JP3279885B2 - Method for producing alumina-based sintered body - Google Patents

Method for producing alumina-based sintered body

Info

Publication number
JP3279885B2
JP3279885B2 JP25073595A JP25073595A JP3279885B2 JP 3279885 B2 JP3279885 B2 JP 3279885B2 JP 25073595 A JP25073595 A JP 25073595A JP 25073595 A JP25073595 A JP 25073595A JP 3279885 B2 JP3279885 B2 JP 3279885B2
Authority
JP
Japan
Prior art keywords
sintered body
alumina
temperature
firing
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25073595A
Other languages
Japanese (ja)
Other versions
JPH0987008A (en
Inventor
雨叢 王
博 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP25073595A priority Critical patent/JP3279885B2/en
Publication of JPH0987008A publication Critical patent/JPH0987008A/en
Application granted granted Critical
Publication of JP3279885B2 publication Critical patent/JP3279885B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、強度、靱性に優れ
たアルミナ質焼結体の製造方法に関わり、特に、航空・
宇宙業界,製錬業界,化学業界等で用いられたり、ガス
タ−ビン,エンジン用部品等に使用される耐高温構造材
料のアルミナ質焼結体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an alumina sintered body having excellent strength and toughness.
The present invention relates to a method for producing an alumina sintered body of a high temperature resistant structural material used in the space industry, smelting industry, chemical industry and the like, and used for gas turbines, engine parts and the like.

【0002】[0002]

【従来の技術】従来から、アルミナ質焼結体は、耐高温
の構造部材として、耐環境性,強度ともに優れることで
注目されてきた。また、その強度と破壊靭性をさらに向
上させるために、種々の組織制御および複合化が試みら
れている。例えば、低温焼成や、粒成長を抑制する助剤
を添加することにより、微粒な焼結組織を形成すること
は一般的に知られている。また、Al2 3 −SiC複
合材料、Al2 3 −ZrO2 複合材料、形状異方性の
β−Al2 3 結晶分散アルミナ材料が知られており
(特開昭61−122164号公報、特開昭63−13
9044号公報、特開昭63−134551号公報等参
照)、このような複合材料によれば、純粋なアルミナ質
焼結体よりも強度および靭性を向上することができる。
2. Description of the Related Art Alumina sintered bodies have been attracting attention as structural members having high temperature resistance because of their excellent environmental resistance and strength. Further, in order to further improve the strength and the fracture toughness, various structural controls and composites have been attempted. For example, it is generally known to form a fine-grained sintered structure by firing at a low temperature or adding an auxiliary agent that suppresses grain growth. Also, an Al 2 O 3 —SiC composite material, an Al 2 O 3 —ZrO 2 composite material, and a shape-anisotropic β-Al 2 O 3 crystal-dispersed alumina material are known (Japanese Patent Application Laid-Open No. 61-122164). JP-A-63-13
No. 9044, JP-A-63-134551, etc.), and such a composite material can improve strength and toughness as compared with a pure alumina sintered body.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記A
2 3 −SiC複合材料では、非酸化物のSiCを分
散含有するため、高温酸化雰囲気において耐酸化性に欠
け、Al2 3 −ZrO2 複合材料は900℃付近の温
度で強度が急激に低下するという問題があり、SiCや
ZrO2 などの第2相を含まない系での強度および靱性
の向上が望まれる。
However, the above A
l In 2 O 3 -SiC composite material, for SiC dispersion containing non-oxide lacks oxidation resistance in high-temperature oxidizing atmosphere, Al 2 O 3 -ZrO 2 composite material sharply strength at temperatures around 900 ° C. Therefore, it is desired to improve strength and toughness in a system that does not include a second phase such as SiC or ZrO 2 .

【0004】また、前記微粒組織のアルミナ質焼結体
は、強度が向上されたものの、破壊靭性はむしろ低下す
る傾向にあるという問題があり、強度とともに靱性の向
上には至っていない。また、β−Al2 3 分散アルミ
ナ材料は、β−Al2 3 結晶のヤング率が低く、また
粒成長速度が低いために形状異方性粒子が成長しにくい
等の理由から、靭性の向上に対する寄与が小さく、例え
ば、室温における破壊靱性は、せいぜい3.2〜3.4
MPa・m1/2 であった。(特開昭63−134551
号)。
Further, although the alumina-based sintered body having the fine-grained structure has improved strength, it has a problem that the fracture toughness tends to be rather lowered, and the toughness as well as the strength has not been improved. Further, the β-Al 2 O 3 dispersed alumina material has a low toughness because the Young's modulus of the β-Al 2 O 3 crystal is low and the shape growth anisotropy particles are difficult to grow due to a low grain growth rate. The contribution to the improvement is small, for example, the fracture toughness at room temperature is at most 3.2 to 3.4.
MPa · m 1/2 . (JP-A-63-134551)
issue).

【0005】本発明は、これらの問題を解決し、強度と
破壊靭性に優れたアルミナ質焼結体およびその製造方法
を提供することを目的とするものである。
An object of the present invention is to solve these problems and provide an alumina-based sintered body having excellent strength and fracture toughness, and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】本発明者は、アルミナの
室温強度および破壊靭性を同時に上げるためには、微細
な等方性結晶と異方性形状を有する結晶を共存させるこ
とが有効であり、また、異方性形状結晶は高ヤング率を
有するとともに、サイズと形状を制御することが重要で
あるという見地に基づいて研究を重ねた結果、長径が3
μm以下、アスペクト比が1.5以下の等方性Al2
3 結晶粒と、長径が10μm以上、アスペクト比が3以
上の異方性Al2 3 結晶粒の混合組織を持つアルミナ
質焼結体は強度と破壊靭性がともに優れることを見いだ
し、本発明に至った。
In order to simultaneously increase the room temperature strength and fracture toughness of alumina, the present inventor is effective in coexisting fine isotropic crystals and crystals having an anisotropic shape. In addition, anisotropic shaped crystals have high Young's modulus and have been studied based on the viewpoint that it is important to control the size and shape.
μm or less, isotropic Al 2 O with aspect ratio of 1.5 or less
An alumina sintered body having a mixed structure of three crystal grains and an anisotropic Al 2 O 3 crystal grain having a major axis of 10 μm or more and an aspect ratio of 3 or more was found to have both excellent strength and fracture toughness. Reached.

【0007】また、Al2 3 粉末に、Al2 3 との
共晶点が1600℃以下である金属酸化物を添加混合
し、成形後、焼成するに際し、室温から焼成温度までを
8℃/min以上の昇温速度で昇温すれば、上記組織特
徴を有するアルミナ質焼結体が得られることを見いだ
し、本発明に至った。なお、上記製造方法の中、焼成が
マイクロ波により加熱することで、所定の昇温速度を実
現できる上に、前記組織の形成が促進されることを見い
だし、本発明に至った。
Further, a metal oxide having a eutectic point with Al 2 O 3 of 1600 ° C. or less is added to and mixed with Al 2 O 3 powder. It has been found that when the temperature is raised at a rate of not less than / min, an alumina-based sintered body having the above-mentioned structural characteristics can be obtained, and the present invention has been achieved. In the above-mentioned manufacturing method, it has been found that, by heating by baking with microwaves, it is possible to realize a predetermined rate of temperature rise and to promote the formation of the structure, thereby leading to the present invention.

【0008】さらに、マイクロ波による加熱焼成中に、
焼結体に対して圧力を加えることにより得られた前記組
織特徴を有する焼結体は、緻密性が向上し、より優れた
強度と破壊靭性を示すことを見いだし、本発明に至っ
た。
Further, during heating and firing by microwaves,
It has been found that a sintered body having the above-mentioned structural characteristics obtained by applying a pressure to the sintered body has improved denseness and shows more excellent strength and fracture toughness, and has reached the present invention.

【0009】[0009]

【作用】本発明におけるアルミナ質焼結体は、粒径3μ
m以下の微細な等方性Al2 3 結晶粒と、長径が10
μm以上、アスペクト比が3以上の異方性Al2 3
晶粒を共存させることにより、強度と破壊靭性がともに
優れたアルミナ質焼結体を得ることができる。しかも、
SiCやZrO2 などの第2相を含まないことから、A
2 3 が有する優れた高温での耐酸化性や急激な強度
劣化を招くこともない。
The alumina sintered body according to the present invention has a particle size of 3 μm.
m2 and fine isotropic Al 2 O 3 crystal grains having a major axis of 10
By coexisting anisotropic Al 2 O 3 crystal grains having a size of 3 μm or more and an aspect ratio of 3 or more, an alumina sintered body excellent in both strength and fracture toughness can be obtained. Moreover,
Since it does not contain a second phase such as SiC or ZrO 2 , A
The excellent high-temperature oxidation resistance and rapid strength deterioration of l 2 O 3 do not occur.

【0010】また、Al2 3 粉末に、Al2 3 との
共晶点が1600℃以下である金属酸化物をを添加混合
し、成形後、焼成するにあたって、少なくとも室温から
焼成温度までの温度領域を8℃/min以上の昇温速度
で昇温することにより、昇温過程で液相成分が急激に生
成されるために液相が不均一に生成され、その結果、部
分的な粒成長を引き起こし、等方性Al2 3 結晶粒
と、異方性Al2 3 結晶粒とが共存した焼結体を作製
することができる。
Also, a metal oxide having a eutectic point with Al 2 O 3 of 1600 ° C. or less is added to Al 2 O 3 powder and mixed. By raising the temperature in the temperature range at a rate of 8 ° C./min or more, the liquid phase component is rapidly generated during the temperature raising process, so that the liquid phase is non-uniformly formed. Growth can be caused to produce a sintered body in which isotropic Al 2 O 3 crystal grains and anisotropic Al 2 O 3 crystal grains coexist.

【0011】なお、焼成時の加熱をマイクロ波により行
えば、15℃/min以上もの高い昇温速度を実現する
することができ、さらに、マイクロ波加熱焼成と同時に
圧力を付与することにより、さらに高密度化を促進し、
高強度、高靱性のアルミナ質焼結体を作製することがで
きる。
[0011] If heating during firing is performed by microwaves, it is possible to achieve a high heating rate of 15 ° C / min or more, and further, by applying pressure simultaneously with microwave heating and firing, Promote densification,
A high-strength, high-toughness alumina sintered body can be produced.

【0012】[0012]

【発明の実施の形態】以下、本発明を詳述する。本発明
のアルミナ質焼結体は、組織上、微粒な等方性Al2
3 結晶粒と形状異方性Al2 3 結晶粒が共存すること
を特徴とする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. The alumina sintered body of the present invention is structurally fine isotropic Al 2 O
It is characterized in that three crystal grains and shape-anisotropic Al 2 O 3 crystal grains coexist.

【0013】ここで、微粒な等方性結晶とは、長径が3
μm以下、アスペクト比(長径/短径)が1.5以下の
結晶粒を言う。この微粒な等方性結晶の存在は、焼結体
の強度向上に寄与することが知られている。本発明で
は、このような微粒かつ等方性の結晶は焼結体全体の1
5〜80体積%の割合で存在することが重要である。こ
のような微粒結晶の存在量が15体積%より少ないと、
強度向上の効果が小さくなり、逆に、その量が80体積
%より多くなると、粒界に沿ってクラックが容易に進展
し、材料の破壊靭性が低下する。この等方性結晶は、焼
結体全体の30〜70体積%の割合で存在することが望
ましい。
Here, the fine isotropic crystal is defined as having a major axis of 3 mm.
It refers to a crystal grain having an aspect ratio (major axis / minor axis) of 1.5 or less and 1.5 or less. It is known that the presence of the fine isotropic crystals contributes to the improvement of the strength of the sintered body. In the present invention, such fine and isotropic crystals form one of the entire sintered body.
It is important that it be present in a proportion of 5-80% by volume. If the amount of such fine crystals is less than 15% by volume,
If the effect of improving the strength is reduced, and if the amount is more than 80% by volume, cracks are easily developed along the grain boundaries, and the fracture toughness of the material is reduced. This isotropic crystal is desirably present in a proportion of 30 to 70% by volume of the whole sintered body.

【0014】また、本発明のアルミナ質焼結体中には、
形状異方性Al2 3 結晶粒の存在が重要である。ここ
で言う形状異方性Al2 3 結晶粒は、長径が10μm
以上、アスペクト比が3以上の柱状あるいは板状Al2
3 結晶である。微粒のAl2 3 結晶組織の中上記柱
状あるいは板状Al2 3 結晶の存在は、クラックの進
展に対して、ディフラクション効果またはブリジング効
果により材料の破壊靭性を著しく向上する。しかし、こ
の柱状あるいは板状結晶が20体積%より少ないと靭性
向上効果が小さく、また85体積%を越えるような場合
では、異常成長結晶が多く現れ、焼結体の強度を著しく
低下させる。従って、上記形状異方性Al2 3 結晶粒
は焼結体全体の20〜85体積%、特に40〜80体積
%であることがより望ましい。
Further, in the alumina-based sintered body of the present invention,
The existence of shape anisotropic Al 2 O 3 crystal grains is important. Here, the shape anisotropic Al 2 O 3 crystal grains have a major axis of 10 μm.
As described above, columnar or plate-like Al 2 having an aspect ratio of 3 or more
O 3 crystal. The presence of the columnar or plate-like Al 2 O 3 crystals in the fine Al 2 O 3 crystal structure remarkably improves the fracture toughness of the material due to the diffusion effect or bridging effect with respect to the development of cracks. However, if this columnar or plate-like crystal is less than 20% by volume, the effect of improving toughness is small, and if it exceeds 85% by volume, many abnormally grown crystals appear and the strength of the sintered body is significantly reduced. Therefore, the shape anisotropic Al 2 O 3 crystal grains are more preferably 20 to 85% by volume, especially 40 to 80% by volume of the whole sintered body.

【0015】上記の本発明のアルミナ質焼結体は、Al
2 3 粉末に、Al2 3 との共晶点が1600℃以下
である金属酸化物を添加し、混合、成形後、かかる成形
体を室温から焼成温度までを8℃/min以上の昇温速
度で昇温した後、焼結することにより製造される。ここ
で、上記昇温速度は、室温から焼成温度までの平均昇温
速度であって、焼成温度と室温(25℃)との差を室温
から焼成温度に達するまでの時間で割った値で算出され
る。
The above alumina-based sintered body of the present invention is made of Al
A metal oxide having a eutectic point with Al 2 O 3 of 1600 ° C. or less is added to the 2 O 3 powder, mixed, molded, and then the molded body is heated from room temperature to a sintering temperature by 8 ° C./min or more. It is manufactured by sintering after heating at a temperature rate. Here, the heating rate is an average heating rate from the room temperature to the firing temperature, and is calculated by dividing a difference between the firing temperature and the room temperature (25 ° C.) by a time from the room temperature to the firing temperature. Is done.

【0016】かかる製造方法によれば、Al2 3 との
共晶点が1600℃以下の金属酸化物の添加が重要であ
る。上記金属酸化物の添加により、焼成中に液相を一定
量生成し、結晶の異方性成長を促進する。Al2 3
の共晶点が1600℃以下になるなら、単一種類の添加
剤あるいは複数の添加物どちらでも良い。その種類は特
に限定しないが、例えば、Na、Mg、Ca、Sr、B
a、Ti、Fe、Mn、W、Si、および周期律表第3
A族元素の酸化物から選ぶ1種類以上のものである。ま
た、その添加量は、添加種類および焼成条件に応じて調
整するが、組織制御と材料特性の向上の見地から、0.
1〜10mol%の範囲で添加することが望ましい。ま
た、Al2 3 原料中の一部の不純物は添加する金属酸
化物と作用し、低融点相を形成することも可能である。
According to this production method, it is important to add a metal oxide having a eutectic point with Al 2 O 3 of 1600 ° C. or less. By the addition of the above metal oxide, a certain amount of liquid phase is generated during firing, and the anisotropic growth of crystals is promoted. If the eutectic point with Al 2 O 3 is 1600 ° C. or lower, either a single type of additive or a plurality of additives may be used. Although the type is not particularly limited, for example, Na, Mg, Ca, Sr, B
a, Ti, Fe, Mn, W, Si, and Periodic Table No. 3
One or more types selected from oxides of Group A elements. The amount of addition is adjusted according to the type of addition and the firing conditions.
It is desirable to add in the range of 1 to 10 mol%. In addition, some impurities in the Al 2 O 3 raw material can act on the added metal oxide to form a low melting point phase.

【0017】上記金属酸化物は公知の原料、例えば酸化
物粉末、硝酸塩、酢酸塩、炭酸塩などの酸化物形成粉
末、金属粉末、当該金属を含む有機、無機物およびその
溶液を用いることができる。
As the above-mentioned metal oxide, known raw materials, for example, oxide powder, oxide-forming powder such as nitrate, acetate and carbonate, metal powder, organic and inorganic substances containing the metal and their solutions can be used.

【0018】上記金属酸化物をAl2 3 と混合し、公
知の成形技術、例えば、金型プレス,鋳込み成型,押出
成型,射出成型,冷間静水圧プレスなどにより任意の形
状に成形する。この成形体を公知の焼結法で焼成する
が、本発明によれば、焼成時において室温から焼成温度
までの昇温速度が8℃/min以上であることが重要で
ある。このような条件で昇温すると、焼結体中に不均一
的に液相が生成する。液相が多く生成する箇所では一部
の形状異方性結晶の成長が促進されるが、液相が少ない
領域では等方性結晶が微粒のままで焼成できるため、形
状異方性結晶と等方性結晶が混在した焼結体が生成され
る。
The above-mentioned metal oxide is mixed with Al 2 O 3 and molded into an arbitrary shape by a known molding technique, for example, die pressing, casting molding, extrusion molding, injection molding, cold isostatic pressing and the like. The molded body is fired by a known sintering method. According to the present invention, it is important that the rate of temperature rise from room temperature to the firing temperature during firing is 8 ° C./min or more. When the temperature is increased under such conditions, a liquid phase is unevenly generated in the sintered body. Although the growth of some shape anisotropic crystals is promoted in places where a large amount of liquid phase is generated, in the region where the liquid phase is small, isotropic crystals can be fired as fine grains, so that the shape is anisotropic crystals. A sintered body in which isotropic crystals are mixed is generated.

【0019】なお、焼成温度は、その組成にもよるが、
緻密化と組織形成の見地から、液相形成温度以上、17
00℃以下、さらに具体的には、1200℃〜1700
℃がよい。
The firing temperature depends on the composition,
From the viewpoint of densification and structure formation, the
00 ° C. or lower, more specifically, 1200 ° C. to 1700
° C is good.

【0020】また、本発明の製造方法によれば、成形体
を加熱手段としてマイクロ波を用いることが有効であ
る。通常の抵抗加熱方法では、焼結体の外部から内部へ
熱が伝わるため、サイズが大きな焼結体には、高速昇温
には困難である。これに対して、マイクロ波加熱では、
焼結体自体を発熱させることができるために、本発明の
ような高い昇温速度を実現しやすい。その上、組成によ
りマイクロ波を選択的に吸収し発熱する現象を利用し、
異方性結晶の発達を促進されると同時に、焼成時間が短
縮でき、微粒結晶の存在割合を増やすことができる。加
熱手段として用いるマイクロ波は出力1KW以上、特に
5KW以上がよい。
According to the production method of the present invention, it is effective to use a microwave as a heating means for the molded body. In a normal resistance heating method, since heat is transmitted from the outside to the inside of the sintered body, it is difficult to quickly increase the temperature of a large-sized sintered body. In contrast, with microwave heating,
Since the sintered body itself can generate heat, it is easy to realize a high temperature rising rate as in the present invention. Furthermore, utilizing the phenomenon of selectively absorbing microwaves and generating heat depending on the composition,
At the same time as the development of the anisotropic crystal is promoted, the firing time can be shortened, and the proportion of fine crystals can be increased. The microwave used as the heating means preferably has an output of 1 kW or more, particularly 5 kW or more.

【0021】さらに、本発明の製造方法によれば、上記
マイクロ波加熱により昇温または焼成中に、焼結体に圧
力を加えることはが有効である。本発明の焼結体を製造
するには、異方性粒子を発達すると同時に、微粒な等方
性粒子の成長を抑制することが重要である。従って、焼
成温度の低温化及び焼成時間の短縮は組織の形成にとっ
て好ましい。しかし、焼成温度を下げたり、焼成時間を
短縮することで、焼結体が充分に緻密化できないことが
ある。そこで、昇温、焼成中に圧力を加えることによ
り、制御された組織と充分な密度を有する焼結体が得ら
れる。圧力付与としては、ガス圧力あるいは機械的圧力
を用いることが可能であり、例えば、50kg/cm2
以上、特に200kg/cm2 以上の機械的圧力を付与
したり、熱間静水圧焼成炉を用いてガス圧力を付与する
こともできるが、装置上の簡略性からは、機械的圧力を
加えることが有効である。
Further, according to the production method of the present invention, it is effective to apply pressure to the sintered body during the heating or firing by the microwave heating. In order to produce the sintered body of the present invention, it is important to suppress the growth of fine isotropic particles while developing the anisotropic particles. Therefore, lowering the firing temperature and shortening the firing time are preferable for forming the structure. However, if the firing temperature is lowered or the firing time is shortened, the sintered body may not be sufficiently densified. Thus, a sintered body having a controlled structure and a sufficient density can be obtained by applying pressure during heating and firing. As the pressure application, a gas pressure or a mechanical pressure can be used. For example, 50 kg / cm 2
As described above, in particular, a mechanical pressure of 200 kg / cm 2 or more can be applied, or a gas pressure can be applied by using a hot isostatic firing furnace. Is valid.

【0022】[0022]

【実施例】純度99.9%のアルミナ粉末、酸化マグネ
シウム粉末、酸化チタン粉末、酸化ランタンニウム粉末
および酸化珪素粉末を用い、表1に示すような組成にな
るように調合した。それぞれの組成系の共晶温度は、原
料中に不純物としての酸化珪素(約500ppm)の存
在から1300℃〜1400℃であると推定された。上
記混合粉末を1t/cm2 の圧力でプレス成形した後、
さらに3t/cm2の圧力で静水圧処理を加えた。上記
成形体を大気中に表1に示す加熱方式で室温から焼成温
度までを表1の昇温速度で昇温し、表1の条件で焼成し
た。なお、試料No.8、11については、ホットプレス
法に基づき100〜300kg/cm2 の圧力を付与し
た。
EXAMPLES A powder having a composition shown in Table 1 was prepared using alumina powder, magnesium oxide powder, titanium oxide powder, lanthanum oxide powder and silicon oxide powder having a purity of 99.9%. The eutectic temperature of each composition system was estimated to be 1300 ° C to 1400 ° C due to the presence of silicon oxide (about 500 ppm) as an impurity in the raw material. After press-molding the mixed powder at a pressure of 1 t / cm 2 ,
Further, a hydrostatic pressure treatment was applied at a pressure of 3 t / cm 2 . The above molded body was heated in the atmosphere from room temperature to a sintering temperature at a heating rate shown in Table 1 by a heating method shown in Table 1 and baked under the conditions shown in Table 1. For Samples Nos. 8 and 11, a pressure of 100 to 300 kg / cm 2 was applied based on the hot press method.

【0023】得られた焼結体の密度を測定し、鏡面に研
磨後、光学顕微鏡および走査型電子顕微鏡で組織を観察
し、長径が3μm以下、アスペクト比が1.5以下の等
方性Al2 3 結晶粒と、長径が10μm以上、アスペ
クト比が3以上の異方性Al2 3 結晶粒との存在割合
をルーゼックスによる画像解析から求めた。
The density of the obtained sintered body was measured, and after polishing to a mirror surface, the structure was observed with an optical microscope and a scanning electron microscope, and the isotropic Al having a major axis of 3 μm or less and an aspect ratio of 1.5 or less was obtained. The existence ratio of 2 O 3 crystal grains and anisotropic Al 2 O 3 crystal grains having a major axis of 10 μm or more and an aspect ratio of 3 or more was determined by image analysis using Luzex.

【0024】さらに、各焼結体をJIS−R1601に
て指定されている形状まで研磨し抗折試料を作製した。
この試料についてJIS−R1601に基づく室温で4
点曲げ抗折強度試験を実施した。また、ビッカース圧痕
法により破壊靭性(K1c)を測定した。密度、組織定量
化測定の結果および強度と破壊靭性測定の結果を表2に
示す。なお、試料No.5の焼結体の組織の模写図を図1
に示した。
Further, each sintered body was polished to a shape specified by JIS-R1601, to prepare a bending specimen.
At room temperature based on JIS-R1601, 4
A point bending flexural strength test was performed. Further, the fracture toughness (K1c) was measured by the Vickers indentation method. Table 2 shows the results of the density, the structure quantification measurement, the strength and the fracture toughness measurement. FIG. 1 is a schematic view of the structure of the sintered body of sample No. 5.
It was shown to.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】表2の結果から、本発明に基づいて得られ
た等方性Al2 3 結晶粒と異方性Al2 3 結晶粒と
が所定の割合で混在したアルミナ質焼結体は、従来のア
ルミナ質焼結体および本発明以外のアルミナ質焼結体に
比べて、より優れた強度と破壊靭性を示し、室温強度5
00MPa以上、靱性4.0MPa・m1/2 以上の優れ
た特性が得られた。
From the results in Table 2, it can be seen that the alumina-based sintered body obtained by mixing the isotropic Al 2 O 3 crystal grains and the anisotropic Al 2 O 3 crystal grains at a predetermined ratio obtained according to the present invention was obtained. , Showing superior strength and fracture toughness compared to conventional alumina-based sintered bodies and alumina-based sintered bodies other than the present invention, and has a room temperature strength of 5%.
Excellent characteristics of at least 00 MPa and toughness of at least 4.0 MPa · m 1/2 were obtained.

【0028】[0028]

【発明の効果】本発明によれば、Al23粉末とAl2
3との共晶点が1600℃以下である金属酸化物との
混合物からなる成形体を、焼成温度まで高速昇温して焼
成することにより、等方性Al23結晶粒と異方性Al
23結晶粒とが共存した、強度と破壊靭性がともに優れ
たアルミナ質焼結体を容易に得ることができる。
According to the present invention, Al 2 O 3 powder and Al 2 O 3
A compact formed of a mixture with a metal oxide having a eutectic point with O 3 of 1600 ° C. or lower is heated at a high speed to a sintering temperature and sintered to form anisotropic Al 2 O 3 crystal grains. Al
An alumina-based sintered body excellent in both strength and fracture toughness in which 2 O 3 crystal grains coexist can be easily obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のアルミナ質焼結体の組織を示す模写図
である。
FIG. 1 is a schematic view showing a structure of an alumina sintered body of the present invention.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Al23粉末に、Al23との共晶点が1
600℃以下の金属酸化物を添加混合し、成形後、室温
から8℃/min以上の昇温速度で焼成温度まで昇温し
て焼成し、長径が3μm以下、アスペクト比が1.5以
下の等方性Al23結晶粒を全量中15〜80体積%、
長径が10μm以上、アスペクト比が3以上の異方性A
23結晶粒を全量中20〜85体積%の割合で含有す
ることを特徴とするアルミナ質焼結体の製造方法。
The eutectic point of Al 2 O 3 powder with Al 2 O 3 is 1
After adding and mixing a metal oxide of 600 ° C. or less, after forming, the temperature is raised from room temperature to a firing temperature at a temperature increasing rate of 8 ° C./min or more and firing is performed, and the major axis is 3 μm or less and the aspect ratio is 1.5 or less. 15 to 80% by volume of isotropic Al 2 O 3 crystal grains in the total amount,
Anisotropic A having a major axis of 10 μm or more and an aspect ratio of 3 or more
method for producing an alumina sintered body characterized by containing l 2 O 3 crystal grains in a ratio of 20 to 85 vol% in the total amount.
【請求項2】前記昇温、焼成をマイクロ波による加熱に
よって行う請求項1記載のアルミナ質焼結体の製造方
法。
2. The method for producing an alumina-based sintered body according to claim 1, wherein the heating and firing are performed by heating with microwaves.
【請求項3】前記昇温、焼結を圧力を付与した状態で行
う請求項1または請求項2記載のアルミナ質焼結体の製
造方法。
3. The method for producing an alumina-based sintered body according to claim 1, wherein the heating and sintering are performed while applying pressure.
JP25073595A 1995-09-28 1995-09-28 Method for producing alumina-based sintered body Expired - Fee Related JP3279885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25073595A JP3279885B2 (en) 1995-09-28 1995-09-28 Method for producing alumina-based sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25073595A JP3279885B2 (en) 1995-09-28 1995-09-28 Method for producing alumina-based sintered body

Publications (2)

Publication Number Publication Date
JPH0987008A JPH0987008A (en) 1997-03-31
JP3279885B2 true JP3279885B2 (en) 2002-04-30

Family

ID=17212266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25073595A Expired - Fee Related JP3279885B2 (en) 1995-09-28 1995-09-28 Method for producing alumina-based sintered body

Country Status (1)

Country Link
JP (1) JP3279885B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1171168A (en) * 1997-06-26 1999-03-16 Ngk Spark Plug Co Ltd Alumina-based sintered ceramic material and its production
WO2009057603A1 (en) * 2007-10-29 2009-05-07 Kyocera Corporation Abrasion resistant ceramic, sliding member, and pump
JP5188225B2 (en) * 2007-10-29 2013-04-24 京セラ株式会社 Free-cutting porcelain, sliding member and pump
US8207077B2 (en) 2007-10-29 2012-06-26 Kyocera Corporation Abrasion-resistant sintered body, sliding member, and pump
JP5188226B2 (en) * 2007-10-29 2013-04-24 京セラ株式会社 Wear-resistant porcelain, sliding member and pump
JP5272658B2 (en) * 2008-10-31 2013-08-28 東ソー株式会社 High-toughness and translucent alumina sintered body, manufacturing method and use thereof
EP2808313B1 (en) 2008-11-18 2018-05-02 Tosoh Corporation Colored alumina sintered body of high toughness and high translucency, and its production method and its uses
JP6725115B2 (en) 2017-12-25 2020-07-15 昭和電工株式会社 Alumina sintered body, abrasive grains, and grindstone
JP6604687B2 (en) 2017-12-25 2019-11-13 昭和電工株式会社 Method for producing alumina sintered body
JP6753584B2 (en) 2017-12-25 2020-09-09 昭和電工株式会社 Alumina sintered body, abrasive grains, and grindstone

Also Published As

Publication number Publication date
JPH0987008A (en) 1997-03-31

Similar Documents

Publication Publication Date Title
JP3279885B2 (en) Method for producing alumina-based sintered body
JPH1171168A (en) Alumina-based sintered ceramic material and its production
JP2507479B2 (en) SiC-Al Lower 2 O Lower 3 Composite Sintered Body and Manufacturing Method Thereof
JP2670221B2 (en) Silicon nitride sintered body and method for producing the same
JP2533336B2 (en) Sintered compact made of partially stabilized zirconium oxide and method for producing the same
Kolar Chemical research needed to improve high-temperature processing of advanced ceramic materials (Technical report)
JP3121996B2 (en) Alumina sintered body
JP3145597B2 (en) Alumina sintered body and method for producing the same
JPH02500267A (en) ceramic material
JP3810806B2 (en) Sintered silicon nitride ceramics
JP3311915B2 (en) Alumina sintered body
JPH0987009A (en) Alumina-mullite combined sintered compact and its production
JP3124865B2 (en) Silicon nitride sintered body and method for producing the same
JPH08208317A (en) Alumina sintered body and production thereof
JPH06263544A (en) Sialon-based composite sintered compact and its production
JPH07165462A (en) Alumina-beta-sialon-yag composite material
JP3152853B2 (en) Alumina sintered body and method for producing the same
JP3101972B2 (en) Alumina sintered body and method for producing the same
JP3929335B2 (en) Aluminum nitride sintered body and method for producing the same
JP3340025B2 (en) Alumina sintered body and method for producing the same
JP3359443B2 (en) Alumina sintered body and method for producing the same
JPH10279360A (en) Silicon nitride structural parts and its production
JPH08198664A (en) Alumina-base sintered body and its production
JP3618036B2 (en) Alumina sintered body manufacturing method
JP2696596B2 (en) Sialon sintered body and manufacturing method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees