JP2573230B2 - Silicon nitride ceramics - Google Patents

Silicon nitride ceramics

Info

Publication number
JP2573230B2
JP2573230B2 JP62154362A JP15436287A JP2573230B2 JP 2573230 B2 JP2573230 B2 JP 2573230B2 JP 62154362 A JP62154362 A JP 62154362A JP 15436287 A JP15436287 A JP 15436287A JP 2573230 B2 JP2573230 B2 JP 2573230B2
Authority
JP
Japan
Prior art keywords
silicon nitride
titanium
nitride
sintered body
additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62154362A
Other languages
Japanese (ja)
Other versions
JPS63319263A (en
Inventor
康広 五戸
武之 米澤
佳之 大沼
寛 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP62154362A priority Critical patent/JP2573230B2/en
Publication of JPS63319263A publication Critical patent/JPS63319263A/en
Application granted granted Critical
Publication of JP2573230B2 publication Critical patent/JP2573230B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は常温においても、また高温においても機械的
性質の優れた窒化ケイ素を主成分とするセラミックス焼
結体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial application field) The present invention relates to a ceramic sintered body containing silicon nitride as a main component, which has excellent mechanical properties even at ordinary temperature and at high temperature.

(従来の技術) 窒化ケイ素系セラミックスは高強度で耐熱性,耐食性
が高いなどの優れた特徴をもつセラミックスとして知ら
れている。しかしながら、構造材料として実用化するに
は破壊靱性値が低く、また特に高温において強度が低下
するという問題がある。
(Prior Art) Silicon nitride ceramics are known as ceramics having excellent characteristics such as high strength, high heat resistance and high corrosion resistance. However, there is a problem that the fracture toughness value is low for practical use as a structural material, and the strength is reduced particularly at high temperatures.

(発明が解決しようとする問題点) 窒化ケイ素系セラミックスにおいては、高温における
強度低下と低い破壊靱性値が問題として残っている。
(Problems to be Solved by the Invention) In silicon nitride-based ceramics, problems such as reduced strength at high temperatures and low fracture toughness remain as problems.

本発明の目的は上記した問題点を解決し、機械的特性
の優れた窒化ケイ素系セラミックスを提供しようとする
ものである。
An object of the present invention is to solve the above-mentioned problems and to provide a silicon nitride ceramic having excellent mechanical properties.

〔発明の構成〕[Configuration of the invention]

(問題点を解決するための手段及び作用) 本発明の窒化ケイ素−添加物系の焼結体からなる窒化
ケイ素系セラミックスは、添加物の反応により形成され
る焼結体中の粒界第2相中および、窒化ケイ素粒子内部
に窒化チタンあるいはチタン金属を含むことを特徴とす
る。
(Means and Action for Solving the Problems) The silicon nitride-based ceramics of the present invention, which is composed of the silicon nitride-additive-based sintered body, has a second grain boundary in the sintered body formed by the reaction of the additive. It is characterized in that titanium nitride or titanium metal is contained in the phase and inside the silicon nitride particles.

窒化ケイ素粉末に焼結添加物として、酸化イットリウ
ム,酸化アルミニウムなどを混合する際に、窒化チタ
ン、金属チタンあるいは、焼結のための加熱時に窒化チ
タンもしくは、還元されて金属チタンに変る酸化チタン
等の微粒子を同時に加えた粉末をつくり、焼結すること
によって、添加物の反応により形成される焼結体中の粒
界第2相中および、窒化ケイ素粒子内部に窒化チタンあ
るいはチタン金属を含む窒化ケイ素系セラミックスをつ
くることができる。窒化チタンあるいはチタン金属は窒
化ケイ素および、焼結添加物と反応せず、微粒子として
存在し、また窒化ケイ素とのなじみがいいため窒化ケイ
素粒子内部にも微粒子として存在することができるので
ある。
When mixing yttrium oxide, aluminum oxide, etc. as a sintering additive into silicon nitride powder, titanium nitride, metal titanium, titanium nitride when heated for sintering, or titanium oxide reduced to titanium metal when reduced By adding and sintering a powder to which the fine particles are added at the same time, the nitride containing titanium nitride or titanium metal in the second phase of the grain boundary in the sintered body formed by the reaction of the additive and inside the silicon nitride particles is formed. Silicon-based ceramics can be made. Titanium nitride or titanium metal does not react with silicon nitride and the sintering additive and exists as fine particles, and because of good compatibility with silicon nitride, it can also exist as fine particles inside silicon nitride particles.

このような粒界第2相中および、窒化ケイ素粒子内部
に窒化チタンあるいはチタン金属を含む窒化ケイ素系セ
ラミックスは、焼結体に応力がかかって、破壊するとき
に、亀裂が窒化チタンあるいはチタン金属粒子によって
曲げられ、あるいは分岐するため、破壊エネルギーの増
大をもたらし、破壊靱性値の向上および、高温における
強度の劣化を防止する作用をする。特に、この窒化チタ
ンあるいは金属チタンは窒化ケイ素粒子内部にも存在す
るため、この作用が強くはたらく。よって、破壊靱性の
向上と同時に高温強度も優れた焼結体が得られる。
In such a silicon nitride-based ceramic containing titanium nitride or titanium metal in the second phase of the grain boundary and inside the silicon nitride particles, when a sintered body is stressed and broken, a crack is formed in the titanium nitride or titanium metal. Since it is bent or branched by the particles, it has an effect of increasing fracture energy, improving a fracture toughness value, and preventing deterioration of strength at high temperatures. In particular, since this titanium nitride or metallic titanium is also present inside the silicon nitride particles, this action works strongly. Therefore, a sintered body having improved fracture toughness and excellent high-temperature strength can be obtained.

(実施例) 平均粒径1.0μ酸化イットリウム(Y2O3)、平均粒径
0.5μアルミナ(Al2O3)、平均粒径1.0μ窒化アルミニ
ウム(AlN)、平均粒径0.5μ酸化チタンおよび平均粒径
0.6μ窒化チタンをそれぞれ表に示す組成に選び、溶媒
としてn−ブタノールを用いてゴムライニングボールミ
ルにて約24時間混合を行い、参考例を含めて、8種類の
原料粉末を調整した。原料粉末を1750℃〜1800℃、300k
g/cm2の条件で90分間ホットプレスした。また、原料粉
末にステアリン酸(粘結剤)を重量比で7%それぞれ添
加配合し700kg/cm2の成形圧で長さ60mm 幅40mm 厚さ1
0mmの棒状成形体を得た。この成形体につき、まず700℃
で加熱処理を施し、粘結剤を揮発除去後、窒素ガス雰囲
気下でそれぞれ表に示す温度で120分間常圧焼結を行
い、窒化ケイ素系セラミックス焼結体を得た。
(Example) Average particle size 1.0μ yttrium oxide (Y 2 O 3), an average particle diameter
0.5μ alumina (Al 2 O 3 ), average particle size 1.0μ aluminum nitride (AlN), average particle size 0.5μ titanium oxide and average particle size
0.6 μm titanium nitride was selected according to the composition shown in the table, and mixed with a rubber-lined ball mill for about 24 hours using n-butanol as a solvent to prepare eight kinds of raw material powders including Reference Examples. Raw material powder 1750 ℃ -1800 ℃, 300k
Hot pressing was performed for 90 minutes under the conditions of g / cm 2 . Also, 7% by weight of stearic acid (binder) was added to and mixed with the raw material powder, and a length of 60 mm, a width of 40 mm and a thickness of 1 were applied at a molding pressure of 700 kg / cm 2.
A 0 mm rod was obtained. 700 ° C
After the binder was volatilized and removed, normal pressure sintering was performed at a temperature shown in the table for 120 minutes in a nitrogen gas atmosphere to obtain a silicon nitride ceramic sintered body.

上記によって得た焼結体につき、抗折強度及び破壊靱
性値をそれぞれ測定した結果を併せて表に示した。
The results obtained by measuring the bending strength and the fracture toughness of the sintered body obtained as described above are also shown in the table.

なお、低折強度は3点曲げ強度試験によるもので試料
サイズ3×4×40mm、試験条件はクロスヘッドスピード
0.5mm/分、スパン30mm、温度は常温及び1200℃とし各温
度での測定は8回行いその平均値で示した。また破壊靱
性値(KIC)はJIS R1601に基ずきダイヤモンドカッター
にて試料面中央部に幅0.3mm 深さ0.75mmのU溝をつけ
スパン30mm、クロスヘッドスピード0.5mm/minの条件に
より常温で実験し、次式に従って求めた。
The low bending strength is based on a three-point bending strength test. The sample size is 3 x 4 x 40 mm.
The temperature was 0.5 mm / min, the span was 30 mm, the temperature was room temperature and 1200 ° C. The measurement at each temperature was performed eight times, and the average value was shown. The fracture toughness value (K IC ) is based on JIS R1601. A diamond cutter is used to form a 0.3 mm wide, 0.75 mm deep U-groove at the center of the sample surface, a span of 30 mm, and a crosshead speed of 0.5 mm / min. And determined according to the following equation.

KIC=Yσa1/2 Y:形状因子 σ:曲げ強度 a:亀裂長さ 表より炭化ケイ素ウィスカーと添加物の重量割合が30
%以内であれば常温、高温ともに強度が高く、破壊靱性
値も優れていることがわかる。
K IC = Yσa 1/2 Y: Shape factor σ: Bending strength a: Crack length From the table, the weight ratio of silicon carbide whiskers and additives is 30
%, The strength is high at both room temperature and high temperature, and the fracture toughness value is also excellent.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明の窒化ケイ素系セラミック
スは破壊靱性値、並びに高温強度がともに優れたもので
ある。
As described above, the silicon nitride-based ceramics of the present invention has excellent fracture toughness and high-temperature strength.

フロントページの続き (72)発明者 井上 寛 川崎市幸区小向東芝町1 株式会社東芝 総合研究所内 (56)参考文献 特開 昭58−74572(JP,A) 特開 昭58−161975(JP,A) 特開 昭59−57963(JP,A) 特開 昭61−72684(JP,A) 特開 昭61−17473(JP,A) 特開 昭63−201063(JP,A)Continuation of front page (72) Inventor Hiroshi Inoue 1 Komukai Toshiba-cho, Yuki-ku, Kawasaki-shi Toshiba Research Institute, Inc. (56) References JP-A-58-74572 (JP, A) JP-A-58-161975 (JP) JP-A-59-57963 (JP, A) JP-A-61-72684 (JP, A) JP-A-61-17473 (JP, A) JP-A-63-201063 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】窒化ケイ素−添加物系の焼結体からなる窒
化ケイ素系セラミックスにおいて、添加物が酸化イット
リウム,酸化アルミニウム,窒化アルミニウムおよび酸
化又は窒化チタンを少なくとも含み、その添加物の反応
により形成される焼結体中の粒界第2相中および窒化ケ
イ素粒子の内部に2〜30重量%の窒化チタンあるいはチ
タン金属微粒子が分散していることを特徴とする窒化ケ
イ素系セラミックス。
1. A silicon nitride ceramic comprising a silicon nitride-additive sintered body, wherein the additive contains at least yttrium oxide, aluminum oxide, aluminum nitride and titanium oxide or titanium nitride, and is formed by the reaction of the additive. A silicon nitride-based ceramic characterized in that 2 to 30% by weight of titanium nitride or titanium metal fine particles are dispersed in a second phase of a grain boundary in a sintered body to be produced and inside silicon nitride particles.
JP62154362A 1987-06-23 1987-06-23 Silicon nitride ceramics Expired - Lifetime JP2573230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62154362A JP2573230B2 (en) 1987-06-23 1987-06-23 Silicon nitride ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62154362A JP2573230B2 (en) 1987-06-23 1987-06-23 Silicon nitride ceramics

Publications (2)

Publication Number Publication Date
JPS63319263A JPS63319263A (en) 1988-12-27
JP2573230B2 true JP2573230B2 (en) 1997-01-22

Family

ID=15582498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62154362A Expired - Lifetime JP2573230B2 (en) 1987-06-23 1987-06-23 Silicon nitride ceramics

Country Status (1)

Country Link
JP (1) JP2573230B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0327894A (en) * 1989-06-21 1991-02-06 Denki Kagaku Kogyo Kk Ceramics for constituting member of positioning pin
GB2249546B (en) * 1990-10-08 1995-07-05 Matsushita Electric Works Ltd Sintered ceramic-metal composite product and method of fabricating the same
JP2776471B2 (en) * 1990-11-30 1998-07-16 住友電気工業株式会社 Silicon nitride based composite sintered body
JPH04202058A (en) * 1990-11-30 1992-07-22 Sumitomo Electric Ind Ltd Silicon nitride-based composite sintered body
JP4744704B2 (en) 2000-03-16 2011-08-10 株式会社東芝 Method for manufacturing wear-resistant member
JP4795588B2 (en) 2001-01-12 2011-10-19 株式会社東芝 Wear resistant parts made of silicon nitride

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5874572A (en) * 1982-07-30 1983-05-06 住友電気工業株式会社 Plasticity working tool for copper and copper alloy
JPS58161975A (en) * 1982-03-16 1983-09-26 日本特殊陶業株式会社 Manufacture of silicon nitride sintered body
JPS5957963A (en) * 1982-09-27 1984-04-03 日本特殊陶業株式会社 Manufacture of nitride ceramic tool
JPS6172684A (en) * 1984-09-18 1986-04-14 株式会社東芝 High strength high abrasion resistance sliding member and manufacture
JPS6117473A (en) * 1985-05-17 1986-01-25 三菱マテリアル株式会社 Silicon nitride base sintering material for cutting tool
JP2521690B2 (en) * 1987-02-12 1996-08-07 日立金属株式会社 Ceramic heater and method for producing the same

Also Published As

Publication number Publication date
JPS63319263A (en) 1988-12-27

Similar Documents

Publication Publication Date Title
JP2563392B2 (en) Silicon nitride ceramics and method for producing the same
JPH0680470A (en) Production of silicon nitride sintered compact
JP2573230B2 (en) Silicon nitride ceramics
JP2002003276A (en) Reaction synthesis of silicon carbide-boron nitride composite material
JPS60246268A (en) Sialon base ceramic
EP0170889A2 (en) ZrB2 Composite sintered material
JPH0777986B2 (en) Manufacturing method of silicon carbide sintered body
JPS6236991B2 (en)
JPS5826076A (en) Ceramic sintered body and manufacture
JP2018516222A (en) SiAlON composite material and cutting tool made with the same
JP2661761B2 (en) Silicon nitride sintered body and method for producing the same
JP4296251B2 (en) Method for producing alumina-boron nitride composite material
JP2581128B2 (en) Alumina-sialon composite sintered body
JP2650049B2 (en) Ceramic cutting tool and its manufacturing method
JPH078746B2 (en) Silicon nitride ceramics and method for producing the same
JPS62265182A (en) High strength alumina-zirconia-silicon carbide composite sintered body
JP2566580B2 (en) Silicon carbide / silicon nitride composite sintered body
JP3355732B2 (en) Low thermal conductive ceramics with high toughness and method for producing the same
JPH0813702B2 (en) Composite ceramics
JPS6340768A (en) Silicon nitride base ceramics
JPS63129059A (en) Antiabrasive ceramic aintered body
JPH02221160A (en) Production of high-density silicon nitride sintered body
JPH0269359A (en) Production of sintered silicon nitride body
JP2783711B2 (en) Silicon nitride sintered body
JPS62207766A (en) Manufacture of silicon nitride sintered body

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071024

Year of fee payment: 11