JPH02311361A - Production of aluminum titanate sintered compact stable at high temperature - Google Patents

Production of aluminum titanate sintered compact stable at high temperature

Info

Publication number
JPH02311361A
JPH02311361A JP1134386A JP13438689A JPH02311361A JP H02311361 A JPH02311361 A JP H02311361A JP 1134386 A JP1134386 A JP 1134386A JP 13438689 A JP13438689 A JP 13438689A JP H02311361 A JPH02311361 A JP H02311361A
Authority
JP
Japan
Prior art keywords
forming
aluminum titanate
powder
mixed powder
al2o3
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1134386A
Other languages
Japanese (ja)
Inventor
Hiroshi Suzuki
寛 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP1134386A priority Critical patent/JPH02311361A/en
Publication of JPH02311361A publication Critical patent/JPH02311361A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the subject sintered product of increased mechanical strength as well as of both improved low expansibility and thermal shock resistance by mixing a powdery compound of spinel structure with mixed powder of equimolar composition of Al2O3 and TiO2 followed by forming and then sintering. CONSTITUTION:Mixed powder of equimolar composition of Al2O3 and TiO2 capable of forming Al2TiO5 when sintered or Al2TiO5 powder is incorporated with, as additive, 0.2 to 20wt.% of a compound of spinel structure such as MgAl2O4 or FeAl2O4 or mixed powder of a metal oxide (e.g. MgO, Fe2O3) and Al2O3 forming spinel structure followed by green forming and then sintering, thus obtaining the objective sintered compact stable at high temperatures.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高温安定性チタン酸アルミニウム焼結体の製
造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing a high temperature stable aluminum titanate sintered body.

(従来の技術) セラミックは耐熱性、耐薬品性等種々の優れた特性を有
することから広い範囲での用途が期待されているが、一
般に熱衝撃に弱いという欠点のためにその用途が限られ
ている。
(Prior art) Ceramics are expected to be used in a wide range of applications because they have various excellent properties such as heat resistance and chemical resistance, but their use is generally limited due to their weakness in thermal shock. ing.

セラミックの耐熱衝撃性は、セラミックを低熱膨張性に
すると改善されることが既に知られている。しかして、
セラミックのうち、チタン酸アルミニウム、焼結体は高
融点をもつ低熱膨張性材料で、耐熱衝撃性に優れ、また
熱伝導性が低く、断熱性にも優れている材料として古く
から注目されているが、この焼結体の低熱膨張性は、構
成結晶の熱膨張の異方性によるマイクロクラックに起因
しているため、機械的強度が弱く、緻密に焼結できない
という問題点を有し、また、1100°C付近に分解温
度をもつため800°C付近から徐々にコランダムとル
チルに分解し、特に還元雰囲気中では分解傾向が著しい
などの材質的欠点を有することから実用化が制限されて
いる。
It is already known that the thermal shock resistance of ceramics is improved by making the ceramics have low thermal expansion. However,
Among ceramics, aluminum titanate and sintered bodies are materials with high melting points and low thermal expansion, and have long been attracting attention as materials with excellent thermal shock resistance, low thermal conductivity, and excellent heat insulation properties. However, the low thermal expansion of this sintered body is due to microcracks caused by the anisotropy of thermal expansion of the constituent crystals, which has the problem of low mechanical strength and the inability to sinter densely. Since it has a decomposition temperature around 1100°C, it gradually decomposes into corundum and rutile from around 800°C, and its practical use is limited because it has material defects such as a marked tendency to decompose, especially in a reducing atmosphere. .

そのため、従来より上記価れた特性を失うことなく、高
温で安定な高強度チタン酸アルミニウム焼結体を得る方
法が求められており、この要求に応えるものとして例え
ば、A12TiOeにマグネシウム化合物と珪素化合物
を特定量加えて焼結する方法(特開昭57−3767号
公報)や、チタン酸アルミニウムの成形体の表面にマグ
ネシウム、鉄等の化合物を被覆して焼成する方法(特開
昭56−41883号公報)などが提案されている。
Therefore, there has been a demand for a method of obtaining a high-strength aluminum titanate sintered body that is stable at high temperatures without losing the above-mentioned valuable properties. A method of adding a specific amount of aluminum titanate and sintering it (Japanese Patent Laid-Open No. 57-3767), or a method of coating the surface of an aluminum titanate molded body with a compound such as magnesium or iron and firing it (Japanese Patent Laid-Open No. 56-41883) Publication No. 2), etc. have been proposed.

(発明が解決しようとする課題) 本発明は、チタン酸アルミニウム焼結体の有する低熱膨
張性、耐熱衝撃性を更に改善するとともに、高温度で安
定で物理的強度の向上されたチタン酸アルミニウム焼結
体を製造し得る方法を提供することを技術的課題とする
ものである。
(Problems to be Solved by the Invention) The present invention further improves the low thermal expansion and thermal shock resistance of aluminum titanate sintered bodies, and also provides aluminum titanate sintered bodies that are stable at high temperatures and have improved physical strength. The technical problem is to provide a method for producing aggregates.

(課題を解決するための手段) 本発明の高温安定性チタン酸アルミニウム焼結体の製造
方法は、A1□03とTlO2が等モル組成の混合粉末
もしくはAl2TiO5粉末に、スピネル構造をとる化
合物またはスピネル構造を形成するA1□03と金属酸
化物との混合物の粉末を05〜20重量%添加して混粉
、成形し、焼結することを特徴とする。
(Means for Solving the Problems) The method for producing a high-temperature stable aluminum titanate sintered body of the present invention includes adding a compound having a spinel structure or spinel to a mixed powder or Al2TiO5 powder having an equimolar composition of A1□03 and TlO2. It is characterized in that a powder of a mixture of A1□03 and metal oxide that forms the structure is added in an amount of 05 to 20% by weight, mixed, molded, and sintered.

本発明は、チタン酸アルミニウム焼結体を得るにあたり
、原料として、焼結時にチタン酸アルミニウム(A12
T1051 を形成する、Al2O3とTlO2が等モ
ル組成の混合粉末を使用しても良いし、またAlaTi
Osを使用しても良い。A120− とTi’02の混
合粉末を使用する場合、いずれか一方の成分が残ると、
得られた焼結体の低熱膨張性を失うため、等モル量で使
用することが必要である。
In obtaining an aluminum titanate sintered body, the present invention uses aluminum titanate (A12
A mixed powder with an equimolar composition of Al2O3 and TlO2 forming T1051 may be used, or a mixed powder with an equimolar composition of Al2O3 and TlO2 may be used.
Os may also be used. When using a mixed powder of A120- and Ti'02, if one of the components remains,
Since the resulting sintered body loses its low thermal expansion properties, it is necessary to use it in equimolar amounts.

本発明において、高温安定性等を得る目的で添加される
添加剤としてのスピネル構造をとる化合物(以下、スピ
ネル化合物という)としては、具体的には例えばMgA
120x、FeA1□On、MnAl□04. COA
]204 、 ZnAltO< 、 NiAl2O<等
を挙げることができ、これらは1種または2種以上用い
られる。
In the present invention, the compound having a spinel structure (hereinafter referred to as a spinel compound) as an additive added for the purpose of obtaining high temperature stability etc. is specifically, for example, MgA
120x, FeA1□On, MnAl□04. COA
]204, ZnAltO<, NiAl2O<, etc., and one or more of these may be used.

また、本発明においては、添加剤として上記スピネル化
合物に代えて、焼結時にA1゜03と化合してスピネル
構造を形成する化合物(以下、スピネル形成化合物とい
う)をA1□03とともに使用することができる。スピ
ネル形成化合物としては、金属元素Mg、Fe、Mn、
 Go、Zn、 Ni等の酸化物、例えばMgO1Fe
J3等が使用できる。
Furthermore, in the present invention, instead of the spinel compound described above, a compound that combines with A1゜03 to form a spinel structure during sintering (hereinafter referred to as a spinel-forming compound) may be used together with A1゜03 as an additive. can. Spinel-forming compounds include metal elements Mg, Fe, Mn,
Oxides such as Go, Zn, Ni, etc., e.g. MgO1Fe
J3 etc. can be used.

このスピネル形成化合物とAl2O3とは、いずれか一
方の成分がそのままの形で残らない量、すなわち化学量
論的量で使用される。
The spinel-forming compound and Al2O3 are used in amounts that do not leave either component intact, that is, stoichiometric amounts.

上記スピネル化合物粉末およびAl2O3とスピネル形
成化合物との混合粉末は、 05重量%以下添加したの
では得られた焼結体の分解温度が低く熱安定性に乏しく
、曲げ強度の向上が著しくないため好ましくない。一方
、添加量が20重量%以上では、焼結体の熱膨張率が大
となり、耐熱衝撃性が低下する。そのため、添加量は0
.5〜20重量%と定めた。
The above-mentioned spinel compound powder and mixed powder of Al2O3 and a spinel-forming compound are preferable because if the amount is less than 0.05% by weight, the resulting sintered body will have a low decomposition temperature and poor thermal stability, and the bending strength will not be significantly improved. do not have. On the other hand, if the amount added is 20% by weight or more, the coefficient of thermal expansion of the sintered body becomes large and the thermal shock resistance decreases. Therefore, the amount added is 0
.. The content was determined to be 5 to 20% by weight.

本発明において焼結用粉末は通常焼結用として用いられ
る粉粒度のものが使用されるが、添加剤は出来るだけ微
細な粉末のものが良い。これらは、例えば1μm以下の
ものが好ましい。
In the present invention, the sintering powder used is of a particle size normally used for sintering, but the additives are preferably powders as fine as possible. These are preferably, for example, 1 μm or less.

焼結に際しては、従来公知の方法により、充分に混扮し
、所望の形状に金型にて圧粉成形し、焼結する。焼結は
特に限定されることなく、従来チタン酸アルミニウムの
焼結に用いられている雰囲気条件、焼成温度が使用でき
る。
For sintering, the mixture is thoroughly mixed, compacted into a desired shape using a mold, and sintered using a conventionally known method. Sintering is not particularly limited, and the atmospheric conditions and firing temperatures conventionally used for sintering aluminum titanate can be used.

(実施例) 以下、本発明を実施例により説明するが、本発明はこれ
らに限定されるものではない。なお、実施例中%は重量
%を表わす。
(Examples) Hereinafter, the present invention will be explained using Examples, but the present invention is not limited thereto. Note that in the examples, % represents weight %.

実施例 平均粒径″lLLmのA1゜03とTiO□の各粉末を
等モル組成で混合した混合粉末もしくはA1゜T105
粉末に、添加剤として下表に示すスピネル化合物粉末ま
たはA1□03とスピネル形成化合物(金属酸化物)の
粉末をそれぞれ表に記載した量で添加し、充分によく混
合した。
Example A mixed powder or A1°T105 in which A1゜03 and TiO□ powders with an average particle size of ``1LLm'' were mixed in an equimolar composition.
To the powder, spinel compound powder shown in the table below or A1□03 and spinel forming compound (metal oxide) powder shown in the table below were added as additives in the amounts shown in the table, and mixed thoroughly.

得られた混合粉末を金型に充填し、静水等方圧プレスに
て100100O/cm2で加圧成形した。
The obtained mixed powder was filled into a mold and pressure-molded at 100,100 O/cm2 using a hydrostatic isostatic press.

粉末成形体を大気炉中で1500°Cに6°C/分の速
度で昇温し、2時間保持した後、6℃/分の速度で冷却
して、各焼結体を得た。
The powder compact was heated to 1500°C in an atmospheric furnace at a rate of 6°C/min, held for 2 hours, and then cooled at a rate of 6°C/min to obtain each sintered body.

得られたそれぞれの焼結体(試料)について、4点曲げ
強度および室温〜1000°C間の平均熱膨張係数(α
x 10−6/ ’C)を測定した。また、試料を所定
温度で25時間保持した後、X線回折を行ない分解の始
まった温度を分解温度とした。4点曲げ強度は、JIS
  R160]規格の測定方法に従った。
For each obtained sintered body (sample), the four-point bending strength and the average coefficient of thermal expansion between room temperature and 1000°C (α
x 10-6/'C) was measured. Further, after holding the sample at a predetermined temperature for 25 hours, X-ray diffraction was performed, and the temperature at which decomposition started was defined as the decomposition temperature. 4-point bending strength is JIS
R160] according to the standard measurement method.

得られた測定結果を下表に示ず。The measurement results obtained are not shown in the table below.

(発明の効果) 表の結果かられかるように、添加剤未添加の焼結体(比
較例1)の分解温度は800℃であるが、添加剤を06
5%以上添加することによって、1100°C以上に向
上する。添加量が0.1%(比較例2と4)では分解温
度は900°Cと若干向上するが、曲げ強度の著しい向
上が見られないため、 05%未満では効果が認められ
ない。
(Effect of the invention) As can be seen from the results in the table, the decomposition temperature of the sintered body without additives (Comparative Example 1) is 800°C, but with
By adding 5% or more, the temperature can be increased to 1100°C or higher. When the amount added is 0.1% (Comparative Examples 2 and 4), the decomposition temperature is slightly improved to 900°C, but no significant improvement in bending strength is observed, so no effect is observed when the amount is less than 0.05%.

曲げ強度は未添加のものが3 MPaであるのに対して
、添加剤を0.5%以上加えることによって10 MP
a以上に向上した。添加剤は20%を越えて添加しても
、得られる焼結体の曲げ強度は向上するが、熱膨張係数
が3. OX 10−6/ ℃以上となるため好ましく
ない(比較例3と5)。
The bending strength is 3 MPa without additives, but it is 10 MPa with the addition of 0.5% or more of additives.
Improved above a. Even if more than 20% of the additive is added, the bending strength of the resulting sintered body will improve, but the thermal expansion coefficient will be 3. OX 10-6/°C or higher, which is not preferable (Comparative Examples 3 and 5).

熱膨張係数は、添加剤の量が0.5〜20%の範囲内で
は、未添加のもの(比較例1)の熱膨張係数2.0xl
O−6/°Cよりも低く、耐熱衝撃性が損なわれていな
いことが認められた。
The coefficient of thermal expansion is 2.0xl when the amount of additive is in the range of 0.5 to 20%, that of the one without additives (Comparative Example 1)
It was found that the thermal shock resistance was lower than O-6/°C, and the thermal shock resistance was not impaired.

上記の結果かられかるように、本発明方法によって、約
900〜1300°Cの高温度で安定で、耐熱衝撃性を
有する高強度のチタン酸アルミニウム焼結体を得ること
ができる。
As can be seen from the above results, by the method of the present invention, it is possible to obtain a high-strength aluminum titanate sintered body that is stable at high temperatures of about 900 to 1300°C and has thermal shock resistance.

Claims (1)

【特許請求の範囲】[Claims]  Al_2O_3とTiO_2が等モル組成の混合粉末
もしくはAl_2TiO_5粉末に、スピネル構造をと
る化合物粉末またはスピネル構造を形成するAl_2O
_3と金属酸化物との混合粉末を0.5〜20重量%添
加して成形し、焼結することを特徴とする高温安定性チ
タン酸アルミニウム焼結体の製造方法。
Mixed powder with equimolar composition of Al_2O_3 and TiO_2 or Al_2TiO_5 powder with compound powder having a spinel structure or Al_2O forming a spinel structure
A method for producing a high-temperature stable aluminum titanate sintered body, comprising adding 0.5 to 20% by weight of a mixed powder of _3 and a metal oxide, molding, and sintering.
JP1134386A 1989-05-27 1989-05-27 Production of aluminum titanate sintered compact stable at high temperature Pending JPH02311361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1134386A JPH02311361A (en) 1989-05-27 1989-05-27 Production of aluminum titanate sintered compact stable at high temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1134386A JPH02311361A (en) 1989-05-27 1989-05-27 Production of aluminum titanate sintered compact stable at high temperature

Publications (1)

Publication Number Publication Date
JPH02311361A true JPH02311361A (en) 1990-12-26

Family

ID=15127184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1134386A Pending JPH02311361A (en) 1989-05-27 1989-05-27 Production of aluminum titanate sintered compact stable at high temperature

Country Status (1)

Country Link
JP (1) JPH02311361A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003095738A (en) * 2001-09-27 2003-04-03 Itochu Ceratech Corp Titania or alumina-titania clinker, and refractory obtained by using the clinker
WO2005009918A1 (en) * 2003-07-29 2005-02-03 Ohcera Co., Ltd. Honeycomb carrier for exhaust gas clarification catalyst and method for production thereof
JP2005046667A (en) * 2003-07-29 2005-02-24 Ohcera Co Ltd Honeycomb carrier for exhaust gas cleaning catalyst and its manufacturing method
JP2005087797A (en) * 2003-09-12 2005-04-07 Ohcera Co Ltd Honeycomb carrier for exhaust gas cleaning catalyst and manufacturing method therefor
JPWO2005018776A1 (en) * 2003-08-22 2006-10-19 オーセラ株式会社 Exhaust gas purification honeycomb filter and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63236759A (en) * 1987-03-24 1988-10-03 日本碍子株式会社 Ceramic material for casting

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63236759A (en) * 1987-03-24 1988-10-03 日本碍子株式会社 Ceramic material for casting

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003095738A (en) * 2001-09-27 2003-04-03 Itochu Ceratech Corp Titania or alumina-titania clinker, and refractory obtained by using the clinker
WO2005009918A1 (en) * 2003-07-29 2005-02-03 Ohcera Co., Ltd. Honeycomb carrier for exhaust gas clarification catalyst and method for production thereof
JP2005046667A (en) * 2003-07-29 2005-02-24 Ohcera Co Ltd Honeycomb carrier for exhaust gas cleaning catalyst and its manufacturing method
JP4609831B2 (en) * 2003-07-29 2011-01-12 オーセラ株式会社 Honeycomb carrier for exhaust gas purification catalyst and manufacturing method thereof
US8685363B2 (en) 2003-07-29 2014-04-01 Ohcera Co., Ltd. Honeycomb carrier for exhaust gas clarification catalyst and method for production thereof
JPWO2005018776A1 (en) * 2003-08-22 2006-10-19 オーセラ株式会社 Exhaust gas purification honeycomb filter and manufacturing method thereof
JP5123483B2 (en) * 2003-08-22 2013-01-23 オーセラ株式会社 Manufacturing method of honeycomb filter for exhaust gas purification
JP2005087797A (en) * 2003-09-12 2005-04-07 Ohcera Co Ltd Honeycomb carrier for exhaust gas cleaning catalyst and manufacturing method therefor

Similar Documents

Publication Publication Date Title
US3950464A (en) Method for producing a sintered silicon nitride base ceramic and said ceramic
US4025351A (en) Sintered silicon nitride base ceramic and said ceramic
US4004937A (en) Method for producing a sintered silicon nitride base ceramic and said ceramic
KR940011452B1 (en) Silicon carbide refractories having modified silicon nitride bond
KR0127871B1 (en) Silicon nitride-based siuters
JP2632218B2 (en) Manufacturing method of ceramic sintered body
JPH09268072A (en) Production of silicon nitride sintered compact
JPH02311361A (en) Production of aluminum titanate sintered compact stable at high temperature
JPS6156184B2 (en)
JPS58213677A (en) Silicon nitride composite sintered body
JPH01308868A (en) Ceramic of aluminum titanate and production thereof
JP2002128563A (en) Ceramic member for thermal treatment which has good thermal shock resistance
JP2786719B2 (en) Method for producing rare earth oxide sintered body
JP3145597B2 (en) Alumina sintered body and method for producing the same
JPS6272556A (en) Manufacture of fine polycrystal mgal2o4 spinel
JPH06263544A (en) Sialon-based composite sintered compact and its production
JP3311915B2 (en) Alumina sintered body
JP3152853B2 (en) Alumina sintered body and method for producing the same
JP2508511B2 (en) Alumina composite
JP3228890B2 (en) Manufacturing method of porous inorganic material
JP4883499B2 (en) Boron nitride fired body and method for producing the same
JPS6125676B2 (en)
JPS61236653A (en) Chromium nitride-zirconia base ceramics and manufacture
JPH05279115A (en) Dense sintered compact of chromium oxide and its production
JPH0788256B2 (en) Method for manufacturing aluminum nitride sintered body