JPS58213677A - Silicon nitride composite sintered body - Google Patents
Silicon nitride composite sintered bodyInfo
- Publication number
- JPS58213677A JPS58213677A JP57093167A JP9316782A JPS58213677A JP S58213677 A JPS58213677 A JP S58213677A JP 57093167 A JP57093167 A JP 57093167A JP 9316782 A JP9316782 A JP 9316782A JP S58213677 A JPS58213677 A JP S58213677A
- Authority
- JP
- Japan
- Prior art keywords
- silicon nitride
- sintered body
- composite sintered
- nitride composite
- zro
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Ceramic Products (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は溶融金属とくに高合金鋼の鋳造用として、特に
耐食性を有する窒化珪素−複合焼結体及びその製造方法
に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a silicon nitride composite sintered body having particularly corrosion resistance for casting molten metal, particularly high alloy steel, and a method for producing the same.
° 一般iこステンレス等の高合金鋼の鋳造用材料とし
ては高アルミナ、ジルコニア、アルミナ−グラファイト
等の耐火物が使用されているが、0.1m以下の寸法精
度が要求されかつ耐熱衝撃性等の使用条件が厳しい所で
はこれら耐火物には限界があり、ホットプレスボロンナ
イトライド(HPBN )勢の特殊セラミックスが使用
されている。° Refractories such as high alumina, zirconia, and alumina-graphite are used as casting materials for general high-alloy steel such as stainless steel, but dimensional accuracy of 0.1 m or less is required and thermal shock resistance etc. There are limits to these refractories in places where the usage conditions are severe, and special ceramics such as hot-pressed boron nitride (HPBN) are used.
HPBNは耐熱衝撃性に特に優れ、成形後切削加工が可
能で面精度も良好な材料であるが、ステンレス以上の高
合金鋼jIK 0rtTi含有鋼に対し高耐食性材料と
は云い難い。HPBN is a material that has particularly excellent thermal shock resistance, can be cut after forming, and has good surface precision, but it cannot be said to be a material with high corrosion resistance compared to high alloy steels higher than stainless steel and steel containing TiK.
そこで1/3を表vc示す酸化物、炭化物、窒化物等の
各種セラミック材料のステンレスに対する耐食性につい
て検討した。その結果、耐食性に優れた材料は緻密質の
A40s # zrOt 、サイアロン(z=J )で
HPBli及び緻密& 810 、81sN、は必ずし
も高耐食性材料ではないことが判明した。Therefore, we investigated the corrosion resistance of various ceramic materials such as oxides, carbides, and nitrides, which account for 1/3 of the stainless steel. As a result, it was found that the materials with excellent corrosion resistance are dense A40s #zrOt, Sialon (z=J), HPBli, and dense &810, 81sN, which are not necessarily highly corrosion resistant materials.
第1表 各種セラミックスのステンレスに対する濡性*
密度特性
ム:9gA−100%
B: デ0%以上
0 : 70〜デ0チ
条件)温度: /!DO℃/1時間保持(昇温1oo
o〜/に00℃J、j℃/分)
雰囲気HAr
ステンレス:SUS、?O$ φ/0.t X /、
tそこで寸法精度と耐食性の特性を備えた材料を開発す
るため、反応焼結81.N、をベースに酸化物との複合
材料化について検討した。Table 1 Wettability of various ceramics to stainless steel*
Density characteristics: 9gA-100% B: 0% or more 0: 70~De0chi conditions) Temperature: /! Hold DO℃/1 hour (temperature increase 1oo
o~/00℃J, j℃/min) Atmosphere HAr Stainless steel: SUS, ? O$φ/0. tX/,
Therefore, in order to develop a material with characteristics of dimensional accuracy and corrosion resistance, reaction sintering 81. We investigated the creation of composite materials based on N and oxides.
上記の点について鋭意検討の結果反応焼結によるSi、
N4骨格中に均一に分布したZrO,の分散相からなる
組織の複合焼結体はステンレスに対する副食性が著しく
向上することが判明した。この分散相としてのZrO,
は未安定化、安定化を問わず耐食性には差が認められな
かったが、未安定化ZrO,を含む窒化珪素質複合焼結
体は熱膨張率がZrO,添加に伴い指―関数的に増加し
、特に熱衝撃性の作用する耐熱部品としては使用に耐え
ないことが判った。As a result of intensive study on the above points, Si by reaction sintering,
It has been found that a composite sintered body with a structure consisting of a dispersed phase of ZrO uniformly distributed in an N4 skeleton has significantly improved side-effect corrosion against stainless steel. ZrO as this dispersed phase,
There was no difference in corrosion resistance between unstabilized and stabilized ZrO, but silicon nitride composite sintered bodies containing unstabilized ZrO had an exponential coefficient of thermal expansion with the addition of ZrO. It was found that it could not withstand use as a heat-resistant component that is particularly susceptible to thermal shock.
を使用した窒化珪素質複合焼結体は、前記ジルコニアが
反応焼結81.N、骨格の空隙及び粒界に分散相として
存在し、熱変化によシ等軸晶、単斜晶の相転移によるジ
ルコニア粒子の体積膨張による81.N、骨格への圧縮
応力の付与で複合焼結体としての強度特性及び耐熱衝撃
性が向上しかつ熱膨張係数も反応焼結81.N、とほと
んど同一であることが判明した。The silicon nitride composite sintered body using the zirconia reaction sintered 81. N exists as a dispersed phase in the pores and grain boundaries of the skeleton, and is caused by volume expansion of zirconia particles due to equiaxed and monoclinic phase transitions due to thermal changes.81. By applying N and compressive stress to the skeleton, the strength characteristics and thermal shock resistance of the composite sintered body are improved, and the coefficient of thermal expansion is 81. It turned out to be almost identical to N.
次に窒化珪素焼結体とステンレスとの反応機構について
検討する。ステンレスは一般の構造用鋼と比較してOr
、Ni、Ti、Mn、Mo成分を含みかつ溶融状態での
粘性及び融点も低い。Next, we will discuss the reaction mechanism between the silicon nitride sintered body and stainless steel. Stainless steel is Or
, Ni, Ti, Mn, and Mo components, and also has low viscosity and melting point in a molten state.
そこで1soo℃近傍におけるN!1モル尚ルの窒化珪
素の生成エネルギーとステンレス成分のN、 1モル当
夛の生成自由エネルギーを計算すると、エネルギーレベ
ルに逆転が認められ81.N4中のNとステンレス成分
との反応による侵食が生じることになぁ。Therefore, N! near 1 soo℃! When we calculated the formation energy of 1 mole of silicon nitride and the formation free energy of 1 mole of stainless steel component N, we found that the energy levels were reversed.81. Erosion will occur due to the reaction between the N in N4 and the stainless steel components.
またステンレス自体の低粘性等の高温特性及びMn等に
よる低融性化合物の生成も侵食に効果的に働いているも
のと考えられる。ここで窒化珪素質複合焼結体の耐食性
が優れているのは、ジルコニアが窒化珪素骨格内に均一
に分散相として存在し、溶融鉄と81.N、の境界面で
窒化珪素骨格の保饅膜的役目を果しているからだと考え
られる。It is also believed that the high-temperature properties of stainless steel itself, such as its low viscosity, and the formation of low-melting compounds such as Mn, work effectively against corrosion. The reason why the silicon nitride composite sintered body has excellent corrosion resistance is that zirconia exists as a uniformly dispersed phase within the silicon nitride skeleton, and it is mixed with molten iron by 81%. This is thought to be because it acts as a protective film for the silicon nitride skeleton at the interface between N and N.
次に本発明の製造方aKついて説明する。Next, the manufacturing method aK of the present invention will be explained.
初めに出発原料について説明する。本発明の焼結体は金
属シリコンと奔分妻淀冊涜4安定化ジルコニアよシなシ
金属シリコンの窒素との反応焼結により形成されるもの
である。出発原料とじての金属シリコン粉末は純度qq
tlb以上の81 を含有しかつその粒度がtaμ以下
の粉末を使用する。郁吻喉唄H院【ヂ安定化ジルコニア
は純度9t%以上、粒度741μ以下、打首しくけ4!
りμ以下でかつOaO、MgO、Y2O,等による全て
の安定化剤を使用した原料が使用できる。窒化珪素系複
合焼結体は前記B1粉末と
安定化ジルコニアを必須成分とし所一定の割合に配合し
た後、アルコール等の非酸化性溶媒(場合によっては水
を使用しても良い)及びPVA等の結合剤を適量添加し
、均一混合混練したのち造粒乾燥を行ない成形用原料と
する。この原料をラバープレス及び金型を用いた機械プ
レス等で成形後、Ar、H黛尋、非酸化性雰囲気化12
00℃近傍で焼成し、アルコール、水分及びバインダー
を除去するとともに成形体に強度を付与し切削可能な状
態にする。First, the starting materials will be explained. The sintered body of the present invention is formed by reaction sintering of metallic silicon and metallic silicon, such as stabilized zirconia, with nitrogen. The metal silicon powder as starting material has a purity of qq
A powder containing 81 tlb or more and a particle size of taμ or less is used. Ikunoshotouta H-in [di-stabilized zirconia has a purity of 9t% or more, a particle size of 741μ or less, and a neck-shaking mechanism 4!
It is possible to use raw materials with a stabilizer of less than μ and using any stabilizer such as OaO, MgO, Y2O, etc. The silicon nitride-based composite sintered body contains the above-mentioned B1 powder and stabilized zirconia as essential components, which are mixed in a certain ratio, and then mixed with a non-oxidizing solvent such as alcohol (water may be used in some cases), PVA, etc. After adding an appropriate amount of a binder and uniformly mixing and kneading, the mixture is granulated and dried to obtain a raw material for molding. After molding this raw material with a mechanical press using a rubber press or a mold, place it in an Ar, H, non-oxidizing atmosphere.
The molded body is fired at around 00°C to remove alcohol, water and binder, and to impart strength to the molded body and make it machinable.
この成形体を目的に応じた寸法精度で機械加工した後、
最終焼結温度/4t00〜1azO℃、窒素ガス雰囲気
中でslの窪化反応が完了し反応焼結による窒化珪素質
複合焼結体が得られる。After machining this molded body with dimensional accuracy according to the purpose,
The final sintering temperature is 4t00 to 1azO<0>C in a nitrogen gas atmosphere, and the siltation reaction of sl is completed, yielding a silicon nitride composite sintered body by reactive sintering.
次に実施例に基づき本発明をさらに具体的に説明する。Next, the present invention will be explained in more detail based on Examples.
実施例 l
原料として純度11チ、粒度クダμ以下の81粉末と純
度11チ、粒度ダダμ以下の各種ZrO鵞粉末を用い、
第−表の如く所定割合で配合した。この配合物を0.1
% PTAのアルコール溶媒下で均一に混練しO,コ
〜A’llに造粒、乾燥した後、これを形粋に入れラバ
ープレスを用いt、r ) 77cm”の成形圧で成形
した。ついでこの成形体をArの非酸化性雰囲気下/:
100℃の温度によ)コ時間焼成し、仮焼結体としこの
仮焼結体を強度測定用試料としてrxsxzoBと侵食
試験用ルツボとしてφ30×30t(内コOφXJ7t
)(iり形状に加工後、これを最高温度1qoo〜1a
ro℃tでlθを時間窒化焼成し窒化珪素質複合焼結体
を作った。Example 1 Using 81 powder with a purity of 11 cm and a particle size of less than Kuda μ and various ZrO powders with a purity of 11 cm and a particle size of less than Dada μ as raw materials,
They were blended in the predetermined proportions as shown in Table 1. This formulation is 0.1
% PTA in an alcohol solvent, granulated into O, CO to A'll, dried, and then placed in a mold and molded using a rubber press at a molding pressure of 77 cm. This molded body was placed in a non-oxidizing atmosphere of Ar/:
It was fired at a temperature of 100°C for 1 hour) to form a temporary sintered body, and this temporary sintered body was used as a sample for strength measurement with rxsxzoB and as a crucible for erosion test φ30×30t (inner diameter φXJ7t).
) (After processing into an i-shaped shape, it is heated to a maximum temperature of 1 qoo to 1 a
A silicon nitride composite sintered body was produced by nitriding and firing lθ at ro°Ct for a time.
第−表には上記のようにして製造された窒化珪素質複合
焼結体の溶融金属による耐食性熱衝撃性及び密度特性に
ついて比較例とともに記載した。耐食性は上記ルツボに
0−Bteel及びステンレス5USJO41約36)
のブロックを用いiss;。Table 1 lists the corrosion resistance, thermal shock resistance and density characteristics of the silicon nitride composite sintered bodies produced as described above, together with comparative examples. Corrosion resistance is determined by using 0-Bteel and stainless steel 5USJO41 in the above crucible (approximately 36)
using the block of iss;.
℃ArAr雰囲気下関時間保持後の侵食量を測定した。The amount of erosion was measured after being held in an ArAr atmosphere for a certain period of time.
その結果ZrO!粉末3粉末3以量−以下のステンレス
に対する耐食性が小さい仁とが判る。As a result, ZrO! It can be seen that the corrosion resistance against stainless steel is low when the amount of powder is 3 or more.
才た熱衝撃性については強度測定用試験片をJXQX!
0@@に gooダイヤモンドで研削仕上加工を行ない
、空気中1ooo℃に急熱し30分保持したのち、コ3
℃の水に水中急冷後、スパン308m、クロスヘッドス
ピードo 、s; tsyn/ +im lで強度測定
し、常温での初期強度と比較し強度劣化の割合で示した
。その結果、未安定化ZrO!rO!使用したものは強
度劣化が大きく使用に耐えないことが判った。一方PF
−8Zを用いたものは強度特性についても良好な性状を
示すが添加物が60重量%を超えると密度特性、強度特
性の点で限界がある。以上の結果、両方の特性を満足す
る必須条件は3重量−以上60重量%以下の蕃命安発咄
寺移安定化ジルコニアを含む焼結体である。For excellent thermal shock properties, use JXQX test pieces for strength measurement!
0@@ was finished by grinding with goo diamond, rapidly heated to 1ooo℃ in air and held for 30 minutes, and then
After quenching in water at a temperature of °C, the strength was measured at a span of 308 m and a crosshead speed of o, s; As a result, unstabilized ZrO! rO! It was found that the material used had a significant deterioration in strength and was unusable. On the other hand, PF
-8Z exhibits good strength properties, but if the additive content exceeds 60% by weight, there is a limit in terms of density properties and strength properties. As a result of the above, the essential condition for satisfying both characteristics is a sintered body containing 3-60% by weight of stabilized zirconia.
実施例 よ
j31BN4− ZrO,系でZrO,として未安定化
ZrO,及びOaO安定安定化Zr台用い、ZrO,含
有量として3゜10、/!、コ0 、 JO、10重量
−組成の焼結体を作成し、常温〜/!DO℃で酸化・非
酸化雰囲気での熱膨張を測定し熱衝撃性との関係につい
て検討した。製造方法は実施例1と同様な方式で81を
出発原料とする反応焼結法で行々つた。その結果酸化・
非酸化雰囲気を問わずZrO,の種類による明確な熱膨
張の差が明らかになった。゛つti未安定化ZrO,は
600−’100℃近傍で異常膨張が認められこれが熱
衝撃性低下の原因と考えられ、一方OaO安定化ZrO
,含有焼結体で反応焼結81.N4とはとんど同等の熱
膨張を示し、耐熱衝撃性にも優れていることが判明した
。Example 31BN4- ZrO system uses unstabilized ZrO as ZrO, and OaO stabilized Zr stand, ZrO content is 3°10, /! A sintered body with a weight composition of , KO 0, JO, 10 is prepared and kept at room temperature ~/! Thermal expansion in oxidizing and non-oxidizing atmospheres was measured at DO°C, and the relationship with thermal shock properties was investigated. The manufacturing method was the same as in Example 1, using a reaction sintering method using 81 as a starting material. As a result, oxidation
A clear difference in thermal expansion depending on the type of ZrO was found regardless of the non-oxidizing atmosphere. Unstabilized ZrO exhibited abnormal expansion near 600-100°C, which is thought to be the cause of the decrease in thermal shock resistance, while OaO-stabilized ZrO
, reaction sintering with a sintered body containing 81. It was found that it exhibited almost the same thermal expansion as N4 and also had excellent thermal shock resistance.
第1図及び第一図はそれぞれ未安定化ZrO,及びOa
O安定安定化Zr台有窒化珪素質複合焼結体の熱膨張曲
線を示す。Figures 1 and 1 show unstabilized ZrO and Oa, respectively.
1 shows a thermal expansion curve of an O-stabilized Zr-based silicon nitride composite sintered body.
実施例 3
実施例/と同様な方法で製造した窒化珪素質複合焼結体
(OaO安定安定化Zr台と反応焼結体813N4及び
ホットプレスBNについて1300℃における濡れ性及
び耐食性について検討した。濡れ性の測定は1oxio
xsHのセラミックテストピースにφ/、、t X /
Jmのステンレス鋼をのせ、Ar雰囲気中3℃/分の速
度で昇温し1zoo℃での接触角及び/!TOO″C/
時間保持後の接触角を測定し、冷却後の侵食量を検鏡し
た。その結果、本発明品は接触角ii6°で時間経過後
も変化が認められず、才だ侵食量もほとんどなく良好な
耐食性を示すが、反応焼結191.N、及びホットプレ
スBNは接触角がyo〜60°と小さく、組織的にも侵
食が認められる。第3表にその結果を示す。Example 3 Wettability and corrosion resistance at 1300°C were investigated for a silicon nitride composite sintered body (OaO stabilized Zr stand, reaction sintered body 813N4, and hot pressed BN manufactured by the same method as in Example 3). Sex measurement is 1oxio
xsH ceramic test piece φ/,,tX/
Jm stainless steel was placed on it, heated at a rate of 3°C/min in an Ar atmosphere, and the contact angle at 1zoo°C and /! TOO″C/
The contact angle after holding for a time was measured, and the amount of erosion after cooling was examined using a microscope. As a result, the product of the present invention had a contact angle of ii6° with no change observed over time, and exhibited good corrosion resistance with almost no amount of corrosion. N and hot-pressed BN have a small contact angle of yo~60°, and erosion is also observed in the structure. Table 3 shows the results.
/〜
7/
第3表 窒化珪素質複合焼結体の耐食性以上述べたよ
うに本発明の窒化珪素質複合焼結体は従来の反応焼結E
li、N、の欠点である溶融金属とくに高合金鋼に対す
る耐食性が著しく改善され、かつ反応節−緒法であるた
め高寸法精度の加工が容易で経済的にも優れた焼結体で
ある。/ ~ 7/ Table 3 Corrosion resistance of silicon nitride composite sintered body As stated above, the silicon nitride composite sintered body of the present invention is
The corrosion resistance of molten metals, especially high-alloy steel, which is a disadvantage of Li and N, is significantly improved, and since it is a reactive joint process, it is easy to process with high dimensional accuracy and is an economically superior sintered body.
第1図は9未安定化ジルコニア含有窒化珪素質機合焼結
体の熱膨張曲線を示す図、第2図はOaO安定化ジルコ
ニア含有窒化珪素質複合焼結体の熱膨張曲線を示す図で
ある。
特許出願人 品川白煉瓦株式会社Figure 1 shows the thermal expansion curve of a silicon nitride composite sintered body containing 9 unstabilized zirconia, and Figure 2 shows the thermal expansion curve of a silicon nitride composite sintered body containing OaO-stabilized zirconia. be. Patent applicant: Shinagawa White Brick Co., Ltd.
Claims (1)
定化Zr01からなり、前記窒化珪素の連続骨格中に前
記安定化ジルコニアが分散相として均一に存在し、かつ
溶融金属とくに高合金鋼に対する耐食性を特徴とする反
応焼結法による窒化珪素質複合焼結体。The stabilized zirconia is uniformly present as a dispersed phase in the continuous skeleton of the silicon nitride, and the stabilized zirconia is uniformly present as a dispersed phase in the continuous skeleton of the silicon nitride. A silicon nitride composite sintered body produced by the reaction sintering method, which is characterized by corrosion resistance against alloy steel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57093167A JPS6050750B2 (en) | 1982-06-02 | 1982-06-02 | Silicon nitride composite sintered body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57093167A JPS6050750B2 (en) | 1982-06-02 | 1982-06-02 | Silicon nitride composite sintered body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58213677A true JPS58213677A (en) | 1983-12-12 |
JPS6050750B2 JPS6050750B2 (en) | 1985-11-09 |
Family
ID=14075008
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57093167A Expired JPS6050750B2 (en) | 1982-06-02 | 1982-06-02 | Silicon nitride composite sintered body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6050750B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5921581A (en) * | 1982-07-27 | 1984-02-03 | 株式会社神戸製鋼所 | Refractories for continuous casting |
JPS6168374A (en) * | 1984-09-12 | 1986-04-08 | 品川白煉瓦株式会社 | Nozzle for casting molten metal and manufacture |
WO1987006928A1 (en) * | 1986-05-12 | 1987-11-19 | The Secretary Of State For Defence In Her Britanni | Zirconia ceramic materials |
JPS645975A (en) * | 1987-06-30 | 1989-01-10 | Toshiba Ceramics Co | High strength ceramic having high corrosion resistance |
US4891342A (en) * | 1985-11-20 | 1990-01-02 | Kyocera Corporation | Process for preparing a silicon nitride sintered body |
US5168080A (en) * | 1989-05-11 | 1992-12-01 | Isuzu Ceramics Research Institute Co., Ltd. | Method of manufacturing composite ceramics of silicon nitride and zirconia |
JP2008024579A (en) * | 2006-03-31 | 2008-02-07 | National Institute Of Advanced Industrial & Technology | Reaction sintered silicon nitride-based composite and method for producing the same |
WO2023084957A1 (en) * | 2021-11-15 | 2023-05-19 | 黒崎播磨株式会社 | Silicon nitride composite material and probe-guiding part |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6352052U (en) * | 1986-09-20 | 1988-04-08 |
-
1982
- 1982-06-02 JP JP57093167A patent/JPS6050750B2/en not_active Expired
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5921581A (en) * | 1982-07-27 | 1984-02-03 | 株式会社神戸製鋼所 | Refractories for continuous casting |
JPS6247834B2 (en) * | 1982-07-27 | 1987-10-09 | Kobe Steel Ltd | |
JPS6168374A (en) * | 1984-09-12 | 1986-04-08 | 品川白煉瓦株式会社 | Nozzle for casting molten metal and manufacture |
JPS6362475B2 (en) * | 1984-09-12 | 1988-12-02 | ||
US4891342A (en) * | 1985-11-20 | 1990-01-02 | Kyocera Corporation | Process for preparing a silicon nitride sintered body |
WO1987006928A1 (en) * | 1986-05-12 | 1987-11-19 | The Secretary Of State For Defence In Her Britanni | Zirconia ceramic materials |
JPH01502336A (en) * | 1986-05-12 | 1989-08-17 | イギリス国 | zirconia ceramic material |
JPS645975A (en) * | 1987-06-30 | 1989-01-10 | Toshiba Ceramics Co | High strength ceramic having high corrosion resistance |
US5168080A (en) * | 1989-05-11 | 1992-12-01 | Isuzu Ceramics Research Institute Co., Ltd. | Method of manufacturing composite ceramics of silicon nitride and zirconia |
JP2008024579A (en) * | 2006-03-31 | 2008-02-07 | National Institute Of Advanced Industrial & Technology | Reaction sintered silicon nitride-based composite and method for producing the same |
WO2023084957A1 (en) * | 2021-11-15 | 2023-05-19 | 黒崎播磨株式会社 | Silicon nitride composite material and probe-guiding part |
JP2023073077A (en) * | 2021-11-15 | 2023-05-25 | 黒崎播磨株式会社 | Silicon nitride composite material and probe-guiding component |
Also Published As
Publication number | Publication date |
---|---|
JPS6050750B2 (en) | 1985-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5286685A (en) | Refractory materials consisting of grains bonded by a binding phase based on aluminum nitride containing boron nitride and/or graphite particles and process for their production | |
US5212123A (en) | Refractory materials formed from refractory grains bonded by a sialon matrix containing dispersed graphite and/or boron nitride particles and a process for the preparation of these materials | |
JPH0244785B2 (en) | ||
JPS58213677A (en) | Silicon nitride composite sintered body | |
EP0170889B1 (en) | Zrb2 composite sintered material | |
CA2008338A1 (en) | Zirconia mullite/boron nitride composites | |
JPH0116791B2 (en) | ||
US3325300A (en) | Refractory bodies and compositions and methods of making the same | |
JPS5950074A (en) | Continuous casting refractories | |
US3287478A (en) | Method of sintering aluminum nitride refractories | |
JPS6335593B2 (en) | ||
JPH0244784B2 (en) | ||
CA2067531C (en) | Mullite/yttria stabilized zirconia/boron nitride composites | |
JPS6125676B2 (en) | ||
KR890002158B1 (en) | Silicon mitride ceramic sintered body and the method for producing the same | |
JPS63319263A (en) | Silicon nitride-based ceramic | |
JPH0224789B2 (en) | ||
JPS5921581A (en) | Refractories for continuous casting | |
JPH06263544A (en) | Sialon-based composite sintered compact and its production | |
JPH02311361A (en) | Production of aluminum titanate sintered compact stable at high temperature | |
EP0511840B1 (en) | Mullite/boron nitride composite break ring | |
JPS60137873A (en) | Silicon nitride sintered body | |
JPH0193470A (en) | Ceramic sintered material | |
JPS589882A (en) | Super hard heat-resistant ceramics and manufacture | |
JPH01246178A (en) | Production of refractory for molten steel |