JPH0826815A - Rare earth compound oxide-based sintered compact and its production - Google Patents

Rare earth compound oxide-based sintered compact and its production

Info

Publication number
JPH0826815A
JPH0826815A JP6169171A JP16917194A JPH0826815A JP H0826815 A JPH0826815 A JP H0826815A JP 6169171 A JP6169171 A JP 6169171A JP 16917194 A JP16917194 A JP 16917194A JP H0826815 A JPH0826815 A JP H0826815A
Authority
JP
Japan
Prior art keywords
oxide
periodic table
rare earth
group
based sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6169171A
Other languages
Japanese (ja)
Other versions
JP3273099B2 (en
Inventor
Usou Ou
雨叢 王
Shoji Kosaka
祥二 高坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP16917194A priority Critical patent/JP3273099B2/en
Publication of JPH0826815A publication Critical patent/JPH0826815A/en
Application granted granted Critical
Publication of JP3273099B2 publication Critical patent/JP3273099B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a rare earth compound oxide-based sintered compact, excel lent in antioxidant properties at a high temperature and causing extremely small deterioration in mechanical strength from ambient temperature up to a high temperature of 1400 deg.C by compounding a disilicate or a monosilicate containing a group IIIa element of the periodic table with a compound oxide comprising the group IIIa element and a specific element. CONSTITUTION:This rare earth compound oxide-based sintered compact comprises one or more of a disilicate (RE2Si2O7) and a monosilicate (RE2SiO5) containing a group IIIa element (RE) of the periodic table and 0.1-95mol% (expressed in terms of oxides) one or more compound oxides (RExMOz; M is Al, Cr, Hf, Nb, Zr, Ti, V and Ta) comprising the group IIIa element (RE) of the periodic table and any of Al, Cr, Hf, Nb, Zr, Ti, V and Ta. This method for producing the sintered compact is to mix an oxide (RE2O3) of the group IIIa element of the periodic table with powder comprising silicon dioxide and one or more of oxides of the Al, Cr, Hf, Nb, Zr, Ti, V and Ta, forming the resultant mixture and baking the resultant formed compact.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は航空宇宙産業や金属産
業、化学産業用をはじめ、発電用や自動車用セラミック
ガスタービン等に至る耐熱構造部材として、好適な高温
強度と優れた高温安定性及び耐酸化性を有する希土類複
合酸化物系焼結体及びその製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION The present invention has a suitable high temperature strength and excellent high temperature stability as a heat resistant structural member for aerospace industry, metal industry, chemical industry, power generation, automobile ceramic gas turbine and the like. The present invention relates to a rare earth compound oxide-based sintered body having oxidation resistance and a method for producing the same.

【0002】[0002]

【従来の技術】従来から、耐熱構造部材として、ニッケ
ル(Ni)・コバルト(Co)系合金等の各種耐熱合金
が用いられてきたが、使用環境がますます厳しくなり前
記耐熱合金ではその要求を満足することができなくなっ
ていた。
2. Description of the Related Art Conventionally, various heat resistant alloys such as nickel (Ni) / cobalt (Co) alloys have been used as heat resistant structural members. I couldn't be satisfied.

【0003】そこで、従来の金属材料よりはるかに熱膨
張係数が小さく、機械的強度や耐熱性、耐摩耗性に優
れ、かつ比重が小さく製品の軽量小型化が可能なセラミ
ックスが注目されるようになり、アルミナ(Al
2 3 )やジルコニア(ZrO2 )、マグネシア(Mg
O)等の酸化物系セラミックスをはじめ、炭化珪素(S
iC)や窒化珪素(Si3 4 )等の炭化物系や窒化物
系、あるいは硼化物系等の非酸化物系セラミックスが検
討されてきた。
Therefore, ceramics, which have a much smaller coefficient of thermal expansion than conventional metallic materials, are excellent in mechanical strength, heat resistance, and wear resistance, and have a small specific gravity and which can be made light and compact, have been attracting attention. Alumina (Al
2 O 3 ), zirconia (ZrO 2 ), magnesia (Mg
Oxide ceramics such as O), silicon carbide (S
Carbide-based and nitride-based ceramics such as iC) and silicon nitride (Si 3 N 4 ), or non-oxide-based ceramics such as boride-based ceramics have been investigated.

【0004】その結果、前記酸化物系セラミックスや非
酸化物系セラミックスは、従来の他の材料に比べてはる
かに高温での機械的強度と耐酸化性が良好なため、該セ
ラミック焼結体を前記各種耐熱構造部材として利用する
ことが種々研究され提案されるようになってきた(特開
平6−157126号公報参照)。
As a result, the oxide-based ceramics and the non-oxide-based ceramics have good mechanical strength and oxidation resistance at a much higher temperature than other conventional materials. Various studies have been made and proposed for use as the various heat-resistant structural members (see JP-A-6-157126).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前記セ
ラミック焼結体を耐熱構造部材として使用した場合、酸
化物系セラミック焼結体は、とりわけ酸化性雰囲気中で
は室温で安定した機械的特性を有するものであるが、高
温では転位の運動が発生し易いことから、軟化して塑性
変形し、一般的に900℃付近の温度で機械的強度が急
激に低下するため、例えば断熱材等のように応力がさほ
ど加わらない部材としてならば実用可能ではあるもの
の、高温に曝され応力が作用する条件下では構造部材と
しては使用できず、信頼性に欠けるという課題があっ
た。
However, when the ceramic sintered body is used as a heat resistant structural member, the oxide ceramic sintered body has stable mechanical properties at room temperature, especially in an oxidizing atmosphere. However, since dislocation motion easily occurs at high temperature, it softens and plastically deforms, and generally mechanical strength sharply decreases at a temperature around 900 ° C. Although it can be practically used as a member that does not add much, it cannot be used as a structural member under the condition that it is exposed to high temperature and stress acts, and there is a problem that it lacks reliability.

【0006】一方、前記炭化物系や窒化物系、あるいは
硼化物系等の非酸化物系セラミック焼結体は、高温でも
優れた機械的特性を有する材料だが、雰囲気との相互作
用により酸化、もしくは分解が起こるため、常温からの
機械的強度の劣化が大きく、これまで、添加助剤の種類
や添加量および焼結条件を調整することが種々検討さ
れ、いくらか材料特性の向上は見られたものの、まだま
だ不十分であり、高温用の耐熱構造部材としては、常温
との機械的強度の劣化が小さいという特性を満足するこ
とが引き続き要求されている。
On the other hand, the non-oxide ceramic sintered body such as the above-mentioned carbide type, nitride type, or boride type material has excellent mechanical properties even at high temperatures, but it is oxidized by interaction with the atmosphere, or Since decomposition occurs, mechanical strength deteriorates significantly from room temperature, and various adjustments of the type and amount of addition aid and sintering conditions have been studied so far, although some improvement in material properties was observed. However, it is still insufficient, and as a heat-resistant structural member for high temperature, it is still required to satisfy the characteristic that mechanical strength is less deteriorated at room temperature.

【0007】[0007]

【発明の目的】本発明は前記課題に鑑み成されたもの
で、その目的は、高温での耐酸化性に優れ、その上、室
温から1400℃の高温まで機械的強度の劣化が従来の
セラミック焼結体よりはるかに小さい希土類複合酸化物
系焼結体及びその製造方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide excellent resistance to oxidation at high temperatures, and also to cause deterioration of mechanical strength from room temperature to a high temperature of 1400 ° C. It is an object of the present invention to provide a rare earth compound oxide-based sintered body much smaller than the sintered body and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】本発明者等は、高温で長
期間使用しても酸化や分解が起こらず、耐酸化性に優れ
た酸化物を、900℃を越える温度でも機械的強度を劣
化させないためには、高温での塑性変形抵抗を増すこと
が、高温でも高い機械的強度を維持する可能性があると
いう見地に基づき検討を重ねた結果、酸化物の中でも結
晶の対称性が低い周期律表第3a族元素(RE)のダイ
シリケート(RE2 Si2 7 )とモノシリケート(R
2 SiO5 )が有望であることを見い出した。
Means for Solving the Problems The present inventors have found that even if used at high temperature for a long period of time, oxidation or decomposition does not occur, and an oxide having excellent oxidation resistance can be provided with mechanical strength at a temperature exceeding 900 ° C. As a result of repeated studies from the viewpoint that increasing the plastic deformation resistance at high temperature may maintain high mechanical strength even at high temperature in order to prevent deterioration, crystal symmetry is low among oxides. Periodic table Group 3a element (RE) disilicate (RE 2 Si 2 O 7 ) and monosilicate (R)
We have found that E 2 SiO 5 ) is promising.

【0009】更に、前記ダイシリケート(RE2 Si2
7 )、モノシリケート(RE2 SiO5 )の一種以上
から成る結晶中に、周期律表第3a族元素(RE)とA
l、Cr、Hf、Nb、Zr、Ti、V、Taのいずれ
かより成る複合酸化物(REx y z 、MはAl、C
r、Hf、Nb、Zr、Ti、V、Ta)である高融点
物質を主として分散させることにより、結晶の塑性変形
を更に抑制した希土類複合酸化物は、室温から1400
℃の高温まで優れた機械的特性を示すことが明らかとな
った。
Further, the disilicate (RE 2 Si 2
O 7 ), monosilicate (RE 2 SiO 5 ), and at least one group 3a element (RE) and A
l, Cr, Hf, Nb, Zr, Ti, V, or more comprising a composite oxide of Ta (RE x M y O z , M is Al, C
The rare-earth composite oxide in which the plastic deformation of the crystal is further suppressed by mainly dispersing the refractory substance such as r, Hf, Nb, Zr, Ti, V, and Ta) from room temperature to 1400
It became clear that it showed excellent mechanical properties up to a high temperature of ℃.

【0010】即ち、本発明の希土類複合酸化物系焼結体
は、周期律表第3a族元素(RE)とAl、Cr、H
f、Nb、Zr、Ti、V、Taのいずれかより成る複
合酸化物(REx y z )の一種以上から成る高融点
物質が、周期律表第3a族元素(RE)を含有するダイ
シリケート(RE2 Si2 7 )、モノシリケート(R
2 SiO5 )の一種以上の結晶中に、酸化物換算で総
量0.1〜95mol%の範囲で主に分散して存在し、
前記ダイシリケート(RE2 Si2 7 )やモノシリケ
ート(RE2 SiO5 )の塑性変形を抑制していること
を特徴とするものである。
That is, the rare earth compound oxide-based sintered body of the present invention comprises a group 3a element (RE) of the periodic table and Al, Cr, H.
A refractory substance made of one or more complex oxides (RE x M y O z ) made of any one of f, Nb, Zr, Ti, V, and Ta contains an element (RE) of Group 3a of the periodic table. Disilicate (RE 2 Si 2 O 7 ), Monosilicate (R
E 2 SiO 5 ), which is mainly dispersed in one or more crystals in a total amount of 0.1 to 95 mol% in terms of oxide,
It is characterized by suppressing the plastic deformation of the disilicate (RE 2 Si 2 O 7 ) or monosilicate (RE 2 SiO 5 ).

【0011】また、係る希土類複合酸化物系焼結体の製
造方法は、周期律表第3a族元素の酸化物(RE
2 3 )と二酸化珪素(SiO2 )及びAl、Cr、H
f、Nb、Zr、Ti、V、Taの酸化物の一種以上か
ら成る粉体を原料とし、該原料を混合して調製した成形
用材料により得られた成形体を、1100〜1850℃
の温度で焼成するか、あるいはそれぞれ個別に仮焼して
合成した周期律表第3a族元素(RE)を含有するダイ
シリケート(RE2 Si2 7 )及びモノシリケート
(RE2 SiO5 )の一種以上と、周期律表第3a族元
素(RE)及びAl、Cr、Hf、Nb、Zr、Ti、
V、Taのいずれかより成る複合酸化物(RExy
z )の一種以上を、粉砕、混合、成形の製造工程を経て
得られた成形体を、1100〜1850℃の温度で焼成
することを特徴とするものである。
Further, the method for producing such a rare earth compound oxide-based sintered body is based on an oxide (RE) of a Group 3a element of the periodic table.
2 O 3 ) and silicon dioxide (SiO 2 ) and Al, Cr, H
A molded body obtained from a molding material prepared by mixing powders of one or more oxides of f, Nb, Zr, Ti, V, and Ta as a raw material is 1100 to 1850 ° C.
Of a disilicate (RE 2 Si 2 O 7 ) and a monosilicate (RE 2 SiO 5 ) containing a Group 3a element (RE) of the Periodic Table, which are synthesized by firing at the temperature of One or more, and a Group 3a element (RE) of the periodic table and Al, Cr, Hf, Nb, Zr, Ti,
V, or more comprising a composite oxide of Ta (RE x M y O
One or more of z ) is subjected to a crushing, mixing, and molding manufacturing process, and the molded body is fired at a temperature of 1100 to 1850 ° C.

【0012】とりわけ前記製造方法で得た希土類複合酸
化物系焼結体を、1000℃以上それらの焼成温度以下
の温度で熱処理して過飽和の固溶原子を析出させること
が望ましいものである。
In particular, it is desirable that the rare earth complex oxide-based sintered body obtained by the above-mentioned manufacturing method is heat-treated at a temperature of 1000 ° C. or higher and a temperature of those firing temperatures or lower to precipitate supersaturated solid solution atoms.

【0013】[0013]

【作用】本発明の希土類複合酸化物系焼結体及びその製
造方法によれば、周期律表第3a族元素(RE)を含有
するダイシリケート(RE2 Si2 7 )及びモノシリ
ケート(RE2 SiO5 )は、主として単斜結晶構造を
有し、結晶構造の対称性が低いために塑性変形し難く、
1400℃程度の高温でも機械的強度の低下は小さくな
る。
According to the rare earth compound oxide-based sintered body and the method for producing the same of the present invention, a disilicate (RE 2 Si 2 O 7 ) and a monosilicate (RE) containing a group 3a element (RE) of the Periodic Table. 2 SiO 5 ) mainly has a monoclinic crystal structure, and is difficult to be plastically deformed because the crystal structure has low symmetry.
The decrease in mechanical strength is small even at a high temperature of about 1400 ° C.

【0014】更に、周期律表第3a族元素(RE)とA
l、Cr、Hf、Nb、Zr、Ti、V、Taのいずれ
かより成る複合酸化物(REx y z )は融点が高
く、高温で安定であり、それらを前記ダイシリケート
(RE2 Si2 7 )及びモノシリケート(RE2 Si
5 )中に分散させることにより、転位の運動による塑
性変形が抑制され、900℃を越える高温での機械的強
度が著しく改善され、とりわけ1400℃程度の高温下
での機械的強度の劣化がより小さくなり、劣化防止の効
果はより一層顕著となる。
Furthermore, a group 3a element (RE) of the periodic table and A
l, Cr, Hf, Nb, Zr, Ti, V, or more comprising a composite oxide of Ta (RE x M y O z ) has a high melting point, is stable at high temperatures, they said disilicate (RE 2 Si 2 O 7 ) and monosilicate (RE 2 Si
Dispersion in O 5 ) suppresses plastic deformation due to the movement of dislocations and significantly improves the mechanical strength at high temperatures above 900 ° C., especially the deterioration of mechanical strength at high temperatures around 1400 ° C. It becomes smaller, and the effect of preventing deterioration becomes more remarkable.

【0015】また、耐酸化性もアルミナ(Al
2 3 )、ジルコニア(ZrO2 )、マグネシア(Mg
O)等の酸化物系セラミックスと同等となる。
The oxidation resistance of alumina (Al
2 O 3 ), zirconia (ZrO 2 ), magnesia (Mg
It is equivalent to oxide-based ceramics such as O).

【0016】[0016]

【実施例】以下、本発明の希土類複合酸化物系焼結体及
びその製造方法を実施例に基づき詳述する。
EXAMPLES The rare earth compound oxide-based sintered body of the present invention and the method for producing the same will be described in detail below with reference to Examples.

【0017】本発明の希土類複合酸化物系焼結体は、周
期律表第3a族元素(RE)を含有するダイシリケート
(RE2 Si2 7 )及びモノシリケート(RE2 Si
5)の一種類以上と、総量が酸化物換算で0.1〜9
5mol%である周期律表第3a族元素(RE)及びA
l、Cr、Hf、Nb、Zr、Ti、V、Taのいずれ
かより成る複合酸化物(REx y z )の一種以上と
から成るものであって、ダイシリケート(RE2 Si2
7 )の結晶構造は三斜、単斜、斜方のα、β、γ、
δ、y型のいずれでも良いが、とりわけ高温安定相であ
るβ、γ、δ相が好ましい。
The rare earth compound oxide-based sintered body of the present invention comprises a disilicate (RE 2 Si 2 O 7 ) and a monosilicate (RE 2 Si) containing a group 3a element (RE) of the periodic table.
One or more of O 5 ) and the total amount is 0.1 to 9 in terms of oxide.
5 mol% of Group 3a element (RE) and A of the periodic table
and one or more complex oxides (RE x M y O z ) made of any one of 1, Cr, Hf, Nb, Zr, Ti, V, and Ta, which is a disilicate (RE 2 Si 2
The crystal structure of O 7 ) is triclinic, monoclinic or oblique α, β, γ,
Either δ or y type may be used, but β, γ and δ phases which are stable phases at high temperature are particularly preferable.

【0018】また、前記周期律表第3a族元素(RE)
及びAl、Cr、Hf、Nb、Zr、Ti、V、Taの
いずれかより成る複合酸化物(REx y z )は、1
700℃以上の融点を有し、高温で安定な化合物である
ため、高温まで機械的強度を劣化させないものとして好
適であるが、とりわけMはAl、Cr、Hf、Zrのい
ずれかが最も望ましい。
The Group 3a element (RE) of the periodic table
And Al, Cr, Hf, Nb, Zr, Ti, V, or more comprising a composite oxide of Ta (RE x M y O z ) is 1
Since it is a compound that has a melting point of 700 ° C. or higher and is stable at high temperatures, it is suitable as a compound that does not deteriorate the mechanical strength up to high temperatures, but M is particularly preferably Al, Cr, Hf, or Zr.

【0019】従って、前記複合酸化物の総量が、0.1
mol%未満では複合強化の効果がなく、逆に95mo
l%を越えるとダイシリケート(RE2 Si2 7 )あ
るいはモノシリケート(RE2 SiO5 )の優れた特性
が得られなくなるため、0.1〜95mol%の範囲に
限定され、高温強度の改善効果の点からは、5〜80m
ol%がより望ましい。
Therefore, the total amount of the complex oxide is 0.1
If it is less than mol%, there is no compound strengthening effect and conversely 95mo
If it exceeds 1%, the excellent characteristics of disilicate (RE 2 Si 2 O 7 ) or monosilicate (RE 2 SiO 5 ) cannot be obtained, so it is limited to the range of 0.1 to 95 mol% and the improvement of high temperature strength. 5-80m from the point of effect
ol% is more desirable.

【0020】尚、本発明に用いられる周期律表第3a族
元素(RE)としては、Sc、Y及びランタノイド元素
が挙げられるが、特にSc、Y及びDy、Er、Ho、
Yb、Luなどの重希土類元素は、イオン半径が小さい
ために形成するシリケートと複合酸化物結晶の結合強度
が強く、従って高温での機械的特性に優れることから、
より好ましい。
The elements of Group 3a (RE) of the periodic table used in the present invention include Sc, Y and lanthanoid elements, but especially Sc, Y and Dy, Er, Ho,
Heavy rare earth elements such as Yb and Lu have a strong bond strength between the silicate formed and the complex oxide crystal due to their small ionic radius, and therefore have excellent mechanical properties at high temperatures.
More preferable.

【0021】次に、本発明の希土類複合酸化物系焼結体
の製造方法について説明する。本発明によれば、出発原
料として主として周期律表第3a族元素である希土類元
素の酸化物(RE2 3 )と二酸化珪素(SiO2 )及
びAl、Cr、Hf、Nb、Zr、Ti、V、Taのい
ずれかの酸化物の各粉末を用いる。
Next, a method of manufacturing the rare earth compound oxide-based sintered body of the present invention will be described. According to the present invention, oxides (RE 2 O 3 ) of rare earth elements which are mainly Group 3a elements of the periodic table and silicon dioxide (SiO 2 ) and Al, Cr, Hf, Nb, Zr and Ti are used as starting materials. Each powder of oxide of V or Ta is used.

【0022】尚、前記出発原料としては、金属元素粉末
を所定の比率に混合後、酸素雰囲気で酸化処理すること
もでき、それら原料粉末の粒子径は0.3〜2.0μm
が適当である。
As the starting raw material, metal element powders may be mixed in a predetermined ratio and then oxidized in an oxygen atmosphere, and the particle diameter of the raw material powders is 0.3 to 2.0 μm.
Is appropriate.

【0023】また、前記原料粉末を用いて製造した希土
類複合酸化物系焼結体は、周期律表第3a族元素のダイ
シリケート(RE2 Si2 7 )やモノシリケート(R
2SiO5 )に換算した量に対して、周期律表第3a
族元素(RE)とAl、Cr、Hf、Nb、Zr、T
i、V、Taより成る複合酸化物(REx y z )に
換算した総量は、前述のように0.1〜95mol%、
とりわけ5〜80mol%であることが重要である。
The rare earth compound oxide-based sintered body produced by using the above-mentioned raw material powder is a disilicate (RE 2 Si 2 O 7 ) or a monosilicate (R 2 Si 2 O 7 ) of a group 3a element of the periodic table.
E 2 SiO 5 ), converted into Eq.
Group element (RE) and Al, Cr, Hf, Nb, Zr, T
i, V, the total amount in terms of the composite oxide (RE x M y O z) consisting of Ta, 0.1~95mol% as described above,
It is particularly important that the amount is 5 to 80 mol%.

【0024】上記割合となるように混合した原料粉末を
所望の成形手段、例えば、金型プレス、鋳込み成形、押
し出し成形、射出成形、冷間静水圧プレス等により任意
の形状に成形する。
The raw material powders mixed in the above proportions are molded into a desired shape by a desired molding means such as a die press, cast molding, extrusion molding, injection molding, cold isostatic pressing and the like.

【0025】次に、この成形体を公知の焼結法、例え
ば、ホットプレス法、常圧焼成法、窒素ガス加圧焼成
法、更にはこれらの焼成後に熱間静水圧処理(HIP)
を施したり、ガラスシール後、熱間静水圧処理(HI
P)を施したりして、対理論密度比95%以上の緻密な
焼結体を得る。
Next, this molded body is subjected to a known sintering method, for example, a hot pressing method, a normal pressure firing method, a nitrogen gas pressure firing method, or hot isostatic treatment (HIP) after these firing steps.
Or after glass sealing, hot isostatic treatment (HI
P) is performed to obtain a dense sintered body having a theoretical density ratio of 95% or more.

【0026】また、焼成温度は機械的強度が高く、緻密
な焼結体を得るためには、1100〜1850℃の温度
で、特に1300〜1750℃の温度で焼成することが
望ましい。
The firing temperature is high in mechanical strength, and in order to obtain a dense sintered body, it is desirable to perform firing at a temperature of 1100 to 1850 ° C, particularly 1300 to 1750 ° C.

【0027】一方、周期律表第3a族元素(RE)を含
有するダイシリケート(RE2 Si2 7 )及びモノシ
リケート(RE2 SiO5 )の一種以上と、周期律表第
3a族元素(RE)及びAl、Cr、Hf、Nb、Z
r、Ti、V、Taのいずれかより成る複合酸化物(R
x y z )の一種以上をそれぞれ仮焼して粉砕混合
した後、該粉砕混合粉を前記同様にして成形して得られ
た成形体を、1100〜1850℃の温度で焼成して希
土類複合酸化物系焼結体を製造することも可能である。
On the other hand, one or more of disilicate (RE 2 Si 2 O 7 ) and monosilicate (RE 2 SiO 5 ) containing a Group 3a element (RE) of the Periodic Table, and a Group 3a element of the Periodic Table (RE RE) and Al, Cr, Hf, Nb, Z
A complex oxide (R) composed of any of r, Ti, V, and Ta
One or more of E x M y O z ) are respectively calcined, pulverized and mixed, and then the pulverized mixed powder is molded in the same manner as above to obtain a molded body, which is fired at a temperature of 1100 to 1850 ° C. It is also possible to produce a rare earth complex oxide-based sintered body.

【0028】尚、前記仮焼により得られた複合酸化物
(REx y z )は、一般に該複合酸化物を構成する
原料酸化物粉末より安定で、反応性が低いため、焼成時
の異常粒成長や、ガラス相の生成を抑制し、材料の高温
強度特性が一層向上する。
The composite oxide (RE x M y O z ) obtained by the above-mentioned calcination is generally more stable and less reactive than the raw material oxide powder constituting the composite oxide, so that it is It suppresses abnormal grain growth and glass phase formation, and further improves the high temperature strength characteristics of the material.

【0029】更に、周期律表第3a族元素(RE)を含
有するダイシリケート(RE2 Si 2 7 )やモノシリ
ケート(RE2 SiO5 )中のSiを、Al、Cr、H
f、Nb、Zr、Ti、V、Taのいずれかで一定量置
換することにより、固溶体型の複合酸化物が形成され
る。
Further, the periodic table contains a Group 3a element (RE).
Own disilicate (RE2Si 2O7) And Monosiri
Kate (RE2SiOFive) Si in Al, Cr, H
A certain amount of f, Nb, Zr, Ti, V, or Ta
As a result, a solid solution type composite oxide is formed.
It

【0030】即ち、前記製造方法により得られた希土類
複合酸化物系焼結体を、その焼成温度以下、1000℃
以上の温度域で熱処理し、過飽和に固溶した原子をダイ
シリケート(RE2 Si2 7 )やモノシリケート(R
2 SiO5 )の結晶粒内や結晶粒界に複合酸化物(R
x y z )の形で微細に析出させることができ、該
析出処理により、ナノコンポジットが形成され、材料の
高温強度が向上するのみならず、破壊靱性の向上も実現
可能となる。
That is, the rare earth complex oxide-based sintered body obtained by the above-mentioned manufacturing method was heated to a temperature not higher than the firing temperature thereof at 1000 ° C.
After heat treatment in the above temperature range, supersaturated solid solution atoms are converted into disilicate (RE 2 Si 2 O 7 ) and monosilicate (R
E 2 SiO 5 ) compound oxide (R
E x M y O z in the form of) can be finely precipitated by the precipitation process, the nanocomposite is formed not only to improve the high temperature strength of the material, it becomes possible to realize improvement in fracture toughness.

【0031】前記析出処理、即ち熱処理は、1000℃
より低い温度では、原子の拡散速度の点から析出処理に
長時間を要するため実用的でなく、一方、焼成温度以上
で処理すると結晶粒の粒成長が起こり、材料の特性が低
下することから、熱処理温度は1000℃以上、焼成温
度以下であることが重要である。
The precipitation treatment, that is, the heat treatment, is 1000 ° C.
At a lower temperature, it is not practical because the precipitation treatment requires a long time from the viewpoint of the diffusion rate of atoms, while on the other hand, grain treatment of crystal grains occurs when treated at a temperature higher than the firing temperature, and the properties of the material deteriorate, It is important that the heat treatment temperature is 1000 ° C. or higher and the firing temperature or lower.

【0032】以上のような製造方法により、均質で微粒
かつ緻密な希土類複合酸化物系焼結体が得られる。
By the above manufacturing method, a homogeneous, fine-grained and dense rare earth complex oxide-based sintered body can be obtained.

【0033】本発明の希土類複合酸化物系焼結体及びそ
の製造方法を評価するために、原料粉末として希土類酸
化物(RE2 3 )とSiO2 及びAl2 3 、Cr2
3、HfO2 、Nb2 5 、ZrO2 、TiO2 、V
2 5 、Ta2 5 を用いて所定の組成比となるように
調合した各酸化物の粉末を、先ず1t/cm2 の圧力で
プレス成形し、大気中焼成の試料には更に3t/cm2
の圧力で静水圧処理をして成形体を作製するとともに、
併せて前記各酸化物を表1及び表2に示す組成比となる
ように調合して1300℃の温度で1時間仮焼し、粉砕
した複合酸化物を用いて前記同様にして成形体を作製す
ることも併せて実施した 次に、前記成形体を表1及び表2に示すように、大気中
で常圧焼成する場合には各焼成温度に5時間保持して、
またホットプレス焼成する場合には常圧の窒素(N2
雰囲気中、0.3t/cm2 の圧力で各焼成温度に1時
間保持して焼成した。
In order to evaluate the rare earth compound oxide-based sintered body of the present invention and the manufacturing method thereof, rare earth oxide (RE 2 O 3 ) and SiO 2 and Al 2 O 3 and Cr 2 are used as raw material powders.
O 3 , HfO 2 , Nb 2 O 5 , ZrO 2 , TiO 2 , V
The powder of each oxide prepared by using 2 O 5 and Ta 2 O 5 so as to have a predetermined composition ratio was first press-molded at a pressure of 1 t / cm 2 , and further 3 t / cm was added to the sample fired in the air. cm 2
While making a hydrostatic pressure treatment with the pressure of
At the same time, the respective oxides were blended so as to have the composition ratios shown in Table 1 and Table 2, and calcined at a temperature of 1300 ° C. for 1 hour, and a pulverized composite oxide was used to prepare a molded body in the same manner as described above. Next, as shown in Tables 1 and 2, when the formed body is fired at atmospheric pressure in the atmosphere, it is held at each firing temperature for 5 hours,
When hot-press firing, nitrogen (N 2 ) at atmospheric pressure is used.
In the atmosphere, firing was performed at a pressure of 0.3 t / cm 2 at each firing temperature for 1 hour.

【0034】更に、1400℃と1500℃の温度で1
0時間の熱処理を一部の試料に施した。
Further, at temperatures of 1400 ° C. and 1500 ° C., 1
A heat treatment of 0 hours was applied to some of the samples.

【0035】かくして得られた焼結体をJIS−R16
01の規格に準じた所定寸法に研磨して抗折試験片を作
製し、該抗折試験片について室温及び1400℃での4
点曲げ抗折試験を実施した。
The sintered body thus obtained was subjected to JIS-R16.
A bending test piece was prepared by polishing to a predetermined size in accordance with the 01 standard, and the bending test piece was subjected to 4 at room temperature and 1400 ° C.
A point bending bending test was carried out.

【0036】また、RE2 3 /SiO2 /Mm
n (MはAl、Cr、Hf、Nb、Zr、Ti、V、T
a)の組成比、及び周期律表第3a族元素(RE)とA
l、Cr、Hf、Nb、Zr、Ti、V、Taの複合酸
化物(REx y z )のモル%は、前記焼結体を粉砕
後、ICP法によりREとSiとMの重量比を測定し、
酸化物換算で算出した。
In addition, RE 2 O 3 / SiO 2 / M m O
n (M is Al, Cr, Hf, Nb, Zr, Ti, V, T
a) composition ratio, and Group 3a element (RE) and A of the periodic table
l, Cr, Hf, Nb, Zr, Ti, V, Ta is a composite oxide (RE x M y O z ) of which mol% is the weight of RE, Si and M by the ICP method after crushing the sintered body. Measure the ratio,
It was calculated in terms of oxide.

【0037】更に、前記評価用の希土類複合酸化物系焼
結体をX線回折測定して結晶相を同定したところ、ダイ
シリケート(RE2 Si2 7 )やモノシリケート(R
2SiO5 )と、周期律表第3a族元素(RE)とA
l、Cr、Hf、Nb、Zr、Ti、V、Taのいずれ
かより成る複合酸化物(REx y z 、MはAl、C
r、Hf、Nb、Zr、Ti、V、Ta)から成ること
を確認した。以上の結果を表1乃至表4に示す。
Furthermore, when the rare earth complex oxide-based sintered body for evaluation was subjected to X-ray diffraction measurement to identify the crystal phase, disilicate (RE 2 Si 2 O 7 ) and monosilicate (R) were identified.
E 2 SiO 5 ), Group 3a element (RE) of the periodic table and A
l, Cr, Hf, Nb, Zr, Ti, V, or more comprising a composite oxide of Ta (RE x M y O z , M is Al, C
r, Hf, Nb, Zr, Ti, V, Ta). The above results are shown in Tables 1 to 4.

【0038】[0038]

【表1】 [Table 1]

【0039】[0039]

【表2】 [Table 2]

【0040】[0040]

【表3】 [Table 3]

【0041】[0041]

【表4】 [Table 4]

【0042】表1乃至表4の結果から明らかなように、
複合酸化物を含有しないか、所定量含有しない試料番号
1、7、10、16、21、27、29、32、35、
41、49、60、64、66、69では、RTでの抗
折強度が390MPa以下と低く、1400℃での抗折
強度も最大120MPaもの極めて大きな劣化を示すの
に対して、本願発明の希土類複合酸化物系焼結体は、い
ずれもRTでの抗折強度が400MPa以上と高く、1
400℃での抗折強度の劣化も30MPa以下と大変小
さいことが分かる。
As is clear from the results of Tables 1 to 4,
Sample Nos. 1, 7, 10, 16, 21, 27, 29, 32, 35 containing no complex oxide or a predetermined amount
Nos. 41, 49, 60, 64, 66 and 69 have a bending strength at RT as low as 390 MPa or less, and the bending strength at 1400 ° C. also shows an extremely large deterioration of up to 120 MPa, whereas the rare earths of the present invention All of the composite oxide-based sintered bodies have a high bending strength at RT of 400 MPa or more, which is 1
It can be seen that the deterioration in bending strength at 400 ° C. is 30 MPa or less, which is very small.

【0043】[0043]

【発明の効果】叙上の如く、本発明の希土類複合酸化物
系焼結体及びその製造方法によれば、周期律表第3a族
元素(RE)を含有するダイシリケート(RE2 Si2
7 )、モノシリケート(RE2 SiO5 )の一種以上
に、周期律表第3a族元素(RE)とAl、Cr、H
f、Nb、Zr、Ti、V、Taのいずれかの元素との
複合酸化物(REx y z )を酸化物換算で総量0.
1〜95mol%分散したものであり、また、周期律表
第3a族元素の酸化物(RE2 3 )と二酸化珪素(S
iO2 )及び前記各元素の酸化物の一種以上から成る粉
体、あるいは、仮焼して合成した周期律表第3a族元素
(RE)を一種以上含有するダイシリケート(RE2
2 7 )やモノシリケート(RE2 SiO5 )と、周
期律表第3a族元素(RE)及び前記各元素の複合酸化
物(REx y z )の一種以上を用いた成形体を、1
100〜1850℃の温度で焼成して緻密化することか
ら、転位の運動による塑性変形が抑制され、900℃を
越える高温での機械的強度が著しく改善され、室温から
1400℃の高温まで塑性変形し難く、機械的強度の劣
化が従来のセラミック焼結体よりはるかに小さく、高温
での安定性に優れた希土類複合酸化物系焼結体及びその
製造方法を得ることができる。
As described above, according to the rare earth compound oxide-based sintered body of the present invention and the method for producing the same, a disilicate (RE 2 Si 2 ) containing a group 3a element (RE) of the periodic table is used.
O 7 ), monosilicate (RE 2 SiO 5 ) and one or more elements of the Periodic Table Group 3a (RE) and Al, Cr, H
The total amount of composite oxide (RE x M y O z ) with any element of f, Nb, Zr, Ti, V, and Ta is 0.
1 to 95 mol% dispersed, and an oxide (RE 2 O 3 ) of a group 3a element of the periodic table and silicon dioxide (S
iO 2 ) and one or more oxides of the above elements, or a disilicate (RE 2 S) containing one or more elements of Group 3a (RE) of the periodic table synthesized by calcination.
and i 2 O 7) and monosilicate (RE 2 SiO 5), the periodic table group 3a elements (RE) and complex oxides of the respective elements (RE x M y O z) molded body using one or more 1
Since it is densified by firing at a temperature of 100 to 1850 ° C, plastic deformation due to movement of dislocations is suppressed, mechanical strength at a high temperature exceeding 900 ° C is significantly improved, and plastic deformation from room temperature to a high temperature of 1400 ° C is achieved. It is difficult to do so, deterioration of mechanical strength is much smaller than that of a conventional ceramic sintered body, and a rare earth complex oxide-based sintered body excellent in stability at high temperature and a manufacturing method thereof can be obtained.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】周期律表第3a族元素(RE)を含有する
ダイシリケート(RE2 Si2 7 )、モノシリケート
(RE2 SiO5 )の一種以上と、総量が酸化物換算で
0.1〜95mol%である周期律表第3a族元素(R
E)とAl、Cr、Hf、Nb、Zr、Ti、V、Ta
のいずれかより成る複合酸化物(REx y z 、Mは
Al、Cr、Hf、Nb、Zr、Ti、V、Ta)の一
種以上から成ることを特徴とする希土類複合酸化物系焼
結体。
1. One or more disilicate (RE 2 Si 2 O 7 ) and monosilicate (RE 2 SiO 5 ) containing a group 3a element (RE) of the Periodic Table, and the total amount thereof is 0. 1-95 mol% Periodic Table Group 3a element (R
E) and Al, Cr, Hf, Nb, Zr, Ti, V, Ta
Any more made composite oxide (RE x M y O z, M is Al, Cr, Hf, Nb, Zr, Ti, V, Ta) rare earth composite oxide sintered, characterized in that it consists of one or more Union.
【請求項2】周期律表第3a族元素の酸化物(RE2
3 )と二酸化珪素(SiO2 )及びAl、Cr、Hf、
Nb、Zr、Ti、V、Taの酸化物の一種以上から成
る粉体を混合した後、該混合粉を成形して得られた成形
体を焼成することを特徴とする希土類複合酸化物系焼結
体の製造方法。
2. An oxide of a Group 3a element of the periodic table (RE 2 O
3 ) and silicon dioxide (SiO 2 ) and Al, Cr, Hf,
A rare earth compound oxide-based calcining method, comprising: mixing a powder of one or more oxides of Nb, Zr, Ti, V, and Ta, and then firing the molded body obtained by shaping the mixed powder. A method for producing a bound body.
【請求項3】周期律表第3a族元素(RE)を含有する
ダイシリケート(RE2 Si2 7 )、モノシリケート
(RE2 SiO5 )の一種以上と、周期律表第3a族元
素(RE)及びAl、Cr、Hf、Nb、Zr、Ti、
V、Taのいずれかより成る複合酸化物(REx y
z 、MはAl、Cr、Hf、Nb、Zr、Ti、V、T
a)の一種以上をそれぞれ仮焼して粉砕混合した後、該
粉砕混合粉を成形して得られた成形体を焼成することを
特徴とする希土類複合酸化物系焼結体の製造方法。
3. One or more of a disilicate (RE 2 Si 2 O 7 ) and a monosilicate (RE 2 SiO 5 ) containing a group 3a element (RE) of the periodic table, and an element 3a group (a) of the periodic table (RE 2 Si 2 O 7 ). RE) and Al, Cr, Hf, Nb, Zr, Ti,
V, or more comprising a composite oxide of Ta (RE x M y O
z and M are Al, Cr, Hf, Nb, Zr, Ti, V and T
A method for producing a rare earth complex oxide-based sintered body, which comprises calcining and pulverizing and mixing one or more kinds of a), and then firing a compact obtained by shaping the pulverized mixed powder.
【請求項4】前記希土類複合酸化物系焼結体をその焼成
温度以下、1000℃以上の温度で熱処理して過飽和の
固溶原子を析出させることを特徴とする請求項2又は請
求項3記載の希土類複合酸化物系焼結体の製造方法。
4. The super-saturated solid solution atom is precipitated by heat-treating the rare earth complex oxide-based sintered body at a temperature not higher than the firing temperature and not lower than 1000 ° C. Of the rare earth compound oxide-based sintered body according to claim 1.
JP16917194A 1994-07-21 1994-07-21 Rare earth composite oxide-based sintered body and method for producing the same Expired - Fee Related JP3273099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16917194A JP3273099B2 (en) 1994-07-21 1994-07-21 Rare earth composite oxide-based sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16917194A JP3273099B2 (en) 1994-07-21 1994-07-21 Rare earth composite oxide-based sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0826815A true JPH0826815A (en) 1996-01-30
JP3273099B2 JP3273099B2 (en) 2002-04-08

Family

ID=15881575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16917194A Expired - Fee Related JP3273099B2 (en) 1994-07-21 1994-07-21 Rare earth composite oxide-based sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP3273099B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6093366A (en) * 1997-11-06 2000-07-25 Kabushiki Kaisha Toshiba Method of manufacturing ceramic sintered bodies
JP2007254219A (en) * 2006-03-24 2007-10-04 Kyocera Corp Corrosion-resistant ceramic member
JP2013063868A (en) * 2011-09-16 2013-04-11 Shin-Etsu Chemical Co Ltd Sintered compact for magnetooptic element, and magnetooptic device
CN109467829A (en) * 2018-10-19 2019-03-15 宋光明 A kind of heat insulating wallboard material and its manufacturing method
CN114057203A (en) * 2021-09-10 2022-02-18 中国科学院金属研究所 Six-rare-earth principal element disilicate solid solution spherical feed for plasma spraying and preparation method thereof
CN114105672A (en) * 2020-08-31 2022-03-01 厦门稀土材料研究所 Zirconium-tantalum composite rare earth-based porous high-entropy ceramic and preparation method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6093366A (en) * 1997-11-06 2000-07-25 Kabushiki Kaisha Toshiba Method of manufacturing ceramic sintered bodies
JP2007254219A (en) * 2006-03-24 2007-10-04 Kyocera Corp Corrosion-resistant ceramic member
JP2013063868A (en) * 2011-09-16 2013-04-11 Shin-Etsu Chemical Co Ltd Sintered compact for magnetooptic element, and magnetooptic device
CN109467829A (en) * 2018-10-19 2019-03-15 宋光明 A kind of heat insulating wallboard material and its manufacturing method
CN109467829B (en) * 2018-10-19 2020-11-24 宋光明 Heat insulation wallboard material and manufacturing method thereof
CN114105672A (en) * 2020-08-31 2022-03-01 厦门稀土材料研究所 Zirconium-tantalum composite rare earth-based porous high-entropy ceramic and preparation method thereof
CN114057203A (en) * 2021-09-10 2022-02-18 中国科学院金属研究所 Six-rare-earth principal element disilicate solid solution spherical feed for plasma spraying and preparation method thereof
CN114057203B (en) * 2021-09-10 2023-02-17 中国科学院金属研究所 Six-rare-earth principal element disilicate solid solution spherical feed for plasma spraying and preparation method thereof

Also Published As

Publication number Publication date
JP3273099B2 (en) 2002-04-08

Similar Documents

Publication Publication Date Title
JP3273099B2 (en) Rare earth composite oxide-based sintered body and method for producing the same
US4806510A (en) Silicon nitride sintered body and method for producing same
JP3091085B2 (en) Rare earth silicate based sintered body and method for producing the same
JP3145597B2 (en) Alumina sintered body and method for producing the same
JPH08208317A (en) Alumina sintered body and production thereof
JP3034100B2 (en) Silicon nitride sintered body and method for producing the same
JP2737323B2 (en) Method for producing silicon nitride based sintered body
JP2687632B2 (en) Method for producing silicon nitride sintered body
JP3124865B2 (en) Silicon nitride sintered body and method for producing the same
JP3152853B2 (en) Alumina sintered body and method for producing the same
JP2742622B2 (en) Silicon nitride sintered body and method for producing the same
JP3124867B2 (en) Silicon nitride sintered body and method for producing the same
JPH0840774A (en) Silicon nitride sintered product
JP3034099B2 (en) Silicon nitride sintered body and method for producing the same
JP2892246B2 (en) Silicon nitride sintered body and method for producing the same
JPH035371A (en) Production of si3n4 sintered compact
JP2946593B2 (en) Silicon nitride sintered body and method for producing the same
JPH1059773A (en) Silicon nitride sintered compact and its production
JP2801447B2 (en) Method for producing silicon nitride based sintered body
JP3207065B2 (en) Silicon nitride sintered body
JP2708136B2 (en) Silicon nitride sintered body and method for producing the same
JP3124862B2 (en) Method for producing silicon nitride based sintered body
JP2801455B2 (en) Silicon nitride sintered body
JP3207045B2 (en) Method for producing silicon nitride based sintered body
JP2811493B2 (en) Silicon nitride sintered body

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100125

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees