JPS6156184B2 - - Google Patents

Info

Publication number
JPS6156184B2
JPS6156184B2 JP54147396A JP14739679A JPS6156184B2 JP S6156184 B2 JPS6156184 B2 JP S6156184B2 JP 54147396 A JP54147396 A JP 54147396A JP 14739679 A JP14739679 A JP 14739679A JP S6156184 B2 JPS6156184 B2 JP S6156184B2
Authority
JP
Japan
Prior art keywords
mullite
particle size
porcelain
particles
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54147396A
Other languages
Japanese (ja)
Other versions
JPS5673665A (en
Inventor
Kazuo Kondo
Akio Takami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP14739679A priority Critical patent/JPS5673665A/en
Publication of JPS5673665A publication Critical patent/JPS5673665A/en
Publication of JPS6156184B2 publication Critical patent/JPS6156184B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

「産業上の利用分野」 本発明はセラミツク基板、熱電対保護管等に使
用する耐熱衝撃性の強い低膨脹高強度磁器の組成
物の製造法に好適に利用され得る。 「従来の技術」 従来この用途に用いる磁器としては、ムライト
磁器、米国アメリカンラバー社のアルシマグ203
等の磁器が用いられていた。 「発明が解決しようとする問題点」 しかし、これらはアルシマグ203で抗折強度が
422Kg/cm3で他の高いものでも1800Kg/cm3で不十分
であつた。一方、高アルミナ磁器は3000Kg/cm3
度の抗折強度を有するが線熱膨脹係数が8×
10-6/℃位で大きかつた。 「問題点を解決するための手段」 本発明はこれを改良し従来のムライト磁器の熱
膨脹係数に近く、強度が高アルミナ磁器と同等の
材質を得るもので、その手段は粒径3μ〜20μの
ムライト粒子、粒径1μ〜25μのアルミナ粒子及
びその他の原料粉末を、焼成後に酸化物重量換算
でAl2O365〜92%と、SiO28〜35%とB2O30.3〜5
%とを含有するように混合し成形後、焼成すると
ころにある。 「作用」 ここでムライト粒子の粒径3〜20μとしたのは
3μ以下及び20μ以上の粒子を用いたときには、
所望の抗折強度が得られなかつたからである。 また、アルミナ粒子は平均で1〜25μであり、
粒径が細かい程、抗折強度は大きくなるが1μ以
下になると焼成収縮が大きくなり、製造が難しく
なる。またB2O3はムライト粒子の成長を促進さ
せ、かつガラス相を生成させる働きがあり、0.3
%未満では有意差の認められるような効果が現れ
ず、また5%を超えると逆に磁器の強度が低下
し、かつ熱膨脹の大きくなる。B2O3の添加方法
も原料に直接添加混合しても、或いは焼結助剤に
予め混合したものを添加してもその効果は発揮さ
れる。TiO2、CaO、MgO、Na2O、K2Oはムライ
トを合成させる際とか天然原料に混入して来る不
純物で鉱化剤としてムライトの合成を促進し焼結
体の密度を向上するが5%を超えると耐熱性が低
下する。 なお、着色成分としてMnO2、Cr2O3、TiO2
CoOの中から選ばれた1種以上を合計10%以下含
有しても特性は殆んど変らない。 「実施例」 実施例 1 平均粒径5μのムライト、平均粒径4μのアル
ミナ平均粒径3μの珪石と試薬1級のTiO2
CaCO3、MgCO3、Na2CO3、K2CO3の等モル比の
混合物、及び着色顔料として試薬一級のFe2O3
MnO2、Cr2O3、CoOの何れかを第1表の配合割
合に調合し、アルミナ製ポツトミルにて、解膠剤
としてヘキサメタ燐酸ソーダ0.1%を添加し10時
間混合し、得られた泥漿を電気乾燥器で150℃4
時間保つて乾燥し、3%のカンフアーをエーテル
に溶解して加え、乾燥後80メツシユの篩を通し
た。この粉末を800Kg/cm2の圧力で成型し、1400〜
1500℃の範囲内で1時間焼成し、5×10×40mmの
試料を作成した。焼結体はX線回折の結果ムライ
ト及びa−Al2O3の結晶が確認できた。それらの
焼結体の特性値を第1表に示す。
"Industrial Application Field" The present invention can be suitably applied to a method for producing a low-expansion, high-strength porcelain composition with strong thermal shock resistance for use in ceramic substrates, thermocouple protection tubes, and the like. "Conventional technology" Conventionally, the porcelain used for this purpose is Mullite porcelain, Alcimag 203 manufactured by American Rubber Co., Ltd.
porcelain was used. ``Problems to be solved by the invention'' However, these are the problems that Alcimag 203 has
It was 422Kg/cm 3 and other high values were 1800Kg/cm 3 which was insufficient. On the other hand, high alumina porcelain has a bending strength of about 3000Kg/ cm3 , but a linear thermal expansion coefficient of 8×
It was large at around 10 -6 /℃. "Means for solving the problem" The present invention improves this to obtain a material with a thermal expansion coefficient close to that of conventional mullite porcelain and a strength equivalent to high alumina porcelain. After firing, mullite particles, alumina particles with a particle size of 1 μm to 25 μm, and other raw material powders are converted to 65% to 92% Al 2 O 3 , 8% to 35% SiO 2 , and 0.3% to 5% B 2 O 3 in terms of oxide weight.
% and then molded and fired. "Effect" Here, the particle size of the mullite particles is set to 3 to 20μ, and when particles of 3μ or less and 20μ or more are used,
This is because the desired bending strength could not be obtained. In addition, the alumina particles have an average size of 1 to 25μ,
The finer the particle size, the greater the bending strength, but if the particle size is less than 1 μm, the firing shrinkage becomes large and manufacturing becomes difficult. In addition, B 2 O 3 has the function of promoting the growth of mullite particles and generating a glass phase.
If it is less than 5%, no significant effect will be observed, and if it exceeds 5%, the strength of the porcelain will decrease and thermal expansion will increase. The effect of B 2 O 3 can be exerted whether it is added directly to the raw materials or by adding it to the sintering aid mixed in advance. TiO 2 , CaO, MgO, Na 2 O, and K 2 O are impurities that are mixed into natural raw materials when synthesizing mullite, and act as mineralizing agents to promote the synthesis of mullite and improve the density of the sintered body. %, heat resistance decreases. In addition, MnO 2 , Cr 2 O 3 , TiO 2 ,
Even if one or more selected from CoO is contained in a total amount of 10% or less, the properties hardly change. "Example" Example 1 Mullite with an average particle size of 5 μm, alumina with an average particle size of 4 μm, silica stone with an average particle size of 3 μm, and TiO 2 of reagent grade 1,
A mixture of CaCO 3 , MgCO 3 , Na 2 CO 3 , K 2 CO 3 in equimolar ratios, and reagent primary Fe 2 O 3 as a coloring pigment,
Mix any of MnO 2 , Cr 2 O 3 , or CoO in the proportions shown in Table 1, add 0.1% sodium hexametaphosphate as a deflocculant, and mix for 10 hours in an alumina pot mill. in an electric dryer at 150℃4
After drying for a while, 3% camphor dissolved in ether was added, and after drying, the mixture was passed through an 80 mesh sieve. This powder is molded at a pressure of 800Kg/ cm2 , and
A sample of 5 x 10 x 40 mm was prepared by firing at a temperature of 1500°C for 1 hour. As a result of X-ray diffraction, mullite and a-Al 2 O 3 crystals were confirmed in the sintered body. Table 1 shows the characteristic values of those sintered bodies.

【表】 これより配合割合が本発明の範囲内のNo.1、
2、3、5、7、8、10は何れも高い抗折強度と
低い熱膨脹を示したが、その範囲外のNo.4R、
No.6R、No.9Rは抗折強度と膨脹係数の何れかが
悪かつた。また市販の参考資料は何れも抗折強度
が劣つていた。 なお、本実施例ではB2O3として硼酸を用いた
が本発明はこれに拘ることなく硼砂(Na2O、
2B2O3、1OH2O)又は灰硼石(2CaO、3B2O3
5H2O)を用いてもNa2O、CaO等を本発明の範囲
内の組成に入れれば何ら支障ないし、硼酸、硼
砂、灰硼石の混合物でも何ら支障はない。 実施例 2 アルミナ及びムライトの粒径が異なる以外は実
施例1の試料No.2と同一条件で試料No.11、
No.12及びNo.13Rを製造し、焼結体の特性を評価
した結果を第2表に示す。
[Table] From this, the blending ratio is No. 1 within the range of the present invention,
No. 2, 3, 5, 7, 8, and 10 all showed high flexural strength and low thermal expansion, but No. 4R, which was outside of that range,
No. 6R and No. 9R had poor bending strength or expansion coefficient. Furthermore, all of the commercially available reference materials had poor bending strength. Although boric acid was used as B 2 O 3 in this example, the present invention is not limited to this, and borax (Na 2 O,
2B 2 O 3 , 1OH 2 O) or perioborite (2CaO, 3B 2 O 3 ,
5H 2 O), there is no problem if Na 2 O, CaO, etc. are included in the composition within the scope of the present invention, and a mixture of boric acid, borax, and boronite also causes no problem. Example 2 Sample No. 11 was prepared under the same conditions as Sample No. 2 of Example 1 except that the particle sizes of alumina and mullite were different.
Table 2 shows the results of manufacturing No. 12 and No. 13R and evaluating the characteristics of the sintered bodies.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 粒径3μ〜20μのムライト粒子、粒径1μ〜
25μのアルミナ粒子及びその他の原料粉末を、焼
成後に酸化物重量換算でAl2O365〜92%とSiO28
〜35%とB2O30.3〜5%とを含有するように混合
し成形後、焼成することを特徴とする低膨脹磁器
組成物の製造法。
1 Mullite particles with a particle size of 3μ to 20μ, particle size of 1μ to
After firing, 25μ alumina particles and other raw material powders are converted to 65-92% Al 2 O 3 and SiO 2 8 in terms of oxide weight.
35% and 0.3 to 5% B 2 O 3 , molded and fired.
JP14739679A 1979-11-14 1979-11-14 Low expansion high strength ceramic composition Granted JPS5673665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14739679A JPS5673665A (en) 1979-11-14 1979-11-14 Low expansion high strength ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14739679A JPS5673665A (en) 1979-11-14 1979-11-14 Low expansion high strength ceramic composition

Publications (2)

Publication Number Publication Date
JPS5673665A JPS5673665A (en) 1981-06-18
JPS6156184B2 true JPS6156184B2 (en) 1986-12-01

Family

ID=15429321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14739679A Granted JPS5673665A (en) 1979-11-14 1979-11-14 Low expansion high strength ceramic composition

Country Status (1)

Country Link
JP (1) JPS5673665A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60103090A (en) * 1983-11-07 1985-06-07 京セラ株式会社 High alumina content sintered body
JPS60226454A (en) * 1984-04-24 1985-11-11 太陽誘電株式会社 Insulative ceramic composition
JPS60240135A (en) * 1984-05-14 1985-11-29 Fujitsu Ltd Multilayer substrate for mounting semiconductor device
JPS6114187A (en) * 1984-06-27 1986-01-22 日本特殊陶業株式会社 Reinforced board-like sintered body
JPH0825790B2 (en) * 1984-06-27 1996-03-13 京セラ株式会社 Mullite sintered body for semiconductor device package and manufacturing method thereof
JPS61179009A (en) * 1985-01-31 1986-08-11 日本特殊陶業株式会社 Alumina ceramics composition
JPH0612694B2 (en) * 1986-07-19 1994-02-16 佐藤 宏 Electrically insulating refractory for electric heating device using Fe-Cr-Al heating element
JPH0674178B2 (en) * 1989-08-30 1994-09-21 菊水化学工業株式会社 Porous refractory
JP5558160B2 (en) * 2010-03-29 2014-07-23 京セラ株式会社 Ceramic circuit board for probe card and probe card using the same
CN104496424A (en) * 2014-12-02 2015-04-08 佛山铭乾科技有限公司 Glass ceramic and preparation method thereof
CN112500172B (en) * 2020-05-11 2021-10-01 深圳前海发维新材料科技有限公司 Application of glass composite material with high softening point, low thermal expansion coefficient, high wear resistance and low thermal conductivity in engine gas turbine

Also Published As

Publication number Publication date
JPS5673665A (en) 1981-06-18

Similar Documents

Publication Publication Date Title
US5763345A (en) Synthetic clay for ceramics and process for production thereof
US4595665A (en) High alumina sintered body
JP4343270B2 (en) High strength porcelain and method therefor
JPH04228471A (en) Sintered ceramic material based on aluminum titanate, preparation thereof and use thereof
JPH01249657A (en) Ceramic sintered body
JPS6140621B2 (en)
EP0001327B1 (en) Magnesium aluminate spinel bonded refractory and method of making
US3652307A (en) Alumina refractories
JPS6156184B2 (en)
Moya et al. Transformation toughening in composites containing dicalcium silicate
JPH04943B2 (en)
JPS63103877A (en) Manufacture of mullite base porous body
JPH0529625B2 (en)
US3868261A (en) Refractory motor
JPH04193782A (en) Production of mullite porous body
JPH01192761A (en) Ingot azs refractory composition
JPS60161371A (en) Manufacture of high strength ceramic sintered body
JPH02311361A (en) Production of aluminum titanate sintered compact stable at high temperature
JPS6081062A (en) High strength ceramic material
JP2959402B2 (en) High strength porcelain
SU781190A1 (en) Charge for producing ceramic materials
JPS59107968A (en) Manufacture of zirconia ceramics
JP3389298B2 (en) Method for producing colored mullite sintered body
JPS6353130B2 (en)
JPS6291463A (en) Manufacture of formed body from al2o3 and zro2