JPS63319263A - Silicon nitride-based ceramic - Google Patents

Silicon nitride-based ceramic

Info

Publication number
JPS63319263A
JPS63319263A JP62154362A JP15436287A JPS63319263A JP S63319263 A JPS63319263 A JP S63319263A JP 62154362 A JP62154362 A JP 62154362A JP 15436287 A JP15436287 A JP 15436287A JP S63319263 A JPS63319263 A JP S63319263A
Authority
JP
Japan
Prior art keywords
silicon nitride
sintering
metallic
tin
si3n4
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62154362A
Other languages
Japanese (ja)
Other versions
JP2573230B2 (en
Inventor
Yasuhiro Itsudo
康広 五戸
Takeshi Yonezawa
米澤 武之
Yoshiyuki Onuma
佳之 大沼
Hiroshi Inoue
寛 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62154362A priority Critical patent/JP2573230B2/en
Publication of JPS63319263A publication Critical patent/JPS63319263A/en
Application granted granted Critical
Publication of JP2573230B2 publication Critical patent/JP2573230B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain the titled ceramics having a high rupture toughness value and superior strength at high temp. by adding powder of TiN or metallic Ti to Si3N4 powder in combination with Y2O3, Al2O3 or the like as an additive for sintering and by sintering the resulting powdery mixture. CONSTITUTION:Si3N4 powder is mixed with Y2O3, Al2O3 or the like as an additive for sintering and simultaneously powder of TiN or metallic Ti or fine particles of TiO2 or the like which is converted into TiN or metallic Ti during sintering are added to prepare a powdery mixture. This mixture is sintered at about 1,780 deg.C under about 300kg/cm<2> pressure for about 90min to obtain the titled ceramics made of an Si3N4-additive type sintered body contg. 2-30wt.% fine grains of TiN or metallic Ti dispersed in the second phase of the grain boundary and in the Si3N4 grains.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は常温においても、また高温においても機械的性
質の優れた窒化ケイ素を主成分とするセラミックス焼結
体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention relates to a ceramic sintered body mainly composed of silicon nitride, which has excellent mechanical properties both at room temperature and at high temperature.

(従来の技術) 窒化ケイ素系セラミックスは高強度で耐熱性。(Conventional technology) Silicon nitride ceramics have high strength and heat resistance.

耐食性が高いなどの優れた特徴をもつセラミックスとし
て知られている。しかしながら、構造材料として実用化
するには破壊靭性値が低く、また特に高温において強度
が低下するという問題がある。
It is known as a ceramic with excellent characteristics such as high corrosion resistance. However, for practical use as a structural material, there are problems in that the fracture toughness value is low and the strength particularly decreases at high temperatures.

(発明が解決しようとする問題点) 窒化ケイ素系セラミックスにおいては、高温における強
度低下と低い破壊靭性値が問題として残っている。
(Problems to be Solved by the Invention) In silicon nitride ceramics, problems remain such as a decrease in strength at high temperatures and a low fracture toughness value.

本発明の目的は上記した問題点を解決し、機械的特性の
優れた窒化ケイ素系セラミックスを提供しようとするも
のである。
An object of the present invention is to solve the above problems and provide silicon nitride ceramics with excellent mechanical properties.

本発明の窒化ケイ素−添加物系の焼結体からなる窒化ケ
イ素系セラミックスは、添加物の反応により形成される
焼結体中の粒界第2相中および、窒化ケイ素粒子内部に
窒化チタンあるいはチタン金属を含むことを特徴とする
The silicon nitride ceramics made of the silicon nitride-additive-based sintered body of the present invention has titanium nitride or It is characterized by containing titanium metal.

窒化ケイ素粉末に焼結添加物として、酸化イツトリウム
、酸化アルミニウムなどを混合する際に、窒化チタン、
金属チタンあるいは、焼結のための加熱時に窒化チタン
もしくは、還元されて金属チタンに変る酸化チタン等の
微粒子を同時に加えた粉末をつくり、焼結することによ
って、添加物の反応により形成される焼結体中の粒界第
2相中および、窒化ケイ素粒子内部に窒化チタンあるい
はチタン金属を含む窒化ケイ素系セラミックスをつくる
ことができる。窒化チタンあるいはチタン金属は窒化ケ
イ素および、焼結添加物と反応せず、微粒子として存在
し、また窒化ケイ素とのなじみがいいため窒化ケイ素粒
子内部にも微粒子として存在することができるのである
When mixing yttrium oxide, aluminum oxide, etc. as sintering additives to silicon nitride powder, titanium nitride,
By creating a powder to which fine particles of titanium metal or titanium nitride or titanium oxide, which is reduced and converted to titanium metal, are simultaneously added during heating for sintering, and sintering it, the sintered material is formed by the reaction of additives. Silicon nitride ceramics containing titanium nitride or titanium metal in the grain boundary second phase in the compact and inside the silicon nitride particles can be produced. Titanium nitride or titanium metal does not react with silicon nitride or sintering additives and exists as fine particles, and since it is compatible with silicon nitride, it can also exist as fine particles inside silicon nitride particles.

このような粒界第2相中および、窒化ケイ素粒子内部に
窒化チタンあるいはチタン金属を含む窒化ケイ素系セラ
ミックスは、焼結体に応力がかかって、破壊するときに
、亀裂が窒化チタンあるいはチタン金属粒子によって曲
げられ、あるいは分岐するため、破壊エネルギーの増大
をもたらし、破壊靭性値の向上および、高温における強
度の劣化を防止する作用をする。特に、この窒化チタン
あるいは金属チタンは窒化ケイ素粒子内部にも存在する
ため、この作用が強くはたらく。よって、破壊靭性の向
上と同時に高温強度も優れた焼結体が得られる。
In silicon nitride-based ceramics containing titanium nitride or titanium metal in the second phase of grain boundaries and inside silicon nitride particles, when stress is applied to the sintered body and the sintered body breaks, cracks form in the titanium nitride or titanium metal. Since the particles are bent or branched, it increases fracture energy, improves fracture toughness, and prevents deterioration of strength at high temperatures. In particular, since this titanium nitride or metallic titanium also exists inside the silicon nitride particles, this effect is strong. Therefore, a sintered body with improved fracture toughness and excellent high-temperature strength can be obtained.

(実施例) 平均粒径1.0μ酸化イツトリウム(Y20a)、平均
粒径0.5μアルミナUnaoa)、平均粒径1.0μ
窒化アルミニウム(AfiN)、平均粒径0.5μ酸化
チタンおよび平均粒径0.6μ窒化チタンをそれぞれ表
に示す組成に選び、溶媒としてn−ブタノールを用いて
ゴムライニングボールミルにて約24時間混合を行い、
参考例を含めて、10種の原料粉末を調整した。
(Example) Yttrium oxide (Y20a) with an average particle size of 1.0μ, average particle size of 0.5μ alumina (Unaoa), average particle size of 1.0μ
Aluminum nitride (AfiN), titanium oxide with an average particle size of 0.5μ, and titanium nitride with an average particle size of 0.6μ were selected as shown in the table, and mixed for about 24 hours in a rubber-lined ball mill using n-butanol as a solvent. conduct,
Ten types of raw material powders were prepared including reference examples.

原料粉末を1780℃、300kg/dの条件で90分
間ホットプレスした。また、原料粉末にステアリン酸(
粘結剤)を重量比で7%それぞれ添加配合し700kg
/cdの成形圧で長さ60mm幅40m+厚さ10閣の
棒状成形体を得た。この成形体につき、まず700℃で
加熱処理を施し、粘結剤を揮発除去後、窒素ガス雰囲気
下でそれぞれ表に示す温度で120分間常圧焼結を行い
、窒化ケイ素系セラミックス焼結体を得た。
The raw material powder was hot pressed at 1780° C. and 300 kg/d for 90 minutes. In addition, stearic acid (
700 kg of 700 kg of 700 kg of 700 kg of each (binder) added by weight
A rod-shaped molded body having a length of 60 mm, a width of 40 m, and a thickness of 10 mm was obtained at a molding pressure of /cd. This molded body was first heat-treated at 700°C to remove the binder by volatilization, and then sintered under atmospheric pressure for 120 minutes at the temperatures shown in the table in a nitrogen gas atmosphere to form a silicon nitride ceramic sintered body. Obtained.

上記によって得た焼結体につき、抗折強度及び破壊靭性
値をそれぞれ測定した結果を併せて表に示した。
The results of measuring the bending strength and fracture toughness of the sintered bodies obtained above are also shown in the table.

なお、抵折強度は3点曲げ強度試験によるもので試料サ
イズ3X4X40nm、試験条件はクロスヘッドスピー
ド0 、5 mm /分、スパン30閣、温度は常温及
び1200℃とし各温度での測定は8回行いその平均値
で示した。また破壊靭性値(Kzc)はJISR160
1に基ずきダイヤモンドカッターにて試料面中央部に幅
0.3mm深さ0.75mnのU溝をっけスパン30m
、 クロスヘッドスピード0.5m/winの条件によ
り常温で実験し、次式に従って求めた。
The bending strength was determined by a 3-point bending strength test. The sample size was 3 x 4 x 40 nm, the test conditions were a crosshead speed of 0, 5 mm/min, a span of 30 degrees, and the temperature was room temperature and 1200°C, and each temperature was measured 8 times. The results are shown as the average value. In addition, the fracture toughness value (Kzc) is JISR160
Based on 1, a U-groove with a width of 0.3 mm and a depth of 0.75 mm is cut in the center of the sample surface using a diamond cutter, and the span is 30 m.
, An experiment was conducted at room temperature under the conditions of a crosshead speed of 0.5 m/win, and was determined according to the following formula.

Kxc= Ycra”” Y:形状因子 02曲げ強度 a:亀裂長さ 表より炭化ケイ素ウィスカーと添加物の重量割合が30
%以内であれば常温、高温ともに強度が高く、破壊靭性
値も優れていることがわかる。
Kxc= Ycra"" Y: Shape factor 02 Bending strength a: Crack length From the table, the weight ratio of silicon carbide whiskers and additives is 30
% or less, it can be seen that the strength is high both at room temperature and high temperature, and the fracture toughness value is also excellent.

[発明の効果〕 以上説明したように本発明の窒化ケイ素系セラミックス
は破壊靭性値、並びに高温強度がともにゝ優れたもので
ある。
[Effects of the Invention] As explained above, the silicon nitride ceramic of the present invention has excellent fracture toughness and high-temperature strength.

以下余白Margin below

Claims (1)

【特許請求の範囲】[Claims] 窒化ケイ素−添加物系の焼結体からなる窒化ケイ素系セ
ラミックスにおいて、添加物の反応により形成される焼
結体中の粒界第2相中および窒化ケイ素粒子の内部に2
〜30重量%の窒化チタンあるいはチタン金属微粒子が
分散していることを特徴とする窒化ケイ素系セラミック
ス。
In silicon nitride ceramics consisting of a silicon nitride-additive-based sintered body, 2 is present in the grain boundary second phase in the sintered body formed by the reaction of the additive and inside the silicon nitride particles.
A silicon nitride ceramic characterized by dispersing ~30% by weight of titanium nitride or titanium metal fine particles.
JP62154362A 1987-06-23 1987-06-23 Silicon nitride ceramics Expired - Lifetime JP2573230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62154362A JP2573230B2 (en) 1987-06-23 1987-06-23 Silicon nitride ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62154362A JP2573230B2 (en) 1987-06-23 1987-06-23 Silicon nitride ceramics

Publications (2)

Publication Number Publication Date
JPS63319263A true JPS63319263A (en) 1988-12-27
JP2573230B2 JP2573230B2 (en) 1997-01-22

Family

ID=15582498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62154362A Expired - Lifetime JP2573230B2 (en) 1987-06-23 1987-06-23 Silicon nitride ceramics

Country Status (1)

Country Link
JP (1) JP2573230B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0327894A (en) * 1989-06-21 1991-02-06 Denki Kagaku Kogyo Kk Ceramics for constituting member of positioning pin
GB2249546A (en) * 1990-10-08 1992-05-13 Matsushita Electric Works Ltd Ceramic - metal composites
JPH04202059A (en) * 1990-11-30 1992-07-22 Sumitomo Electric Ind Ltd Silicon nitride-based composite sintered body
JPH04202058A (en) * 1990-11-30 1992-07-22 Sumitomo Electric Ind Ltd Silicon nitride-based composite sintered body
EP1134204A1 (en) * 2000-03-16 2001-09-19 Kabushiki Kaisha Toshiba Silicon nitride wear resistant member and manufacturing method thereof
US6784131B2 (en) 2001-01-12 2004-08-31 Kabushiki Kaisha Toshiba Silicon nitride wear resistant member and method of manufacturing the member

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5874572A (en) * 1982-07-30 1983-05-06 住友電気工業株式会社 Plasticity working tool for copper and copper alloy
JPS58161975A (en) * 1982-03-16 1983-09-26 日本特殊陶業株式会社 Manufacture of silicon nitride sintered body
JPS5957963A (en) * 1982-09-27 1984-04-03 日本特殊陶業株式会社 Manufacture of nitride ceramic tool
JPS6117473A (en) * 1985-05-17 1986-01-25 三菱マテリアル株式会社 Silicon nitride base sintering material for cutting tool
JPS6172684A (en) * 1984-09-18 1986-04-14 株式会社東芝 High strength high abrasion resistance sliding member and manufacture
JPS63201063A (en) * 1987-02-12 1988-08-19 日立金属株式会社 Ceramic heater and manufacture

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58161975A (en) * 1982-03-16 1983-09-26 日本特殊陶業株式会社 Manufacture of silicon nitride sintered body
JPS5874572A (en) * 1982-07-30 1983-05-06 住友電気工業株式会社 Plasticity working tool for copper and copper alloy
JPS5957963A (en) * 1982-09-27 1984-04-03 日本特殊陶業株式会社 Manufacture of nitride ceramic tool
JPS6172684A (en) * 1984-09-18 1986-04-14 株式会社東芝 High strength high abrasion resistance sliding member and manufacture
JPS6117473A (en) * 1985-05-17 1986-01-25 三菱マテリアル株式会社 Silicon nitride base sintering material for cutting tool
JPS63201063A (en) * 1987-02-12 1988-08-19 日立金属株式会社 Ceramic heater and manufacture

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0327894A (en) * 1989-06-21 1991-02-06 Denki Kagaku Kogyo Kk Ceramics for constituting member of positioning pin
GB2249546A (en) * 1990-10-08 1992-05-13 Matsushita Electric Works Ltd Ceramic - metal composites
US5296301A (en) * 1990-10-08 1994-03-22 Matsushita Electric Works, Ltd. Sintered ceramic-metal composite product and method of fabricating the same
US5389590A (en) * 1990-10-08 1995-02-14 Matsushita Electric Works, Ltd. Method of fabricating a sintered ceramic composite
GB2249546B (en) * 1990-10-08 1995-07-05 Matsushita Electric Works Ltd Sintered ceramic-metal composite product and method of fabricating the same
JPH04202059A (en) * 1990-11-30 1992-07-22 Sumitomo Electric Ind Ltd Silicon nitride-based composite sintered body
JPH04202058A (en) * 1990-11-30 1992-07-22 Sumitomo Electric Ind Ltd Silicon nitride-based composite sintered body
EP1134204A1 (en) * 2000-03-16 2001-09-19 Kabushiki Kaisha Toshiba Silicon nitride wear resistant member and manufacturing method thereof
US6797660B2 (en) 2000-03-16 2004-09-28 Kabushiki Kaisha Toshiba Silicon nitride wear resistant member and manufacturing method thereof
US6784131B2 (en) 2001-01-12 2004-08-31 Kabushiki Kaisha Toshiba Silicon nitride wear resistant member and method of manufacturing the member

Also Published As

Publication number Publication date
JP2573230B2 (en) 1997-01-22

Similar Documents

Publication Publication Date Title
JPH07277814A (en) Alumina-based ceramic sintered compact
EP0170889B1 (en) Zrb2 composite sintered material
JP2002003276A (en) Reaction synthesis of silicon carbide-boron nitride composite material
JPS63319263A (en) Silicon nitride-based ceramic
JPH02141466A (en) Ceramic composite material and production thereof
JPH0449509B2 (en)
JPH0212893B2 (en)
JPS6236991B2 (en)
JPS5826076A (en) Ceramic sintered body and manufacture
KR890002158B1 (en) Silicon mitride ceramic sintered body and the method for producing the same
JPH02302368A (en) Silicon carbide sintered compact having high toughness and its production thereof
JPS61158866A (en) Ceramic sintered body and manufacture
JP2519076B2 (en) Method for manufacturing silicon carbide whisker-reinforced ceramics
JP3254280B2 (en) Silicon nitride sintered body
JPS62291539A (en) Jig for measuring mechanical characteristic
JP2581128B2 (en) Alumina-sialon composite sintered body
JP3355732B2 (en) Low thermal conductive ceramics with high toughness and method for producing the same
JPH078746B2 (en) Silicon nitride ceramics and method for producing the same
JPH04231378A (en) Preparation of titanium nitride-zirconium oxide ceramic
JPS6125676B2 (en)
JPH01183460A (en) Production of sintered ceramic material
JPH0545550B2 (en)
JPH02221160A (en) Production of high-density silicon nitride sintered body
JPS63277574A (en) Sintered beta-sialon
JPS6197163A (en) Manufacture of zirconium oxide base ceramics for blade tool

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071024

Year of fee payment: 11