved, so that the amount of the precipitated phase is preferably 0.5% by volume or more based on the total amount.

【0017】[0017]

【作用】一部の金属イオンは、高温で雰囲気の違いによ
り価数の変化が生じる。特に2+ →3+ と4+ →3+
あるいはその逆の変化により、金属イオン半径の変化に
ともなって、アルミナ中への固溶限界量が大幅に変化す
る。よって、このような価数が変化する金属酸化物を含
むアルミナに対して、焼成と熱処理の雰囲気を制御する
ことにより、第2相がアルミナの粒内で微細に分散析出
した本発明のアルミナ質焼結体が得られる。
The valence of some metal ions changes due to differences in atmosphere at high temperatures. Especially 2 + → 3 + and 4 + → 3 + ,
Alternatively, the change in the opposite direction significantly changes the limit of solid solubility in alumina with the change in the metal ion radius. Therefore, by controlling the atmosphere of calcination and heat treatment for alumina containing such a metal oxide whose valence changes, the alumina phase of the present invention in which the second phase is finely dispersed and precipitated in the grains of alumina. A sintered body is obtained.

【0018】このように、本発明のアルミナ質焼結体で
は、アルミナ粒内に多数の酸化物第2相粒子を1μm以
下の平均粒径で微細に分散析出させたため、高温での耐
酸化性を損なうことなく、従来より優れた高温強度と破
壊靭性を有する高温構造材料を提供することができる。
As described above, in the alumina-based sintered body of the present invention, a large number of oxide second-phase particles are finely dispersed and precipitated with an average particle diameter of 1 μm or less in the alumina particles. , And a high-temperature structural material having higher high-temperature strength and fracture toughness than before can be provided.

【0019】即ち、従来のアルミナ質焼結体は特に酸化
雰囲気で室温から高温まで安定した特性を有するが、高
温では転位の運動が発生しやすいため、軟化、塑性変形
する。また、室温では、アルミナ結晶内にクラックが進
展しやすいため、破壊靭性が低い。本発明のアルミナ質
焼結体は、上記従来のアルミナ質焼結体の欠点を解決し
たものである。
That is, although the conventional alumina-based sintered body has stable characteristics particularly from room temperature to a high temperature in an oxidizing atmosphere, dislocation motion tends to occur at a high temperature, so that the softening and plastic deformation occur. Further, at room temperature, cracks are apt to develop in the alumina crystal, so that the fracture toughness is low. The alumina-based sintered body of the present invention has solved the above-mentioned disadvantages of the conventional alumina-based sintered body.

【0020】[0020]

【実施例】原料粉末としてアルミナ(Al2 3 )粉末
と酸化チタン(TiO2 )粉末を用いて、表1に示す組
成比に調合し、1t/cm2 の圧力でプレス成形した
後、3t/cm2 の圧力で冷間静水圧成形(CIP)を
行った。そして、得られた成形体を、表1に示すような
焼成条件で2時間焼成し、さらに、表1に示すような熱
処理条件で2時間熱処理した。
EXAMPLE Using alumina (Al 2 O 3 ) powder and titanium oxide (TiO 2 ) powder as raw material powders, the composition ratio was adjusted as shown in Table 1, and the mixture was press-formed at a pressure of 1 t / cm 2 and then 3 t Cold isostatic pressing (CIP) was performed at a pressure of / cm 2 . Then, the obtained molded body was fired for 2 hours under the firing conditions shown in Table 1, and further heat-treated for 2 hours under the heat treatment conditions shown in Table 1.

【0021】得られた焼結体を鏡面に加工し、走査型電
子顕微鏡写真上でアルミナ結晶粒子内の100個の析出
粒子の粒径を測定し、その平均値を算出した。また、焼
結体をJIS−R1601にて指定されている形状まで
研磨し抗折試料を作製した。
The obtained sintered body was processed into a mirror surface, and the particle size of 100 precipitated particles in the alumina crystal particles was measured on a scanning electron microscope photograph, and the average value was calculated. Further, the sintered body was polished to the shape specified in JIS-R1601 to prepare a bending sample.

【0022】この試料についてJIS−R1601に基
づく室温および1400℃での4点曲げ抗折強度試験を
実施した。また、ビッカース圧痕法により破壊靭性(K
IC)を測定した。さらにX線回折測定により焼結体中の
α−Al2 3 以外の結晶を同定した。結果を表1に示
す。
The sample was subjected to a four-point bending strength test at room temperature and 1400 ° C. based on JIS-R1601. In addition, the fracture toughness (K
IC ) was measured. Further, crystals other than α-Al 2 O 3 in the sintered body were identified by X-ray diffraction measurement. Table 1 shows the results.

【0023】[0023]

【表1】 [Table 1]

【0024】この表1の結果から、アルミナ粒内に第2
相が微細に分散した本発明のアルミナ質焼結体(試料N
o.1〜7)は、従来のアルミナ焼結体(試料No.
8)およびアルミナと酸化物の複合焼結体(試料No.
9、10)に比べて、室温と1400℃における曲げ強
度および破壊靭性が大幅に向上していることが判る。
に、第2相が粒界及び粒内に析出した試料No.3及び
6は、室温での曲げ強度が600MPa以上、破壊靭性
が4.6MPa・m 1/2 と高強度・高靭性であった。
1に試料No.5の組織図を示す。図1において、符号
1はアルミナ結晶を示し、符号2はAl2TiO5結晶を
示す。
From the results shown in Table 1, the second particles are contained in the alumina particles.
Alumina sintered body of the present invention in which phases are finely dispersed (sample N
o. 1 to 7) are conventional alumina sintered bodies (sample Nos. 1 to 7).
8) and a composite sintered body of alumina and oxide (sample No.
9, it can be seen that the flexural strength and the fracture toughness at room temperature and 1400 ° C. are significantly improved as compared with those of (9, 10). Special
Sample No. 2 in which the second phase was precipitated at the grain boundaries and in the grains. 3 and
No. 6 has a flexural strength at room temperature of 600 MPa or more and fracture toughness
Had a high strength and a high toughness of 4.6 MPa · m 1/2 . FIG. The organization chart of No. 5 is shown. In FIG. 1, reference numeral 1 denotes an alumina crystal, and reference numeral 2 denotes an Al 2 TiO 5 crystal.

【0025】[0025]

【発明の効果】本発明のアルミナ質焼結体では、雰囲気
の違いによりアルミナへの固溶限界量が変化する金属酸
化物原料をアルミナ中に添加、混合し、成形した後、該
成形体を所定の雰囲気で焼成して金属酸化物がアルミナ
中に固溶した焼結体を作製した後、この焼結体を所定の
雰囲気中で熱処理し、アルミナ結晶粒内にアルミナと前
記金属酸化物との複合酸化物を1μm以下の平均粒径で
分散析出させたため、高温での耐酸化性に優れ、さら
に、破壊靭性と高温強度に大幅に向上することができ
る。
According to the alumina sintered body of the present invention, a metal oxide raw material whose solubility limit in alumina changes due to a difference in atmosphere is added to alumina, mixed, and molded. after the metal oxide by firing at a predetermined atmosphere to produce a sintered body in which a solid solution in alumina, heat-treated sintered body in a predetermined atmosphere, before and alumina in the alumina crystal grains
Since the composite oxide with the metal oxide is dispersed and precipitated with an average particle size of 1 μm or less, it is excellent in oxidation resistance at high temperatures, and can be significantly improved in fracture toughness and high-temperature strength.

【図面の簡単な説明】[Brief description of the drawings]

【図1】試料No.5の組織図である。FIG. 1 is a structural diagram of Sample No. 5.

【符号の説明】[Explanation of symbols]

1・・・アルミナ結晶 2・・・Al2 TiO5 結晶1 ・ ・ ・ Alumina crystal 2 ・ ・ ・ Al 2 TiO 5 crystal

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】雰囲気の違いによりアルミナへの固溶限界
量が変化する金属酸化物を含むアルミナ質焼結体であっ
て、アルミナ結晶粒内にアルミナと前記金属酸化物との
複合酸化物が1μm以下の平均粒径で分散析出している
ことを特徴とするアルミナ質焼結体。
An alumina-based sintered body containing a metal oxide whose solid solubility limit in alumina changes due to a difference in atmosphere, wherein alumina and the metal oxide are mixed in alumina crystal grains.
An alumina-based sintered body, wherein the composite oxide is dispersed and precipitated with an average particle size of 1 μm or less.
【請求項2】前記アルミナ結晶粒内に前記金属酸化物が
1μm以下の平均粒径で分散析出していることを特徴と
する請求項1記載のアルミナ質焼結体。
2. The method according to claim 2 , wherein the metal oxide is contained in the alumina crystal grains.
Characterized by being dispersed and precipitated with an average particle size of 1 μm or less.
The alumina-based sintered body according to claim 1, wherein
【請求項3】前記アルミナ結晶の粒内に前記金属酸化物
および/またはアルミナと前記金属酸化物との複合酸化
物が1μm以下の平均粒径で分散析出していることを特
徴とする請求項1または2記載のアルミナ質焼結体。
3. A method according to claim 1 , wherein said metal oxide is contained in said alumina crystal grains.
And / or composite oxidation of alumina and the metal oxide
That the particles are dispersed and precipitated with an average particle size of 1 μm or less.
The alumina-based sintered body according to claim 1 or 2, wherein:
【請求項4】前記金属酸化物が酸化チタン、前記複合酸
化物がAl 2 TiO 5 であることを特徴とする請求項1乃
至3のうちいずれかに記載のアルミナ質焼結体。
4. The method according to claim 1, wherein the metal oxide is titanium oxide ,
Alumina sintered body according to any one of claims 1 to 3 product is characterized in that it is a Al 2 TiO 5.
【請求項5】雰囲気の違いによりアルミナへの固溶限界
量が変化する金属酸化物原料をアルミナ中に添加、混合
し、成形した後、該成形体を金属酸化物のアルミナへの
固溶限界量が多くなる雰囲気で焼成して前記金属酸化物
がアルミナ結晶粒内に固溶した焼結体を作製した後、こ
の焼結体を前記金属酸化物のアルミナへの固溶限界量が
少なくなる雰囲気中で熱処理し、アルミナ結晶粒内に
均粒径1μm以下のアルミナと前記金属酸化物との複合
酸化物を析出させることを特徴とするアルミナ質焼結体
の製法。
5. A method for adding a metal oxide raw material whose amount of solubility in alumina changes depending on the atmosphere to the alumina, mixing and molding the same, and then forming the formed body into a solid solution limit of the metal oxide in alumina. After sintering in an atmosphere in which the amount increases to produce a sintered body in which the metal oxide forms a solid solution in the alumina crystal grains, this sintered body has a reduced solid solubility limit of the metal oxide in alumina. heat treatment in an atmosphere, a flat in an alumina grain
Composite of alumina having an average particle diameter of 1 μm or less and the metal oxide
A method for producing an alumina-based sintered body, characterized by depositing an oxide .
【請求項6】前記金属酸化物が酸化チタン、前記複合酸
化物がAl 2 TiO 5 であると共に、前記成形体を還元雰
囲気で、1500℃以上の温度で焼成した後、この焼結
体を酸化雰囲気で、1600℃以上の温度で熱処理し、
アルミナ結晶粒内および/または粒界にAl 2 TiO 5
析出させることを特徴とする請求項5記載のアルミナ質
焼結体の製法。
6. A method according to claim 1, wherein said metal oxide is titanium oxide,
The compact is Al 2 TiO 5 and the compact is reduced atmosphere.
After firing at a temperature of 1500 ° C. or more in an atmosphere, this sintering
Heat-treating the body in an oxidizing atmosphere at a temperature of 1600 ° C. or higher,
The alumina crystal grains and / or Al 2 TiO 5 in the grain boundary
6. The alumina according to claim 5, wherein the alumina is deposited.
Manufacturing method of sintered body.
JP29007194A 1994-11-24 1994-11-24 Alumina sintered body and method for producing the same Expired - Fee Related JP3152853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29007194A JP3152853B2 (en) 1994-11-24 1994-11-24 Alumina sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29007194A JP3152853B2 (en) 1994-11-24 1994-11-24 Alumina sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08151253A JPH08151253A (en) 1996-06-11
JP3152853B2 true JP3152853B2 (en) 2001-04-03

Family

ID=17751420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29007194A Expired - Fee Related JP3152853B2 (en) 1994-11-24 1994-11-24 Alumina sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP3152853B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6382644B2 (en) * 2014-08-29 2018-08-29 京セラ株式会社 Low reflection member
CN114149253A (en) * 2021-11-17 2022-03-08 中国科学院金属研究所 Photocuring 3D printing low-sintering-shrinkage ceramic core and preparation method thereof

Also Published As

Publication number Publication date
JPH08151253A (en) 1996-06-11

Similar Documents

Publication Publication Date Title
JPH07118070A (en) Silicon nitride ceramic sintered compact
JP3279885B2 (en) Method for producing alumina-based sintered body
JP3152853B2 (en) Alumina sintered body and method for producing the same
JP3145597B2 (en) Alumina sintered body and method for producing the same
JP3091085B2 (en) Rare earth silicate based sintered body and method for producing the same
JP3273099B2 (en) Rare earth composite oxide-based sintered body and method for producing the same
JP2777679B2 (en) Spinel ceramics and manufacturing method thereof
JP3311915B2 (en) Alumina sintered body
JPH08208317A (en) Alumina sintered body and production thereof
JPH0987009A (en) Alumina-mullite combined sintered compact and its production
JP3121996B2 (en) Alumina sintered body
JP3559413B2 (en) Alumina sintered body and method for producing the same
JP3101972B2 (en) Alumina sintered body and method for producing the same
JP2737323B2 (en) Method for producing silicon nitride based sintered body
JP3488350B2 (en) Alumina sintered body and method for producing the same
JP3340025B2 (en) Alumina sintered body and method for producing the same
JP3359443B2 (en) Alumina sintered body and method for producing the same
JP3078462B2 (en) Alumina sintered body and method for producing the same
JPH1179848A (en) Silicon carbide sintered compact
JPH02311361A (en) Production of aluminum titanate sintered compact stable at high temperature
JP3618036B2 (en) Alumina sintered body manufacturing method
JPH01145380A (en) Production of silicon nitride sintered form
JPS63134551A (en) Alumina base sintered body and manufacture
JP3965466B2 (en) Alumina sintered body and manufacturing method thereof
JPH0517210A (en) Production of alumina-based composite sintered body and the sintered body

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140126

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees