JPH0244784B2 - - Google Patents

Info

Publication number
JPH0244784B2
JPH0244784B2 JP56124101A JP12410181A JPH0244784B2 JP H0244784 B2 JPH0244784 B2 JP H0244784B2 JP 56124101 A JP56124101 A JP 56124101A JP 12410181 A JP12410181 A JP 12410181A JP H0244784 B2 JPH0244784 B2 JP H0244784B2
Authority
JP
Japan
Prior art keywords
boride
weight
powder
sintered body
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56124101A
Other languages
Japanese (ja)
Other versions
JPS5826076A (en
Inventor
Michikana Komatsu
Akihiko Tsuge
Hiroyasu Oota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP56124101A priority Critical patent/JPS5826076A/en
Publication of JPS5826076A publication Critical patent/JPS5826076A/en
Publication of JPH0244784B2 publication Critical patent/JPH0244784B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、窒化ケイ素を主成分とするセラミツ
クス焼結体及びその製造方法に関し、更に詳しく
は、高密度で、機械的強度及び耐熱衝撃性が優
れ、且つ800〜1000℃の温度領域で、長時間酸化
雰囲気下にあつても機械的強度の低化度合が小さ
いセラミツクス焼結体及びその製造方法に関す
る。 セラミツクス焼結体は、熱的性質が優れ、且つ
高密度を有しているために、各種構造材料の先端
にあるものとして各産業分野で広く注目を集めて
いるが、その代表的なものとして窒化ケイ素の焼
結体がある。 従来から、窒化ケイ素焼結体の製造において
は、反応焼結法、ホツトプレス法及び普通焼結法
が一般に採用されている。 このうち、反応焼結法は、金属ケイ素(Si)の
粉末で予め必要とする形を成形し、これを窒素又
はアンモニアガス雰囲気中で徐々に加熱して窒化
と同時に焼結するという方法である。 また、ホツトプレス法は、窒化ケイ素
(Si3N4)の粉末に、焼結助剤(例えば、Y2O3
MgO、Al2O3)を添加し、これを所定の型(例え
ば黒鉛の型)の中で1700〜1800℃の高温下、150
〜500Kg/cm2の圧力を印加して焼結する方法であ
る。この方法によれば、高密度で機械的強度も大
きく、かつ耐熱衝撃性又は高温酸化雰囲気下での
機械的強度の低下が小さい等の優れた熱的性質を
有する焼結体を得ることができる。しかし、一方
で、この方法は複雑で大型形状の焼結体を得るこ
とが困難で、しかも量産性に劣るという欠点を有
する。 他方、普通焼結法は、Si3N4粉末と焼結助剤を
パラフインのような粘結剤で予め成形し、これを
非酸化性雰囲気下でホツトプレスすることなくそ
のまま加熱して焼結する方法である。しかし、こ
の方法では、高密度で機械的強度及び耐熱衝撃性
に優れた焼結体を得ることは困難である。 そのため、本発明者らは、上記普通焼結法に関
し種々の検討を加えた結果、ホツトプレス法に匹
敵して、機械的強度・耐熱衝撃性にすぐれた高密
度焼結体を製造できる普通焼結法を提案した(特
開昭55−113674号、特開昭55−116670号)。 しかしながら、これらの方法で得られた窒化ケ
イ素焼結体の高温酸化雰囲気下における機械的強
度の低下に対する抵抗性は必ずしも満足のいくも
のではなかつた。 本発明者らは、更に上記の点に関し、鋭意研究
を重ねた結果、本発明を完成するに到つた。 本発明の目的は、高密度で耐熱衝撃性に優れ、
しかも、800〜1000℃の温度領域で、長時間酸化
雰囲気下にあつても機械的強度の低下が小さいセ
ラミツクス焼結体、とりわけ窒化ケイ素を主成分
とするセラミツクス焼結体及びその製造方法を提
供することである。 即ち、本発明のセラミツクス焼結体は、酸化イ
ツトリウム(Y2O3)0.1〜10重量%;酸化アルミ
ニウム(Al2O3)0.1〜10重量%;窒化アルミニウ
ム(Al2N)0.1〜10重量%;硼化チタン(TiB2)、
硼化バナジウム(VB2)、硼化クロム(CrB)、硼
化ジルコニウム(ZrB2)、硼化ニオブ(NbB)、
硼化モリブデン(MoB2)、硼化ハフニウム
(HfB2)、硼化タンタル(TaB2)、及び硼化タン
グステン(WB)のそれぞれの硼化物から成る群
より選ばれる少なくとも1種の硼化物0.1〜5重
量%;及び残部は窒化ケイ素(Si3N4)から成る
ことを特徴とするものである。 本発明のセラミツクス焼結体は、Si3N4を主成
分とするものであり、Si3N4は70重量%以上の配
合比で用いられることが好ましい。使用される
Si3N4は、α相型、β相型のいずれであつてもよ
いが、α相型が好んで用いられる。 Y2O3及びAl2O3はいずれも焼結促進剤として機
能する。これら成分は、その配合比がそれぞれ10
重量%を超えると、得られた焼結体の機械的強度
及び耐熱衝撃性が低下して好ましくない。これら
の成分は、通常、両者を合わせて3〜15重量%の
配合比にあることが好ましい。 AlNは、主成分であるSi3N4の焼結過程におけ
る蒸発を抑制する機能のほか、他の成分と反応し
て焼結に資する液相を生成して全体の焼結促進に
寄与する。その配合比が10重量%を超えると、得
られた焼結体の機械的強度及び耐熱衝撃性を低下
せしめる。 また、TiB2、VB2、CrB、ZrB2、NbB、
MoB2、HfB2、TaB2、WBなどの硼化物は、い
ずれも、上記したY2O3、Al2O3などの焼結促進剤
の機能を助長するだけでなく、焼結体表面に酸化
抵抗の大きい硼ケイ酸系ガラス質の保護被膜を形
成するために、得られた焼結体の、800〜1000℃、
酸化雰囲気下における機械的強度の低下を防止す
る機能を有する。特に、MoB2、CrB、TiB2はそ
の効果に資すること大である。しかしながら、そ
れらの配合比が5重量%を超えると、かえつて焼
結体の機械的強度及び耐熱衝撃性を低下せしめて
好ましくない。 本発明のセラミツクス焼結体の製造方法は、酸
化イツトリウム(Y2O3)粉末0.1〜10重量%;酸
化アルミニウム(Al2O3)粉末0.1〜10重量%;窒
化アルミニウム(AlN)粉末0.1〜10重量%;硼
化チタン(TiB2)、硼化バナジウム(VB2)、硼
化クロム(CrB)、硼化ジルコニウム(ZrB2)、
硼化ニオブ(NbB)、硼化モリブデン(MoB2)、
硼化ハフニウム(HfB2)、硼化タンタル
(TaB2)、及び硼化タングステン(WB)のそれ
ぞれの硼化物粉末から成る群より選ばれる少なく
とも1種の硼化物粉末0.1〜5重量%;及び残部
が窒化ケイ素(Si3N4)粉末から成る混合粉末を
成形し、該成形体を非酸化性雰囲気中で焼結する
ことを特徴とするものである。 本発明方法において、これらの各成分の混合
は、通常のボールミル等の粉砕混合機により、n
−ブチルアルコール等の溶媒を用いて行なうこと
ができる。 このように調製された混合粉末に、パラフイン
等の粘結剤を添加して適宜な圧力を印加し、所定
形状の成形体とする。 この成形体を非酸化性雰囲気中、1500〜1900
℃、好ましくは1600〜1800℃で加熱して焼結せし
め、焼結体とする。非酸化性雰囲気としては、窒
素、アルゴン等があげられる。酸化性雰囲気では
Si3N4が酸化してSiO2になるため不可である。な
お、この焼結時に、50〜500Kg/cm2の圧力を印加
したホツトプレス状態、または、非酸化性ガス雰
囲気中、加圧状態で焼結してもよい。或いは、普
通焼結法による焼結を行なつた後に、更に加圧雰
囲気中で焼結を行なつたものであつても焼結体の
特性は何ら損なわれるものではない。 以下において、本発明を、実施例及び参考例を
掲げて更に詳細に説明する。 実施例及び参考例 表に示したように、各成分を所定の配合比(重
量%)で配合し、ここにn−ブチルアルコールを
適量添加した後、ゴムライニングボールミルで24
時間それぞれ混合して、本発明に係る実施例とし
て13種類、並びに参考例として9種類、計22種類
の混合粉末を調製した。なお、Si3N4の粉末は、
α相型Si3N485%を含む平均粒径1.2μの粉末であ
る。また、Y2O3粉末の平均粒径は1.0μ、Al2O3
末の平均粒径は0.5μ、AlNの平均粒径は1.5μ、各
種の硼化物の平均粒径は1.0μであつた。 得られた混合粉末に、更にパラフインを7重量
%添加した後、室温下、700Kg/cm2の成形圧で長
さ60mm、幅40mm、及び厚み10mmの板状体を成形し
た。得られた各成形体を、まず700℃で加熱処理
してパラフインを熱分解除去し、ついで窒素ガス
を通流(3/min)しながら1750℃で焼結し
た。 得られた各焼結体につき、相対密度、室温下で
の抗折強度、空気中、800℃、900℃、1000℃で、
それぞれ5000時間酸化処理した後の室温下での抗
折強度、並びに耐熱衝撃性を測定した。 それらの結果を、実施例1〜13及び参考例1〜
9として表に示した。それぞれの測定項目は以下
の仕様に従つた。 相対密度:組成比から算出した理論密度に対する
相対比(%)で示した。 抗折強度:3点曲げ強度試験によるもので、試片
のサイズ3×3×30mm、クロスヘツドスピード
0.5mm/min、スパン20mm、温度室温。測定は
各試片4枚につき行ないその平均値で示した。 耐熱衝撃性:抗折強度測定用試験片と同一形状の
試験片をある温度に加熱した後、水中に投入し
て急冷し、試験片へのクラツク発生の有無を蛍
光探傷法で観察し、クラツク発生時における加
熱温度と水温との差ΔTをもつて表示した。 表から明らかなように、本発明方法によつて得
られた焼結体(実施例1〜13)は、相対密度は理
論密度の95%以上と高密度であり、またその抗折
強度も85Kg/mm2以上と大きく、耐熱衝撃性もΔT
で表わしてほぼ700℃以上である。とりわけ、800
〜1000℃で5000時間の酸化処理後にあつてもその
抗折強度の低下の小さいことが判明した。 以上詳述したように、本発明方法はホツトプレ
スすることを必要としないので大量生産に適合
し、しかも高密度で耐熱衝撃性にすぐれ、かつ
800〜1000℃の酸化雰囲気下における機械的強度
の低下の小さい焼結体を製造できるので、その工
業的有用性は大である。
The present invention relates to a ceramic sintered body containing silicon nitride as a main component and a method for manufacturing the same, and more specifically, the present invention relates to a ceramic sintered body containing silicon nitride as a main component and a method for manufacturing the same. The present invention relates to a ceramic sintered body whose mechanical strength decreases little even when exposed to an oxidizing atmosphere, and a method for producing the same. Ceramic sintered bodies have excellent thermal properties and high density, so they are attracting wide attention in various industrial fields as being at the forefront of various structural materials. There is a sintered body of silicon nitride. Conventionally, in the production of silicon nitride sintered bodies, reaction sintering methods, hot pressing methods, and ordinary sintering methods have generally been employed. Among these, the reactive sintering method is a method in which metal silicon (Si) powder is molded into the required shape in advance, and this is gradually heated in a nitrogen or ammonia gas atmosphere to sinter it at the same time as nitriding. . In addition, the hot press method adds sintering aids (e.g., Y 2 O 3 ,
MgO, Al 2 O 3 ) is added, and this is heated at a high temperature of 1700 to 1800℃ in a specified mold (for example, a graphite mold) for 150°C.
This is a method of sintering by applying a pressure of ~500 Kg/cm 2 . According to this method, it is possible to obtain a sintered body having high density, high mechanical strength, and excellent thermal properties such as thermal shock resistance and small decrease in mechanical strength under high-temperature oxidizing atmosphere. . However, on the other hand, this method has the disadvantage that it is difficult to obtain a sintered body with a complicated and large shape, and furthermore, it is inferior in mass productivity. On the other hand, in the normal sintering method, Si 3 N 4 powder and sintering aid are preformed with a binder such as paraffin, and this is heated and sintered as it is without hot pressing in a non-oxidizing atmosphere. It's a method. However, with this method, it is difficult to obtain a sintered body with high density and excellent mechanical strength and thermal shock resistance. Therefore, as a result of various studies regarding the above-mentioned ordinary sintering method, the present inventors found that ordinary sintering is capable of producing high-density sintered bodies with excellent mechanical strength and thermal shock resistance, comparable to the hot pressing method. (Japanese Patent Application Laid-open Nos. 113674-1982 and 116670-1987). However, the resistance of the silicon nitride sintered bodies obtained by these methods to a decrease in mechanical strength under a high-temperature oxidizing atmosphere was not necessarily satisfactory. The present inventors further conducted intensive research regarding the above points, and as a result, completed the present invention. The purpose of the present invention is to have high density, excellent thermal shock resistance,
Moreover, it provides a ceramic sintered body whose mechanical strength decreases little even when exposed to an oxidizing atmosphere for a long time in the temperature range of 800 to 1000°C, especially a ceramic sintered body whose main component is silicon nitride, and a method for manufacturing the same. It is to be. That is, the ceramic sintered body of the present invention contains 0.1 to 10% by weight of yttrium oxide (Y 2 O 3 ); 0.1 to 10% by weight of aluminum oxide (Al 2 O 3 ); 0.1 to 10% by weight of aluminum nitride (Al 2 N). %; titanium boride (TiB 2 ),
Vanadium boride (VB 2 ), chromium boride (CrB), zirconium boride (ZrB 2 ), niobium boride (NbB),
At least one boride selected from the group consisting of molybdenum boride (MoB 2 ), hafnium boride (HfB 2 ), tantalum boride (TaB 2 ), and tungsten boride (WB) from 0.1 to 5% by weight; and the remainder consists of silicon nitride (Si 3 N 4 ). The ceramic sintered body of the present invention has Si 3 N 4 as a main component, and it is preferable that Si 3 N 4 is used in a blending ratio of 70% by weight or more. used
Although Si 3 N 4 may be either an α-phase type or a β-phase type, the α-phase type is preferably used. Both Y 2 O 3 and Al 2 O 3 function as sintering accelerators. These ingredients have a mixing ratio of 10
If it exceeds % by weight, the mechanical strength and thermal shock resistance of the obtained sintered body will decrease, which is not preferable. Generally, it is preferable that these components have a combined blending ratio of 3 to 15% by weight. AlN not only has the function of suppressing the evaporation of Si 3 N 4 , the main component, during the sintering process, but also reacts with other components to generate a liquid phase that contributes to sintering, thereby contributing to the overall sintering process. If the blending ratio exceeds 10% by weight, the mechanical strength and thermal shock resistance of the obtained sintered body will be reduced. Also, TiB 2 , VB 2 , CrB, ZrB 2 , NbB,
Borides such as MoB 2 , HfB 2 , TaB 2 , and WB not only promote the functions of the sintering accelerators such as Y 2 O 3 and Al 2 O 3 mentioned above, but also cause damage to the surface of the sintered body. In order to form a borosilicate-based glass protective coating with high oxidation resistance, the obtained sintered body was heated at 800 to 1000°C.
It has the function of preventing a decrease in mechanical strength in an oxidizing atmosphere. In particular, MoB 2 , CrB, and TiB 2 greatly contribute to this effect. However, if the blending ratio thereof exceeds 5% by weight, it is undesirable because the mechanical strength and thermal shock resistance of the sintered body are reduced. The method for producing a ceramic sintered body of the present invention includes yttrium oxide (Y 2 O 3 ) powder 0.1 to 10% by weight; aluminum oxide (Al 2 O 3 ) powder 0.1 to 10% by weight; aluminum nitride (AlN) powder 0.1 to 10% by weight. 10% by weight; titanium boride (TiB 2 ), vanadium boride (VB 2 ), chromium boride (CrB), zirconium boride (ZrB 2 ),
Niobium boride (NbB), molybdenum boride ( MoB2 ),
0.1 to 5% by weight of at least one boride powder selected from the group consisting of boride powders of hafnium boride (HfB 2 ), tantalum boride (TaB 2 ), and tungsten boride (WB); and the remainder The method is characterized in that a mixed powder made of silicon nitride (Si 3 N 4 ) powder is molded, and the molded body is sintered in a non-oxidizing atmosphere. In the method of the present invention, these components are mixed using a grinding mixer such as an ordinary ball mill.
- It can be carried out using a solvent such as butyl alcohol. A binder such as paraffin is added to the mixed powder thus prepared, and an appropriate pressure is applied to form a molded body into a predetermined shape. This molded body was heated to 1500 to 1900 in a non-oxidizing atmosphere.
It is sintered by heating at 1600 to 1800°C, preferably 1600 to 1800°C, to form a sintered body. Examples of the non-oxidizing atmosphere include nitrogen, argon, and the like. In an oxidizing atmosphere
This is not possible because Si 3 N 4 oxidizes to become SiO 2 . Incidentally, during this sintering, sintering may be performed in a hot press state where a pressure of 50 to 500 kg/cm 2 is applied, or in a pressurized state in a non-oxidizing gas atmosphere. Alternatively, even if sintering is performed in a pressurized atmosphere after sintering by the normal sintering method, the properties of the sintered body will not be impaired in any way. The present invention will be explained in more detail below with reference to Examples and Reference Examples. Examples and Reference Examples As shown in the table, each component was blended at a predetermined blending ratio (wt%), an appropriate amount of n-butyl alcohol was added thereto, and then milled using a rubber-lined ball mill for 24 hours.
A total of 22 types of mixed powders, 13 types as examples according to the present invention and 9 types as reference examples, were prepared by mixing at different times. In addition, Si 3 N 4 powder is
It is a powder with an average particle size of 1.2μ containing 85% α phase type Si 3 N 4 . In addition, the average particle size of Y2O3 powder is 1.0μ , the average particle size of Al2O3 powder is 0.5μ, the average particle size of AlN is 1.5μ, and the average particle size of various borides is 1.0μ. Ta. After further adding 7% by weight of paraffin to the obtained mixed powder, a plate-shaped body having a length of 60 mm, a width of 40 mm, and a thickness of 10 mm was molded at room temperature under a molding pressure of 700 Kg/cm 2 . Each of the obtained molded bodies was first heat-treated at 700°C to thermally decompose and remove paraffin, and then sintered at 1750°C while passing nitrogen gas (3/min). For each sintered body obtained, the relative density, bending strength at room temperature, in air, at 800℃, 900℃, and 1000℃,
After 5000 hours of oxidation treatment, the bending strength and thermal shock resistance at room temperature were measured. The results are summarized in Examples 1 to 13 and Reference Examples 1 to 1.
9 in the table. Each measurement item followed the specifications below. Relative density: Shown as a relative ratio (%) to the theoretical density calculated from the composition ratio. Transverse bending strength: Based on 3-point bending strength test, specimen size 3 x 3 x 30 mm, crosshead speed
0.5mm/min, span 20mm, temperature room temperature. Measurements were performed on four specimens of each sample, and the average value is shown. Thermal shock resistance: A test piece with the same shape as the test piece for measuring bending strength is heated to a certain temperature, then placed in water to rapidly cool it, and the presence or absence of cracks in the test piece is observed using fluorescent flaw detection. It is expressed as the difference ΔT between the heating temperature and water temperature at the time of occurrence. As is clear from the table, the sintered bodies obtained by the method of the present invention (Examples 1 to 13) have a high relative density of 95% or more of the theoretical density, and also have a bending strength of 85 kg. /mm 2 or more, and thermal shock resistance is also ΔT
It is approximately 700℃ or higher. Among other things, 800
It was found that even after oxidation treatment at ~1000°C for 5000 hours, the decrease in bending strength was small. As detailed above, the method of the present invention does not require hot pressing, so it is suitable for mass production, and has high density, excellent thermal shock resistance, and
Since it is possible to produce a sintered body with a small decrease in mechanical strength in an oxidizing atmosphere at 800 to 1000°C, its industrial usefulness is great.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 酸化イツトリウム0.1〜10重量%;酸化アル
ミニウム0.1〜10重量%;窒化アルミニウム0.1〜
10重量%;硼化チタン、硼化バナジウム、硼化ク
ロム、硼化ジルコニウム、硼化ニオブ、硼化モリ
ブデン、硼化ハフニウム、硼化タンタル、及び硼
化タングステンのそれぞれの硼化物から成る群よ
り選ばれる少なくとも1種の硼化物0.1〜5重量
%;及び残部は窒化ケイ素から成ることを特徴と
するセラミツクス焼結体。 2 酸化イツトリウム粉末0.1〜10重量%;酸化
アルミニウム粉末0.1〜10重量%;窒化アルミニ
ウム粉末0.1〜10重量%;硼化チタン、硼化バナ
ジウム、硼化クロム、硼化ジルコニウム、硼化ニ
オブ、硼化モリブデン、硼化ハフニウム、硼化タ
ンタル、及び硼化タングステンのそれぞれの硼化
物粉末から成る群より選ばれる少なくとも1種の
硼化物粉末0.1〜5重量%;及び残部が窒化ケイ
窒粉末から成る混合粉末を成形し、該成形体を非
酸化性雰囲気中で焼結することを特徴とするセラ
ミツクス焼結体の製造方法。
[Claims] 1 Yttrium oxide 0.1-10% by weight; Aluminum oxide 0.1-10% by weight; Aluminum nitride 0.1-10% by weight
10% by weight; selected from the group consisting of borides of titanium boride, vanadium boride, chromium boride, zirconium boride, niobium boride, molybdenum boride, hafnium boride, tantalum boride, and tungsten boride A ceramic sintered body comprising: 0.1 to 5% by weight of at least one boride; and the remainder being silicon nitride. 2 Yttrium oxide powder 0.1-10% by weight; aluminum oxide powder 0.1-10% by weight; aluminum nitride powder 0.1-10% by weight; titanium boride, vanadium boride, chromium boride, zirconium boride, niobium boride, boride A mixed powder consisting of 0.1 to 5% by weight of at least one boride powder selected from the group consisting of boride powders of molybdenum, hafnium boride, tantalum boride, and tungsten boride; and the balance consisting of silicon nitride powder. 1. A method for producing a ceramic sintered body, comprising: molding the molded body, and sintering the molded body in a non-oxidizing atmosphere.
JP56124101A 1981-08-10 1981-08-10 Ceramic sintered body and manufacture Granted JPS5826076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56124101A JPS5826076A (en) 1981-08-10 1981-08-10 Ceramic sintered body and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56124101A JPS5826076A (en) 1981-08-10 1981-08-10 Ceramic sintered body and manufacture

Publications (2)

Publication Number Publication Date
JPS5826076A JPS5826076A (en) 1983-02-16
JPH0244784B2 true JPH0244784B2 (en) 1990-10-05

Family

ID=14876945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56124101A Granted JPS5826076A (en) 1981-08-10 1981-08-10 Ceramic sintered body and manufacture

Country Status (1)

Country Link
JP (1) JPS5826076A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59232970A (en) * 1983-05-13 1984-12-27 三菱マテリアル株式会社 Abrasion resistant sialon base ceramics
JPS6051668A (en) * 1983-07-29 1985-03-23 株式会社東芝 Antiabrasive member
JPS6197167A (en) * 1984-10-17 1986-05-15 住友電気工業株式会社 Silicon nitride sintered body and manufacture
JPH07187788A (en) * 1993-12-27 1995-07-25 Ngk Spark Plug Co Ltd Sintered aluminum nitride and its production
JP5944910B2 (en) * 2011-09-05 2016-07-05 株式会社東芝 Silicon nitride sintered body and method for manufacturing the same, and wear-resistant member and bearing using the same
EP2915793B1 (en) * 2012-10-30 2019-09-04 Kabushiki Kaisha Toshiba Wear resistant member
CN109942302A (en) * 2019-03-20 2019-06-28 广东工业大学 A kind of boride activeness and quietness silicon nitride ceramics and preparation method thereof

Also Published As

Publication number Publication date
JPS5826076A (en) 1983-02-16

Similar Documents

Publication Publication Date Title
JPH0244786B2 (en)
JPH0244785B2 (en)
EP0015421B1 (en) Method of producing sintered body of ceramics
KR900007078B1 (en) Liding member of high strenght and high abrasion resistance
US3953221A (en) Fully dense ceramic article and process employing magnesium oxide as a sintering aid
JPH0444628B2 (en)
JPH0116791B2 (en)
JPH0244784B2 (en)
EP0170889B1 (en) Zrb2 composite sintered material
JPS6050750B2 (en) Silicon nitride composite sintered body
JPS63319263A (en) Silicon nitride-based ceramic
JP2736386B2 (en) Silicon nitride sintered body
JPS623072A (en) Silicon carbide base sintered body and manufacture
US5545362A (en) Production method of sintered silicon nitride
JP2581128B2 (en) Alumina-sialon composite sintered body
JPH07138075A (en) Production of silicon nitride having high strength and high thermal expansion
JPH02221160A (en) Production of high-density silicon nitride sintered body
JPH05306172A (en) Silicon nitride sintered compact excellent in strength at high temperature and oxidation resistance and its production
JP3439027B2 (en) Method for producing BN-based sintered body
JPS6125676B2 (en)
JPH0269359A (en) Production of sintered silicon nitride body
JPS5874571A (en) Manufacture of silicon nitride sintered body
JP2000169231A (en) Oxidation-resistant carbon-based material
JPH0535107B2 (en)
JPH0461830B2 (en)