JPS63103877A - Manufacture of mullite base porous body - Google Patents

Manufacture of mullite base porous body

Info

Publication number
JPS63103877A
JPS63103877A JP25042886A JP25042886A JPS63103877A JP S63103877 A JPS63103877 A JP S63103877A JP 25042886 A JP25042886 A JP 25042886A JP 25042886 A JP25042886 A JP 25042886A JP S63103877 A JPS63103877 A JP S63103877A
Authority
JP
Japan
Prior art keywords
mullite
porous body
porous
manufacture
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25042886A
Other languages
Japanese (ja)
Other versions
JPH0212910B2 (en
Inventor
久雄 阿部
関 秀哉
昭夫 福永
都築 宏
浩一 武内
井関 信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagasaki Prefectural Government
Original Assignee
Nagasaki Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagasaki Prefectural Government filed Critical Nagasaki Prefectural Government
Priority to JP25042886A priority Critical patent/JPS63103877A/en
Publication of JPS63103877A publication Critical patent/JPS63103877A/en
Publication of JPH0212910B2 publication Critical patent/JPH0212910B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明はムライトの針状結晶を主な組織とするムライト
質多孔体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a method for producing a porous mullite body whose main structure is acicular crystals of mullite.

「従来技術」 従来、セラミックス多孔体(ムライト質多孔体を含む。"Conventional technology" Conventionally, ceramic porous bodies (including mullite porous bodies) have been used.

)は、原料の粒度構成を調整して成形口1の空隙率を大
きクシ、これを初期段階の焼結によって粒子の接着を行
わU、多孔体を1′、する方法や。
) is a method in which the particle size structure of the raw material is adjusted to increase the porosity of the molding opening 1, and then the particles are bonded by sintering in the initial stage U, and the porous body 1' is formed.

セラミックスの原料粉体にセルロースや炭素材等の可燃
性の空孔形成材を混合して成形、シ、これを焼成して焼
結さけると同時に可燃性物71を燃焼させて空孔を形成
し、多孔体を得る方法等があった(セラミックス、3.
168 [1985])。
A flammable pore-forming material such as cellulose or carbon material is mixed with ceramic raw material powder, molded, and fired to avoid sintering, and at the same time, combustible material 71 is burned to form pores. , methods of obtaining porous bodies, etc. (ceramics, 3.
168 [1985]).

「発明が解決しようとする問題点」 しかしこれらの方法では、無定形あるいは球状に近い原
料粉体を用いて1粒子間の空隙を利用するために高い空
隙率を得ることが困難となり、空隙率は概ね30〜50
%でおる。また粒子間を初期段階の焼結で接着する場合
には2粒子間の接着力が弱く、そのために得られる多孔
体自身の強度低下を招き1次に強度を高めるために焼結
を進行させると、逆に空隙率は小さくなる等の問題点が
あった。
``Problems to be solved by the invention'' However, these methods use amorphous or nearly spherical raw material powder and utilize the voids between particles, making it difficult to obtain a high porosity. is approximately 30-50
It's %. Furthermore, when the particles are bonded during the initial stage of sintering, the adhesive force between the two particles is weak, resulting in a decrease in the strength of the resulting porous body itself, and when sintering is performed to increase the primary strength. However, there were problems such as a decrease in porosity.

「問題点を解決するための手段」 本発明はこれらの点を解決するためになされたものでア
ルミナとシリカを主成分とするI爪籾を成形、焼成して
ムライト質多孔体をj7る方法によ3いてo IjlE
利扮休に添体物を加え゛C2焼成中に未反応あるいは過
剰量のシリカおよび不可避不純物等をガラス相に移行さ
け、クリストバライトの生成を抑制すると同時に、ムラ
イトの鉱化剤として作用させ、焼成後に焼結体中のガラ
ス相を酸で溶出することによってムライトの針状結晶を
主な組織とするムライト質多孔体を(7ることを特徴と
する。
"Means for Solving the Problems" The present invention has been made to solve these problems, and is a method of molding and firing mullite-based porous material containing alumina and silica as main components. IjlE
Additives are added to the mullite to prevent unreacted or excessive silica and unavoidable impurities from transferring to the glass phase during C2 firing, suppress the formation of cristobalite, and at the same time act as a mineralizing agent for mullite. The glass phase in the sintered body is then eluted with acid to form a mullite porous body (7) whose main structure is acicular crystals of mullite.

アルミナ及びシリカを主成分とするlfi料としては力
Aリン、シリマナイト、蝋石や珪石、長石あるいは硫酸
アルミニウム、水ガラス等を単独または組合わけて用い
るが、焼成してムライトを生成する系であれば天然1人
工の区別なく用いることが可能でおる。
As LFI materials containing alumina and silica as main components, phosphorus, sillimanite, silica, silica, feldspar, aluminum sulfate, water glass, etc. are used singly or in combination, but as long as they produce mullite by firing, It can be used regardless of whether it is natural or artificial.

添加物としては金属の酸化物、ハロゲン化物。Additives include metal oxides and halides.

炭酸塩等を用いるが、出発1京料の種類と組合わせによ
り用いる添加物の種類と辺は一定ではない。
Carbonates, etc. are used, but the types and types of additives used vary depending on the type and combination of starting materials.

しかし、いずれの添加物の場合にも、その添加の目的は
ムライトの収率を向上するための鉱化剤となるか、また
は未反応あるいは過剰量のシリカがグリス1〜パライト
に変化することを抑制づることにある。すなわら原料中
に存在する未反応や過剰量のシリカは、 1ooo℃以
上でβ−ツクリスlヘパライト変化し、冷却過程の2O
0℃付近で°αクリス1〜パライトに変化するが、この
時に人き4j体積変化を伴う。この事が原因となって焼
結体中にマイクロクラックを形成したり、甚だしくは焼
結体自身の破壊を起こす。従って焼成後におけるグリス
1〜パライトの残存は極力避けることが必要となり。
However, in the case of any additive, the purpose of its addition is to serve as a mineralizing agent to improve the yield of mullite, or to prevent unreacted or excess silica from converting into grease 1 to pallite. It's about restraint. In other words, unreacted or excess silica present in the raw material changes into β-thuli heparite at temperatures above 100°C and becomes 2O during the cooling process.
At around 0°C, it changes from °αcris1 to palite, but at this time, a change in volume occurs. This causes the formation of microcracks in the sintered body, or even the destruction of the sintered body itself. Therefore, it is necessary to avoid residual grease 1 to pallite as much as possible after firing.

添加物はこのために有効である。Additives are useful for this purpose.

焼成後の焼結体はムライトの仝l状結晶とこれを双巻く
ガラス相、場合によっては未反応あるいは過剰量のα−
アルミナより構成される。この焼結体を所定の濃度と温
度に保った酸液中に一定時間浸漬することにより、焼結
体中のガラス相を溶出する。溶出後はムライトの針状結
晶が3次元的に交錯した多孔体となる。ガラス相の溶出
に用いる酸液としてはフッ化水素酸を用いることが多い
が、ガラス相の性質によっては他の酸液を用いることも
可能である。
After firing, the sintered body consists of mullite crystals, a glass phase surrounding them, and, in some cases, unreacted or excessive α-
Composed of alumina. By immersing this sintered body in an acid solution maintained at a predetermined concentration and temperature for a certain period of time, the glass phase in the sintered body is eluted. After elution, it becomes a porous body in which needle-shaped mullite crystals intersect three-dimensionally. Although hydrofluoric acid is often used as the acid solution used to elute the glass phase, other acid solutions can be used depending on the properties of the glass phase.

「作用」 この方法によって得られるムライト11多孔体は組織の
主な構成要素がムライ1〜のε1状結晶であるため空隙
率が大きく、また3次元的に交錯した構造のため抗折強
度も比較的強い。
"Effect" The mullite 11 porous material obtained by this method has a large porosity because the main constituent elements of the structure are ε1-like crystals of mullite 1, and also has a three-dimensional intersecting structure, so the bending strength is also comparative. Strong to the point.

「実施例」 以下本発明の実施例について説明する。"Example" Examples of the present invention will be described below.

実施例1 平均粒径1μmのロウ石と試薬1級の水酸化アルミニウ
ムをA 12O3 : S I 02の比で3:2に混
合し、この混合物に第1表(後掲)に示す゛添加物を外
削で1%加える。さらに解こう剤としてポリカルボンン
酸アン−しニウムを外削で0.5%添加し、水分40%
のスラリーとした。これをアルミナボールミル12時間
混合し乾燥後、潰砕し80メツシユのフルイで造粒した
。この粉末を300 K’1/cIiの圧力で成形し、
 1400℃で1時間焼成した。
Example 1 Roxite with an average particle size of 1 μm and aluminum hydroxide of first class reagent were mixed at a ratio of A 12 O 3 : SI 02 of 3:2, and the additives shown in Table 1 (see below) were added to this mixture. Add 1% by external cutting. Furthermore, 0.5% of polycarboxylic acid anthinium was added as a peptizer by external cutting, and the moisture content was 40%.
It was made into a slurry. This was mixed in an alumina ball mill for 12 hours, dried, crushed, and granulated using an 80-mesh sieve. This powder was molded at a pressure of 300 K'1/cIi,
It was baked at 1400°C for 1 hour.

この焼結体を温度O℃、溌度46%のフッ化水素酸溶液
中に8時間浸漬した後、取出してよく水洗し、乾燥して
ムライ1〜質多孔体を得た。
This sintered body was immersed in a hydrofluoric acid solution at a temperature of 0° C. and a permeability of 46% for 8 hours, and then taken out, thoroughly washed with water, and dried to obtain a porous body with a quality of 1 to 100 ml.

焼結体を構成する結晶相並びに(7られる多孔体の性質
は第1表(後掲)の通りである。電子顕微鏡による観察
の結果、この方法による多孔体のII孔の大きさは約1
μmであった。    ゛本発明の範囲内のNo、2,
3.4.5,6゜7、8.10.11.12.14.1
5では焼結体中にα−クリストバライトの結晶相を認め
ないか、認めても極めて微量でおり、影響が無視できる
。範囲外のNo、1.9,13.16においてはα−ク
リ実施例2 平均粒径1μmのハロイサイトに第2表(後掲)記載の
添加物を各1%加え、以下実施例1と同様の方法で多孔
体を得た。焼結体及び1qられる多孔体の性質は第2表
記載の通りでおる。本発明の範囲内のNo、17.2O
.21はα−クリストバライトの生成が抑制され、その
結果健全な多孔体を得ることができた。範囲外の試料で
はマイクロクラックの形成や、焼結体の破壊が起り、ぞ
のため叶仝な多孔体は得られない。
The crystalline phase constituting the sintered body and the properties of the porous body (7) are shown in Table 1 (see below). As a result of observation with an electron microscope, the size of II pores of the porous body obtained by this method is approximately 1
It was μm.゛No. 2 within the scope of the present invention
3.4.5, 6°7, 8.10.11.12.14.1
In No. 5, the crystal phase of α-cristobalite is not observed in the sintered body, or even if it is observed, it is in an extremely small amount, and its influence can be ignored. For No. 1.9 and 13.16 outside the range, α-Curi Example 2 Added 1% each of the additives listed in Table 2 (listed later) to halloysite with an average particle size of 1 μm, and the same as Example 1. A porous body was obtained using the method described above. The properties of the sintered body and the porous body 1q are as shown in Table 2. No. 17.2O within the scope of the present invention
.. In No. 21, the formation of α-cristobalite was suppressed, and as a result, a healthy porous body could be obtained. Samples outside this range will cause microcracks to form and the sintered body to break, making it impossible to obtain a perfectly porous body.

実施例3 水酸化アルミニウムと珪石をA12O.、 :SiO2
の比で1 :2.1 :1.3:2,2:1.3:1に
混合し、添加物としてv2O5を外υ1で1〜5%の範
囲で加えた。これに解こう剤としてポリカルボン酸アン
モニウムを外用で1%加え、水分40%のスラリーとし
た後、いこみ成形で直径30mmの円板を成形した。こ
れを1400℃で10.1間焼成した後、46%フッ化
水素酸中に8時間浸漬し取出して良く水洗した。焼結体
及び得られる多孔体の性質は第3表(後携)記載の通り
である。発明範囲内のNo、36.37.38.39は
電子顕微鏡観察の結果、1μm程度の細孔が均一に認め
られクラックの発生もなかった。発明の範囲外のNo、
33、34.35ではα−クリストバライトが生成した
ため、健全な組織が得られなかった。
Example 3 Aluminum hydroxide and silica stone were mixed into A12O. , :SiO2
The mixture was mixed in a ratio of 1:2.1:1.3:2, 2:1.3:1, and v2O5 was added as an additive in a range of 1 to 5% at external v1. To this, 1% ammonium polycarboxylate was added externally as a peptizer to make a slurry with a moisture content of 40%, and a disk with a diameter of 30 mm was formed by molding. After baking this at 1400° C. for 10.1 hours, it was immersed in 46% hydrofluoric acid for 8 hours, taken out, and thoroughly washed with water. The properties of the sintered body and the porous body obtained are as shown in Table 3 (secondary part). As a result of electron microscopic observation of samples No. 36, 37, 38, and 39 within the scope of the invention, pores of about 1 μm were uniformly observed, and no cracks were observed. No. outside the scope of the invention;
In No. 33, No. 34, and No. 35, α-cristobalite was generated, so healthy tissues could not be obtained.

「効果」 以上2本発明によるムライト質多孔体は微細な多孔組織
と比較的大ぎな抗JJF強度をわし、各種産業用のフィ
ルター、気泡発生器、バイオリアクターの担体、触媒等
に用いて(へめて4j効(・ある。
"Effects" The above two mullite porous materials according to the present invention have a fine porous structure and relatively high JJF resistance, and can be used for various industrial filters, bubble generators, bioreactor carriers, catalysts, etc. For the first time, 4J is effective (・Yes.

第2表Table 2

Claims (1)

【特許請求の範囲】[Claims] アルミナ(Al_2O_3)とシリカ(SiO_2)を
含む原料に添加物を加えて成形し焼成してムライト(3
AL_2O_32SiO_2)質多孔体を得る方法にお
いて、原料粉体に添加物を加えることにより焼成中に未
反応あるいは過剰量のシリカをガラス相に移行させ、か
つクリストバライトの生成を抑制し、焼成後にこのガラ
ス相を酸で溶出することによってムライトの針状結晶か
らなる多孔体を得ることを特徴とするムライト質多孔体
の製造方法。
Mullite (3
AL_2O_32SiO_2) In the method of obtaining a porous material, unreacted or excess silica is transferred to the glass phase during firing by adding additives to the raw material powder, and the formation of cristobalite is suppressed, and this glass phase is removed after firing. 1. A method for producing a mullite porous body, which comprises obtaining a porous body consisting of needle-like crystals of mullite by eluting the mullite with an acid.
JP25042886A 1986-10-22 1986-10-22 Manufacture of mullite base porous body Granted JPS63103877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25042886A JPS63103877A (en) 1986-10-22 1986-10-22 Manufacture of mullite base porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25042886A JPS63103877A (en) 1986-10-22 1986-10-22 Manufacture of mullite base porous body

Publications (2)

Publication Number Publication Date
JPS63103877A true JPS63103877A (en) 1988-05-09
JPH0212910B2 JPH0212910B2 (en) 1990-03-29

Family

ID=17207737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25042886A Granted JPS63103877A (en) 1986-10-22 1986-10-22 Manufacture of mullite base porous body

Country Status (1)

Country Link
JP (1) JPS63103877A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02208270A (en) * 1989-02-07 1990-08-17 Nagasaki Pref Gov Porous mullite material
JPH02239168A (en) * 1989-03-13 1990-09-21 Shoei Chem Ind Co Production of circuit board
US5198007A (en) * 1991-12-05 1993-03-30 The Dow Chemical Company Filter including a porous discriminating layer on a fused single crystal acicular ceramic support, and method for making the same
WO2003082773A1 (en) * 2002-03-25 2003-10-09 Dow Global Technologies Inc. Mullite bodies and methods of forming mullite bodies
WO2005056180A1 (en) * 2003-12-15 2005-06-23 National Institute Of Advanced Industrial Science And Technology Needle-shaped ceramic body, needle-shaped ceramic catalyst body and method for producing same
CN100444954C (en) * 2003-12-15 2008-12-24 独立行政法人产业技术综合研究所 Needle-shaped ceramic body, needle-shaped ceramic catalyst body and method for producing same
US7485594B2 (en) 2005-10-03 2009-02-03 Dow Global Technologies, Inc. Porous mullite bodies and methods of forming them
US7528087B2 (en) 2003-04-24 2009-05-05 Dow Global Technologies, Inc. Porous mullite bodies and methods of forming them
JP2013193895A (en) * 2012-03-16 2013-09-30 Citizen Finetech Miyota Co Ltd Porous molding member and method of manufacturing the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02208270A (en) * 1989-02-07 1990-08-17 Nagasaki Pref Gov Porous mullite material
JPH02239168A (en) * 1989-03-13 1990-09-21 Shoei Chem Ind Co Production of circuit board
US5198007A (en) * 1991-12-05 1993-03-30 The Dow Chemical Company Filter including a porous discriminating layer on a fused single crystal acicular ceramic support, and method for making the same
JP2010150140A (en) * 2002-03-25 2010-07-08 Dow Global Technologies Inc Mullite body and method of forming the mullite body
KR100965042B1 (en) * 2002-03-25 2010-06-21 다우 글로벌 테크놀로지스 인크. Mullite bodies and methods of forming mullite bodies
WO2003082773A1 (en) * 2002-03-25 2003-10-09 Dow Global Technologies Inc. Mullite bodies and methods of forming mullite bodies
US7947620B2 (en) 2002-03-25 2011-05-24 Dow Global Technologies Llc Mullite bodies and methods of forming mullite bodies
US7528087B2 (en) 2003-04-24 2009-05-05 Dow Global Technologies, Inc. Porous mullite bodies and methods of forming them
WO2005056180A1 (en) * 2003-12-15 2005-06-23 National Institute Of Advanced Industrial Science And Technology Needle-shaped ceramic body, needle-shaped ceramic catalyst body and method for producing same
CN100444954C (en) * 2003-12-15 2008-12-24 独立行政法人产业技术综合研究所 Needle-shaped ceramic body, needle-shaped ceramic catalyst body and method for producing same
US7855162B2 (en) 2003-12-15 2010-12-21 National Institute Of Advanced Industrial Science And Technology Needle-shaped ceramic body, needle-shaped ceramic catalyst body and method for producing same
US7485594B2 (en) 2005-10-03 2009-02-03 Dow Global Technologies, Inc. Porous mullite bodies and methods of forming them
JP2013193895A (en) * 2012-03-16 2013-09-30 Citizen Finetech Miyota Co Ltd Porous molding member and method of manufacturing the same

Also Published As

Publication number Publication date
JPH0212910B2 (en) 1990-03-29

Similar Documents

Publication Publication Date Title
CN108585810A (en) Micropore ceramics and preparation method thereof and atomization core
JPS63103877A (en) Manufacture of mullite base porous body
JP2023553118A (en) Low melting point porous ceramic material and its manufacturing method
JPS6156184B2 (en)
JPH0651596B2 (en) Method for manufacturing cordierite honeycomb structure
JPH03141181A (en) Production of alumina ceramic having improved surface
US2220411A (en) Refractory and method of making same
JPH0572355B2 (en)
US2332343A (en) Ceramic material
JPS59169963A (en) High strength ceramic foam and manufacture
JPH04193782A (en) Production of mullite porous body
JPH0224779B2 (en)
US3223541A (en) Production of refractory silica articles
JPH02208270A (en) Porous mullite material
JPH03159970A (en) Ceramic sintered body of heat-resistant porous non-oxide base and production thereof
JP3219112B2 (en) Method for producing calcium aluminate ceramic sintered body
JPH06191944A (en) Sic refractory
JPH11322411A (en) Production of ceramic
JPS59107968A (en) Manufacture of zirconia ceramics
CN117534489A (en) Combined filler for sintering silicon-based ceramic core and preparation method and application thereof
KR910002579B1 (en) Alumina porous body and production of the same
JPH06171977A (en) Production of porous glass
UA125837C2 (en) Slip of a heat-resistant glass-ceramic material
JP2000024430A (en) Filter material for molten metal
JPH04293290A (en) Smooth ceramic substrate and manufacture thereof