JP3340025B2 - Alumina sintered body and method for producing the same - Google Patents

Alumina sintered body and method for producing the same

Info

Publication number
JP3340025B2
JP3340025B2 JP13844696A JP13844696A JP3340025B2 JP 3340025 B2 JP3340025 B2 JP 3340025B2 JP 13844696 A JP13844696 A JP 13844696A JP 13844696 A JP13844696 A JP 13844696A JP 3340025 B2 JP3340025 B2 JP 3340025B2
Authority
JP
Japan
Prior art keywords
alumina
sintered body
crystal
feal
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13844696A
Other languages
Japanese (ja)
Other versions
JPH09328355A (en
Inventor
雨叢 王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP13844696A priority Critical patent/JP3340025B2/en
Publication of JPH09328355A publication Critical patent/JPH09328355A/en
Application granted granted Critical
Publication of JP3340025B2 publication Critical patent/JP3340025B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高強度、高靭性お
よびと耐環境性に優れたアルミナ質焼結体およびその製
造方法に関わり、酸化および還元性雰囲気で使用される
高温用構造材料のアルミナ質焼結体およびその製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alumina-based sintered body having high strength, high toughness and excellent environmental resistance and a method for producing the same, and relates to a high-temperature structural material used in an oxidizing and reducing atmosphere. The present invention relates to an alumina sintered body and a method for producing the same.

【0002】[0002]

【従来の技術】従来から、構造部材として、アルミナ質
焼結体は、耐環境性および強度特性がともに優れること
から種々の産業機械用部材として多用されている。最近
では、このアルミナ質焼結体の用途を拡大する上で、そ
の強度と破壊靭性をさらに向上させるために種々の複合
化が試みられている。例えば、Al2 3 −SiCナノ
コンポジィット複合材料(特開昭61−122164号
公報等参照)、Al2 3 −ZrO2 複合材料(特開昭
63−139044号公報等参照)、Al2 3−Ti
2 複合材料(特開平7−257964号公報を参照)
等が知られており、このような複合材料によれば、一般
的なアルミナ質焼結体より強度と靭性が向上することが
できる。
2. Description of the Related Art Conventionally, as a structural member, an alumina-based sintered body has been widely used as a member for various industrial machines because of its excellent environmental resistance and strength characteristics. In recent years, in expanding the use of the alumina-based sintered body, various composites have been attempted to further improve the strength and fracture toughness. For example, Al 2 O 3 —SiC nanocomposite composite material (see JP-A-61-122164, etc.), Al 2 O 3 -ZrO 2 composite material (see JP-A-63-139944, etc.), Al 2 O 3 -Ti
O 2 composite material (see JP-A-7-257964)
According to such a composite material, strength and toughness can be improved as compared with a general alumina-based sintered body.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記A
2 3 −SiCナノコンポジィット複合材料では、A
2 3 中に非酸化物であるSiC粒子を分散している
ために、高温状態で長時間保持されると、SiCが母相
のAl2 3 と反応するという問題があった。
However, the above A
In the l 2 O 3 -SiC nano-components Jie Tsu door composite material, A
Since the non-oxide SiC particles are dispersed in l 2 O 3 , there is a problem that if the high-temperature state is maintained for a long time, the SiC reacts with the mother phase Al 2 O 3 .

【0004】また、Al2 3 −ZrO2 複合材料は9
00℃付近の温度で強度が急激に低下するという問題が
あるため、高温下において応力が作用するような状態で
の使用には適しないという問題があった。
The Al 2 O 3 —ZrO 2 composite material is 9
Since there is a problem that the strength is sharply reduced at a temperature of around 00 ° C., there is a problem that it is not suitable for use in a state where a stress acts at a high temperature.

【0005】更に、Al2 3 −TiO2 複合材料は、
1300℃以上の温度ではAl2 3 とTiO2 とが反
応してAl2 TiO5 を生成し、材料の特性が不安定で
ある問題があった。
Further, Al 2 O 3 —TiO 2 composite material is
At a temperature of 1300 ° C. or higher, Al 2 O 3 and TiO 2 react with each other to produce Al 2 TiO 5, and there has been a problem that the characteristics of the material are unstable.

【0006】従って、本発明は、室温から高温まで安定
した強度を有するとともに、靱性に富んだアルミナ質焼
結体およびその製法を提供することを目的とするもので
ある。
Accordingly, an object of the present invention is to provide an alumina-based sintered body having stable strength from room temperature to a high temperature and having high toughness, and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】本発明者は、上記目的に
対して検討を重ねた結果、アルミナ結晶粒内にFeAl
2 4 で表される複合酸化物を平均粒径が全量中1体積
%以上の割合で、平均粒径が0.5μm以下の微細な粒
子として分散させることにより、上記目的が達成される
ことを見いだし本発明に至った。また、そのアルミナ主
結晶の粒界に前記粒内分散相やアルミナ結晶相とは異な
る他の金属酸化物相を分散させると、アルミナの粒成長
を抑制し、焼結体の強度を一層向上することを見いだし
本発明に至った。
Means for Solving the Problems The inventors of the present invention have studied the above object, and as a result, have found that FeAl
The above object is achieved by dispersing the composite oxide represented by 2 O 4 as fine particles having an average particle diameter of 0.5% or less in an amount of 1% by volume or more of the total amount. And found the present invention. Further, when another metal oxide phase different from the intragranular dispersed phase or the alumina crystal phase is dispersed at the grain boundaries of the alumina main crystal, alumina grain growth is suppressed, and the strength of the sintered body is further improved. The present invention has been found.

【0008】また、上記のアルミナ質焼結体の製造方法
として、アルミナを主成分とし、少なくともFe元素を
含む成形体を酸化性雰囲気中で加熱処理して、Fe元素
をアルミナ結晶中に固溶させた後に、さらにこの固溶体
を還元性雰囲気中で熱処理を施すことにより、上記Fe
元素をFeAl2 4 の形でアルミナ結晶粒内に析出さ
せることができることを見いだし本発明に至った。
Further, as a method for producing the above-mentioned alumina-based sintered body, a molded body containing alumina as a main component and containing at least an Fe element is subjected to heat treatment in an oxidizing atmosphere so that the Fe element is dissolved in the alumina crystal. After the heat treatment, the solid solution is further subjected to a heat treatment in a reducing atmosphere to obtain the Fe
The present inventors have found that the element can be precipitated in the alumina crystal grains in the form of FeAl 2 O 4 , and have reached the present invention.

【0009】このような本発明によれば、アルミナ主結
晶粒内に微細な粒子のFeAl2 4 を分散させること
により、室温から高温まで安定した高強度を実現できる
とともに、高い靱性を付与することができる。
According to the present invention, by dispersing fine particles of FeAl 2 O 4 in alumina main crystal grains, stable high strength can be realized from room temperature to high temperature, and high toughness is imparted. be able to.

【0010】[0010]

【発明の実施の形態】本発明のアルミナ質焼結体は、ア
ルミナ結晶を主とするものであるが、アルミナ結晶は焼
成中に粒成長を起こしやすいが、平均粒径が6μm以下
であることが焼結体の高強度化に対して有利であり、特
にアルミナ結晶の平均粒径は特に4μ以下であることが
望ましい。従って、このアルミナ主結晶は平均粒径が6
μmを越えると所望の強度が得られない。このアルミナ
主結晶相は、全量中において50体積%以上、特に70
〜95体積%の割合で存在することが強度の点から適当
である。
BEST MODE FOR CARRYING OUT THE INVENTION The alumina-based sintered body of the present invention is mainly composed of alumina crystals. Alumina crystals tend to grow during firing, but have an average particle size of 6 μm or less. Is advantageous for increasing the strength of the sintered body. In particular, it is desirable that the average particle size of the alumina crystal is 4 μm or less. Therefore, this alumina main crystal has an average particle size of 6
If it exceeds μm, the desired strength cannot be obtained. This alumina main crystal phase accounts for 50% by volume or more, especially 70% by volume in the total amount.
It is appropriate from the point of strength that it is present at a ratio of up to 95% by volume.

【0011】また、本発明によれば、第2の結晶相とし
て、上記アルミナ結晶の粒内にFeAl2 4 で表され
る複合酸化物相が平均粒径0.5μm以下の微細な粒子
として分散している。アルミナ結晶の粒内にFeAl2
4 相が微細な粒子として分散すると、母相であるアル
ミナ結晶自体が強化され、焼結体全体の強度、靭性およ
び高温強度が向上される。
According to the present invention, as the second crystal phase, a composite oxide phase represented by FeAl 2 O 4 is formed as fine particles having an average particle size of 0.5 μm or less in the alumina crystal grains. Distributed. FeAl 2 in the alumina crystal grains
When the O 4 phase is dispersed as fine particles, the alumina crystal itself, which is the parent phase, is strengthened, and the strength, toughness, and high-temperature strength of the entire sintered body are improved.

【0012】なお、FeAl2 4 からなる粒内分散相
の量が少ないと強度と靭性向上の効果が小さいため、全
量中に1体積%以上、特に3〜10体積%の割合で分散
していることが望ましい。本発明において、上記粒内分
散相の平均粒径を上記のように限定したのは、粒内分散
相の平均サイズが0.5μmを越えるとアルミナ結晶に
対する強化効果が低下し、場合によっては析出粒子と母
相結晶の間に過大な応力が生じ、クラックを発生するこ
とがある為である。粒内分散相のサイズは特に0.3μ
m以下であることが好ましい。
If the amount of the intragranular dispersed phase composed of FeAl 2 O 4 is small, the effect of improving strength and toughness is small, so that it is dispersed at a rate of 1% by volume or more, particularly 3 to 10% by volume in the total amount. Is desirable. In the present invention, the average particle size of the above-mentioned intragranular dispersed phase is limited as described above. When the average size of the intragranular dispersed phase exceeds 0.5 μm, the strengthening effect on alumina crystals decreases, and in some cases, precipitation occurs. This is because excessive stress may be generated between the particles and the matrix crystal, and cracks may be generated. The size of the intragranular dispersed phase is particularly 0.3 μm.
m or less.

【0013】また、本発明によれば、上記アルミナ結晶
の粒界に、第3の結晶相として、前記アルミナ結晶やF
eAl2 4 とは異なる他の金属酸化物が3体積%以
上、特に5〜40体積%の割合で存在することが望まし
い。これらの粒界分散相は、母相であるアルミナ結晶の
粒成長を効果的に抑制すると同時に、材料の強度向上に
も寄与できる。上記第3の結晶相としては、特に周期律
表2A〜7A族元素を含む酸化物、例えば、MgAl2
4 、CaAl1219、Y3 Al5 12、LaAl11
18、HfO2 、V2 5 などの化合物から選ばれる1種
以上が好適であり、これらのものは高温での安定性およ
び粒成長抑制効果が優れる。
Further, according to the present invention, the alumina crystal or F
It is desirable that another metal oxide different from eAl 2 O 4 be present in a proportion of 3% by volume or more, particularly 5 to 40% by volume. These grain boundary dispersed phases can effectively suppress the grain growth of alumina crystals, which are the parent phase, and can also contribute to improving the strength of the material. As the third crystal phase, an oxide containing a group 2A to 7A element in the periodic table, for example, MgAl 2
O 4 , CaAl 12 O 19 , Y 3 Al 5 O 12 , LaAl 11 O
One or more selected from compounds such as 18 , HfO 2 , and V 2 O 5 are suitable, and these have excellent stability at high temperatures and an effect of suppressing grain growth.

【0014】次に、本発明のアルミナ質焼結体の製法に
ついて述べる。上記のアルミナ質焼結体を作製するに
は、まず、アルミナを主成分とし、少なくともFe元素
を含む成形体を作製する。この成形体は、アルミナ粉末
に対して、Fe元素を含む化合物、例えば、鉄粉末、F
eO、Fe2 3 、Fe3 4 などの酸化鉄粉末、Fe
を含む有機塩や無機塩およびそれらの溶液を添加して、
ボールミル等で十分に混合し乾燥した後、所望の成形手
段、例えば、金型プレス,冷間静水圧プレス,押出し成
形等により任意の形状に成形後、焼成する。ここで、F
e添加量は、前述したFeAl2 4 を全量中1体積%
以上の割合で析出させるためにはFe2 3 に換算して
0.5mol%以上が適当である。
Next, a method for producing the alumina sintered body of the present invention will be described. In order to produce the above-mentioned alumina-based sintered body, first, a compact containing alumina as a main component and at least Fe element is produced. This compact is made of a compound containing Fe element, for example, iron powder, F
iron oxide powder such as eO, Fe 2 O 3 , Fe 3 O 4 , Fe
Add organic and inorganic salts and their solutions containing
After sufficiently mixing and drying with a ball mill or the like, the mixture is molded into an arbitrary shape by a desired molding means, for example, a die press, a cold isostatic press, an extrusion molding or the like, and then fired. Where F
The amount of e added is 1% by volume of the above-mentioned FeAl 2 O 4 in the total amount.
To precipitate at the above ratio, 0.5 mol% or more is appropriate in terms of Fe 2 O 3 .

【0015】焼成にあたっては、まず、上記のようにし
て作製した成形体を大気または酸素分圧が10-3以上の
酸化性雰囲気で1300〜1700℃の温度で1〜10
時間程度加熱処理すると、Fe元素はFe3+イオンとな
り、アルミナ結晶中に固溶する。
At the time of firing, first, the molded body produced as described above is heated at a temperature of 1300 to 1700 ° C. in an atmosphere or an oxidizing atmosphere having an oxygen partial pressure of 10 −3 or more at a temperature of 1 to 1700 ° C.
When the heat treatment is performed for about an hour, the Fe element turns into Fe 3+ ions and forms a solid solution in the alumina crystal.

【0016】そして、上記の方法で得られた固溶体を例
えばCO、H2 ガス或いはCO、H2 を含む非酸化性混
合ガス雰囲気からなる還元性雰囲気中において加熱処理
を施す。還元雰囲気での熱処理によりFe元素はFe2+
イオンに還元される。このFe2+イオンのアルミナ中で
の固溶量はFe3+イオンより少ないためFeイオンがア
ルミナ格子結晶から離脱し、アルミナと反応して、結果
的にFeAl2 4 の結晶としてアルミナ結晶粒内に析
出することになる。
Then, the solid solution obtained by the above method is subjected to a heat treatment in a reducing atmosphere composed of, for example, a CO, H 2 gas or a non-oxidizing mixed gas atmosphere containing CO and H 2 . By heat treatment in a reducing atmosphere, the Fe element becomes Fe 2+
Reduced to ions. Since the amount of the Fe 2+ ions dissolved in alumina is smaller than that of the Fe 3+ ions, the Fe ions are separated from the alumina lattice crystal and react with the alumina. As a result, the alumina crystal grains are converted into FeAl 2 O 4 crystals. Will be deposited within.

【0017】この時、析出処理温度が低いとFe3+イオ
ンの還元が進行できなく、また、析出処理温度が高いと
母相のアルミナ結晶と粒内析出相が粒成長し、FeAl
2 4 が粒界に偏析する傾向がある。従って、上記析出
処理は、1300℃〜1650℃の温度範囲で行うこと
が好ましい。
At this time, if the precipitation temperature is low, the reduction of Fe 3+ ions cannot proceed, and if the precipitation temperature is high, the alumina crystal and the intragranular precipitation phase of the mother phase grow and the FeAl
2 O 4 tends to segregate at grain boundaries. Therefore, the above-mentioned precipitation treatment is preferably performed in a temperature range of 1300 ° C to 1650 ° C.

【0018】また、析出処理時は、抵抗加熱、高周波加
熱など任意の加熱方法は可能であるが、マイクロ波の照
射によって加熱することが、粒内析出相をより均一に分
布させることができ、また大きなサイズの焼結体を作製
する上で有効である。
At the time of the precipitation treatment, any heating method such as resistance heating or high frequency heating is possible, but heating by microwave irradiation can distribute the intragranular precipitation phase more uniformly. It is also effective in producing a large-sized sintered body.

【0019】さらに、本発明の製造方法によれば、上記
の系に対して、さらにY2 3 、La2 3 などの希土
類元素酸化物、Ca、Mg等のアルカリ土類酸化物、H
f、Zr、V、W、Mo、Mnなどの周期律表第4A〜
7A族元素酸化物をアルミナ粉末に対して酸化物換算で
1〜20重量%の割合で添加することにより、これらの
酸化物相またはこれらの酸化物とアルミナとの複合酸化
物相を粒界に析出させることができる。
Further, according to the production method of the present invention, a rare earth oxide such as Y 2 O 3 and La 2 O 3 , an alkaline earth oxide such as Ca and Mg, and H
Periodic Tables 4A to 4A to f, Zr, V, W, Mo, Mn, etc.
By adding the Group 7A element oxide to the alumina powder at a ratio of 1 to 20% by weight in terms of oxide, the oxide phase or the composite oxide phase of these oxides and alumina is added to the grain boundary. Can be deposited.

【0020】[0020]

【実施例】原料粉末として、アルミナ(Al2 3 )、
酸化鉄(Fe2 3 )および酸化イットリウム(Y2
3 )、水酸化マグネシウム(Mg(OH)2 )、酸化ラ
ンタン(La2 3 )、酸化ハフニウム(HfO2 )粉
末を用いて、表1に示す組成比に調合し、1t/cm2
の圧力で金型成形した後、3t/cm2 の圧力で静水圧
処理を加えた。焼成条件は表1に示すように、大気中で
1500〜1700℃で5時間焼成した。析出熱処理は
水素雰囲気で1300℃〜1600℃で行った。また、
一部の試料の析出処理はマイクロ波加熱により行った。
EXAMPLES As raw material powder, alumina (Al 2 O 3 ),
Iron oxide (Fe 2 O 3 ) and yttrium oxide (Y 2 O
3 ), magnesium hydroxide (Mg (OH) 2 ), lanthanum oxide (La 2 O 3 ), and hafnium oxide (HfO 2 ) powder were mixed to a composition ratio shown in Table 1, and 1 t / cm 2
And then subjected to hydrostatic pressure treatment at a pressure of 3 t / cm 2 . As shown in Table 1, firing conditions were firing at 1500 to 1700 ° C. for 5 hours in the air. The precipitation heat treatment was performed at 1300 ° C. to 1600 ° C. in a hydrogen atmosphere. Also,
Precipitation treatment of some samples was performed by microwave heating.

【0021】得られた焼結体をJIS−R1601にて
指定されている形状まで研磨し抗折試料を作製した。こ
の試料についてJIS−R1601に基づく大気中で室
温および1400℃での4点曲げ抗折強度試験を実施し
た。また、ビッカース圧痕法により破壊靭性(K1c)を
測定した。X線回折測定データより焼結体中の結晶相を
同定した。また、走査型電子顕微鏡写真から、アルミナ
母相と粒内析出相の平均粒径および粒内、粒界分散相の
体積分率を定量的に測定した。結果は表2に示した。
The obtained sintered body was polished to a shape specified by JIS-R1601, to prepare a bending specimen. This sample was subjected to a four-point bending strength test at room temperature and 1400 ° C. in the air based on JIS-R1601. Further, the fracture toughness (K 1 c) was measured by the Vickers indentation method. The crystal phase in the sintered body was identified from the X-ray diffraction measurement data. Further, from the scanning electron micrograph, the average particle size of the alumina matrix phase and the intragranular precipitated phase and the volume fraction of the intragranular and intergranular dispersed phases were quantitatively measured. The results are shown in Table 2.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】表1および表2の結果から、FeAl2
4 がアルミナ結晶粒内に微細に分散したアルミナ質焼結
体は、いずれも室温強度が500MPa以上、1400
℃強度が350MPa以上、破壊靭性が4.0MPa・
1/2 以上であった。また、粒内分散相とともに粒界分
散相を有する本発明の試料No.4、6〜10の焼結体は
アルミナ結晶の平均粒径が小さくなる傾向にあり、アル
ミナ結晶の粒径が小さいほど強度も高くなることがわか
る。
From the results in Tables 1 and 2, it was found that FeAl 2 O
The alumina-based sintered body in which 4 was finely dispersed in the alumina crystal grains had a room temperature strength of 500 MPa or more and 1400
℃ strength of 350MPa or more, fracture toughness of 4.0MPa
m 1/2 or more. Also, the sintered bodies of Samples Nos. 4 and 6 to 10 of the present invention having a grain boundary dispersed phase together with an intragranular dispersed phase tend to have a smaller average particle size of alumina crystal. It can be seen that the strength is also increased.

【0025】これに対して、試料No.11と12は無添
加あるいは析出処理を施していない焼結体であり、No.
13は粒内析出相が大きく成長したもの、No.14と1
5はアルミナ結晶が大きく成長したものであり、いずれ
も本発明の焼結体より強度と靭性が低いことが分かる。
On the other hand, Samples Nos. 11 and 12 are sintered bodies without addition or precipitation treatment.
No. 13 shows that the intragranular precipitation phase grew greatly, and Nos. 14 and 1
Sample No. 5 shows large growth of alumina crystals, and it can be seen that each of them has lower strength and toughness than the sintered body of the present invention.

【0026】[0026]

【発明の効果】以上詳述した通り、本発明によれば、室
温から1400℃の高温まで、安定した高い強度を有す
るとともに、高い靱性を有するアルミナ質焼結体を作製
することができる。
As described in detail above, according to the present invention, an alumina sintered body having stable and high strength and high toughness from room temperature to a high temperature of 1400 ° C. can be produced.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】平均粒径が6μm以下のアルミナ結晶を主
相とし、該アルミナの結晶粒内に平均粒径が0.5μm
以下のFeAl2 4 で表される複合酸化物を全量中1
体積%以上の割合で分散含有することを特徴とするアル
ミナ質焼結体。
A main phase is an alumina crystal having an average particle size of 6 μm or less, and an average particle size of 0.5 μm
The composite oxide represented by the following FeAl 2 O 4 was contained in the total amount of 1
An alumina-based sintered body characterized by being dispersed and contained in a proportion of at least volume%.
【請求項2】前記アルミナ結晶の粒界に、前記FeAl
2 4 結晶とは異なる他の金属酸化物結晶相を全量中3
体積%以上の割合で含むことを特徴とする請求項1記載
アルミナ質焼結体。
2. The method according to claim 1, wherein said FeAl
Another metal oxide crystal phase different from 2 O 4 crystal
2. The alumina-based sintered body according to claim 1, wherein the content of the sintered body is not less than% by volume.
【請求項3】アルミナを主成分とし、少なくともFe元
素を含有する成形体を酸化性雰囲気で加熱してFe元素
をアルミナ結晶中に固溶処理した後、前記固溶体を還元
性雰囲気中の温度範囲で熱処理を施し、アルミナ結晶粒
内にFeAl24 で表される複合酸化物を析出させた
ことを特徴とするアルミナ質焼結体の製造方法。
3. A molded body containing alumina as a main component and containing at least an Fe element is heated in an oxidizing atmosphere to subject the Fe element to solid solution treatment in alumina crystals, and then the solid solution is subjected to a temperature range in a reducing atmosphere. A method for producing an alumina-based sintered body, characterized in that a heat treatment is carried out in step (a) to precipitate a composite oxide represented by FeAl 2 O 4 in alumina crystal grains.
JP13844696A 1996-05-31 1996-05-31 Alumina sintered body and method for producing the same Expired - Fee Related JP3340025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13844696A JP3340025B2 (en) 1996-05-31 1996-05-31 Alumina sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13844696A JP3340025B2 (en) 1996-05-31 1996-05-31 Alumina sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH09328355A JPH09328355A (en) 1997-12-22
JP3340025B2 true JP3340025B2 (en) 2002-10-28

Family

ID=15222201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13844696A Expired - Fee Related JP3340025B2 (en) 1996-05-31 1996-05-31 Alumina sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP3340025B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114702327B (en) * 2022-03-24 2023-05-23 广东工业大学 High-strength and high-toughness alumina-based composite ceramic substrate and preparation method thereof

Also Published As

Publication number Publication date
JPH09328355A (en) 1997-12-22

Similar Documents

Publication Publication Date Title
JPH01257165A (en) High temperature stable low thermal expansion ceramic and production thereof
JPWO2006080473A1 (en) Composite ceramics and manufacturing method thereof
JP4465173B2 (en) Composite ceramics and manufacturing method thereof
WO1994027929A1 (en) Porous ceramic and process for producing the same
JP2829229B2 (en) Silicon nitride ceramic sintered body
JP3279885B2 (en) Method for producing alumina-based sintered body
JPH06219840A (en) Silicon nitride sintered compact and its production
JP3340025B2 (en) Alumina sintered body and method for producing the same
JP3145597B2 (en) Alumina sintered body and method for producing the same
JP3121996B2 (en) Alumina sintered body
JPH11157962A (en) Highly abrasion-resistant alumina-based sintered compact and its production
JP3311915B2 (en) Alumina sintered body
JP3488350B2 (en) Alumina sintered body and method for producing the same
JP4831945B2 (en) Zirconia-alumina ceramics and process for producing the same
JPH0987009A (en) Alumina-mullite combined sintered compact and its production
JPH0826815A (en) Rare earth compound oxide-based sintered compact and its production
JP3152853B2 (en) Alumina sintered body and method for producing the same
JP2773416B2 (en) Aluminum nitride sintered body and method for producing the same
JP3618036B2 (en) Alumina sintered body manufacturing method
JP2690571B2 (en) Zirconia cutting tool and its manufacturing method
JPH08208317A (en) Alumina sintered body and production thereof
JPH1179848A (en) Silicon carbide sintered compact
JP3101972B2 (en) Alumina sintered body and method for producing the same
JP3965466B2 (en) Alumina sintered body and manufacturing method thereof
JPH10212157A (en) Aluminous sintered compact and its production

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080816

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080816

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090816

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090816

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100816

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100816

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110816

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110816

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120816

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees