JP2892246B2 - Silicon nitride sintered body and method for producing the same - Google Patents

Silicon nitride sintered body and method for producing the same

Info

Publication number
JP2892246B2
JP2892246B2 JP5022662A JP2266293A JP2892246B2 JP 2892246 B2 JP2892246 B2 JP 2892246B2 JP 5022662 A JP5022662 A JP 5022662A JP 2266293 A JP2266293 A JP 2266293A JP 2892246 B2 JP2892246 B2 JP 2892246B2
Authority
JP
Japan
Prior art keywords
group
sintered body
periodic table
silicon nitride
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5022662A
Other languages
Japanese (ja)
Other versions
JPH06234571A (en
Inventor
祥二 高坂
政宏 佐藤
英樹 内村
武廣 織田
健一 田島
智広 岩井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP5022662A priority Critical patent/JP2892246B2/en
Publication of JPH06234571A publication Critical patent/JPH06234571A/en
Application granted granted Critical
Publication of JP2892246B2 publication Critical patent/JP2892246B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は室温から高温までの強度
特性に優れ、特に、自動車用部品やガスタ−ビンエンジ
ン用部品等に使用される窒化珪素質焼結体およびその製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon nitride sintered body having excellent strength characteristics from room temperature to a high temperature and particularly used for parts for automobiles and parts for gas turbine engines, and a method for producing the same.

【0002】[0002]

【従来技術】従来から、窒化珪素質焼結体は、耐熱性、
耐熱衝撃性、および耐酸化特性に優れることからエンジ
ニアリングセラミックス、特にタ−ボロ−タ−等の熱機
関用として応用が進められている。この窒化珪素質焼結
体は、一般には窒化珪素に対してY2 3 、Al2 3
あるいはMgOなどの焼結助剤を添加することにより高
密度で高強度の特性が得られている。このような窒化珪
素質焼結体に対しては、さらにその使用条件が高温化す
るに際して、高温における強度および耐酸化特性のさら
なる改善が求められている。かかる要求に対して、これ
まで焼結助剤の検討や焼成条件等を改善する等各種の改
良が試みられている。
2. Description of the Related Art Conventionally, a silicon nitride sintered body has been known to have heat resistance,
Because of its excellent thermal shock resistance and oxidation resistance, it is being applied to engineering ceramics, especially for heat engines such as turbo rotators. This silicon nitride sintered body is generally made of Y 2 O 3 , Al 2 O 3
Alternatively, by adding a sintering aid such as MgO, high density and high strength characteristics are obtained. As such silicon nitride sintered bodies are required to be further improved in strength and oxidation resistance at high temperatures when their use conditions are further increased. In response to such demands, various improvements have been attempted, for example, by studying sintering aids and improving firing conditions.

【0003】その中で、従来より焼結助剤として用いら
れてきたAl2 3 等の低融点酸化物が高温特性を劣化
させるという見地から、窒化珪素に対してY2 3 等の
周期律表第3a族元素(RE)および酸化珪素からなる
単純な3元系(Si3 4 −SiO2 −RE2 3 )の
組成からなる焼結体において、その焼結体の粒界にSi
−RE−O−NからなるYAM相、アパタイト相等の結
晶相を析出させることにより粒界の高融点化および安定
化を図ることが提案されている。
Among them, from the viewpoint that a low melting point oxide such as Al 2 O 3 which has been conventionally used as a sintering agent deteriorates high-temperature characteristics, the periodicity of Y 2 O 3 or the like with respect to silicon nitride is considered. in the sintered body having a composition of table group 3a element (RE) and a simple ternary system consisting of a silicon oxide (Si 3 N 4 -SiO 2 -RE 2 O 3), the grain boundary of the sintered body Si
It has been proposed to increase the melting point and stabilize the grain boundary by precipitating a crystal phase such as a YAM phase and an apatite phase composed of -RE-ON.

【0004】[0004]

【発明が解決しようとする問題点】しかしながら、粒界
相を結晶化させると、粒界が非晶質である場合に比較し
て高温特性はある程度改善されるものの、高温で耐酸化
特性が不十分であり、また機械的特性に優れた安定な結
晶相の生成を行うことができないため、かかる焼結体の
実用化が阻害されており、さらなる強度の改良、および
耐酸化特性の改良が要求されている。
However, when the grain boundary phase is crystallized, the high-temperature characteristics are improved to some extent as compared with the case where the grain boundaries are amorphous, but the oxidation resistance at high temperatures is poor. Since it is not possible to produce a stable crystalline phase with sufficient mechanical properties, the practical use of such a sintered body is hindered, and further improvements in strength and oxidation resistance are required. Have been.

【0005】よって、本発明は、特に低温から高温まで
の耐酸化特性に優れ、室温から高温までの自動車部品や
ガスタ−ビンエンジン用等で使用されるに十分な強度特
性、特に、室温から1500℃の高温までの抗折強度に
優れた窒化珪素質焼結体を提供することを目的とするも
のである。
Therefore, the present invention is excellent in oxidation resistance especially from low temperature to high temperature, and has sufficient strength characteristics for use in automobile parts and gas turbine engines from room temperature to high temperature, especially from room temperature to 1500. It is an object of the present invention to provide a silicon nitride-based sintered body having excellent bending strength up to a high temperature of ° C.

【0006】[0006]

【問題点を解決するための手段】本発明者等は、焼結体
の強度特性、および耐酸化特性を高めるためには、焼結
体の組成および窒化珪素相の粒界に存在する副相を制御
することが重要であるという見地に基づき検討を重ねた
結果、窒化珪素に添加され粒界相を形成する周期律表第
3a族元素として少なくともLuを用い、しかもその粒
界相に特定の結晶相を形成させることにより上記目的が
達成されることを見出した。
Means for Solving the Problems In order to enhance the strength characteristics and oxidation resistance of the sintered body, the present inventors have studied the composition of the sintered body and the subphases existing at the grain boundaries of the silicon nitride phase. As a result of repeated investigations based on the viewpoint that it is important to control the grain boundary phase, at least Lu is used as a Group 3a element of the periodic table that is added to silicon nitride to form a grain boundary phase, and a specific grain boundary phase is used. It has been found that the above object is achieved by forming a crystal phase.

【0007】即ち、本発明の窒化珪素質焼結体は、窒化
珪素結晶相を主相とし、Lu、あるいはLuとLu以外
の周期律表第3a族元素のうちの1種以上、Si、Oお
よびNとを含む副相からなる焼結体であって、前記周期
律表第3a族元素が酸化物換算量の合計量で0.1〜1
0モル%の割合で含有され、且つ該焼結体の粒界相に少
なくともRE2 Si2 7 (REは周期律表第3a族元
素)結晶が析出してなることを特徴とするものであっ
て、さらにその製法として、窒化珪素を主成分とし、L
2 3 、あるいはLu2 3 とLu2 3 以外の周期
律表第3a族酸化物の1種以上を0.1〜10モル%
と、酸化珪素(SiO2 )の周期率律表第3a族元素酸
化物(RE2 3 )の合量とのSiO2 /RE2 3
表されるモル比が2以上の組成からなる成形体を非酸化
性雰囲気で焼成した後、その冷却過程あるいは焼成後の
熱処理によって粒界相に少なくともをRE2 Si2 7
(REは周期率表第3a族元素)結晶を析出させること
を特徴とするものである。
That is, the silicon nitride sintered body of the present invention has a silicon nitride crystal phase as a main phase, and contains Lu, or at least one element of Group 3a of the periodic table other than Lu and Lu, Si, O And a sintered body composed of a sub-phase containing N, wherein the group 3a element of the periodic table has a total amount of 0.1 to 1 in terms of oxide.
0% by mole, and at least RE 2 Si 2 O 7 (RE is a Group 3a element of the periodic table) crystal precipitated in the grain boundary phase of the sintered body. Then, as a manufacturing method, silicon nitride is used as a main component, and L
0.1 to 10 mol% of u 2 O 3 , or one or more of Lu 2 O 3 and one or more oxides of Group 3a other than Lu 2 O 3
And a composition in which the molar ratio represented by SiO 2 / RE 2 O 3 is 2 or more with respect to the total amount of group 3a element oxides (RE 2 O 3 ) of the periodic table of silicon oxide (SiO 2 ). After firing the compact in a non-oxidizing atmosphere, at least RE 2 Si 2 O 7 is added to the grain boundary phase by a cooling process or heat treatment after firing.
(RE is an element belonging to Group 3a of the periodic table).

【0008】以下、本発明を詳述する。本発明の窒化珪
素質焼結体は、窒化珪素を主成分としこれに添加物とし
て、Lu(ルテチウム)、あるいはLuとLu以外の周
期律表第3a族元素の1種以上および過剰酸素を含むも
のである。ここで、過剰酸素とは、焼結体中の全酸素量
から焼結体中のSi以外の周期律表第3a族元素が化学
量論的に酸化物を形成した場合に元素に結合している酸
素を除く残りの酸素量であり、そのほとんどは窒化珪素
原料に含まれる酸素、あるいは、SiO2 等の添加物と
して混入するものであり、本発明では全てSiO2 とし
て存在するものとして考慮する。
Hereinafter, the present invention will be described in detail. The silicon nitride-based sintered body of the present invention contains silicon nitride as a main component and, as an additive, Lu (lutetium) or one or more elements of Group 3a of the periodic table other than Lu and Lu and excess oxygen. It is a thing. Here, the excess oxygen means that when the group 3a element of the periodic table other than Si in the sintered body forms an oxide stoichiometrically from the total amount of oxygen in the sintered body, it binds to the element. a remaining amount of oxygen except for oxygen are taken into account its oxygen mostly contained in the silicon nitride raw material or is intended to be mixed as an additive such as SiO 2, as existing all in the present invention as SiO 2 .

【0009】本発明の焼結体は、組織的には窒化珪素結
晶相を主相とするものであり、そのほとんどはβ−Si
3 4 からなる。また、その主相の粒界には少なくとも
Lu、Si、NおよびOなどが存在するが、Lu、ある
いはLuとLu以外の周期律表第3a族元素の1種以上
および過剰酸素(酸化珪素として存在すると考えられ
る)が存在するが、本発明によれば、この粒界相にRE
2 Si2 7 を析出させることが重要である。ここでR
Eとは、系中に存在する周期律表第3a族元素であり、
本発明では、Lu、あるいはLuとその他の周期律表第
3a族元素からなる。
The sintered body of the present invention is structurally mainly composed of a silicon nitride crystal phase, and most of the sintered body is β-Si
Consisting of 3 N 4. In addition, at least Lu, Si, N, O, and the like are present at the grain boundaries of the main phase. Lu, or one or more elements of Group 3a of the periodic table other than Lu and Lu, and excess oxygen (as silicon oxide) According to the present invention, RE is present in this grain boundary phase.
It is important to precipitate 2 Si 2 O 7 . Where R
E is an element belonging to Group 3a of the Periodic Table present in the system,
In the present invention, Lu or Lu and other Group 3a elements of the periodic table are used.

【0010】本発明によれば、粒界相中にLuを含むこ
とでRE2 Si2 7 の融点が上昇すると共に、RE2
Si2 7 とSi3 4 の二成分系の共晶温度が上昇
し、高温強度を高めることができる。この結晶相は焼結
過程では、窒化珪素粒子との反応により液相として存在
し焼結性を高めるが、冷却後そのまま、粒界相にガラス
相として残存すると高温強度を低下させてしまうと同時
に耐酸化特性を劣化させてしまう。よって、所定の冷却
過程あるいは熱処理によりRE2 Si2 7 結晶相を析
出させることにより高温強度を高めると同時に耐酸化特
性を高めることができる。
According to the present invention, the inclusion of Lu in the grain boundary phase increases the melting point of RE 2 Si 2 O 7 and increases the melting point of RE 2
The eutectic temperature of the binary system of Si 2 O 7 and Si 3 N 4 is increased, and the high-temperature strength can be increased. In the sintering process, this crystal phase exists as a liquid phase due to the reaction with the silicon nitride particles and enhances the sinterability. However, if the crystal phase remains as a glass phase in the grain boundary phase as it is after cooling, the high temperature strength is reduced. It degrades oxidation resistance. Therefore, by precipitating the RE 2 Si 2 O 7 crystal phase by a predetermined cooling process or heat treatment, it is possible to increase the high-temperature strength and at the same time the oxidation resistance.

【0011】また、上記結晶相を析出させるためには焼
結体の過剰酸素の酸化珪素換算量(SiO2 )のLuを
含む周期律表第3a族元素の合量の酸化物換算量(RE
2 3 )に対するモル比(SiO2 /RE2 3 )が2
以上であることが必要である。これは、上記比率が2未
満では、粒界相にRE2 Si2 7 以外にRE10Si2
234 やRE10(SiO4 6 2 等で示されるアパ
タイト相が存在し始め、更に比率が小さくなるとアパタ
イト相が単独、またはRE4 Si2 7 2 で表される
YAM相が析出し、耐酸化特性、特に900℃付近での
耐酸化特性を劣化させてしまうためである。
Further, in order to precipitate the crystal phase, the amount of excess oxygen in the sintered body (SiO 2 ) in terms of silicon oxide (SiO 2 ), which is the total amount of elements of Group 3a in the periodic table including Lu, and the amount in terms of oxide (RE
Molar ratio 2 O 3) (SiO 2 / RE 2 O 3) 2
It is necessary to be above. This is because when the above ratio is less than 2 , RE 10 Si 2 other than RE 2 Si 2 O 7 is added to the grain boundary phase.
An apatite phase such as O 23 N 4 or RE 10 (SiO 4 ) 6 N 2 starts to exist, and when the ratio is further reduced, the apatite phase alone or a YAM phase represented by RE 4 Si 2 O 7 N 2 Is deposited, thereby deteriorating the oxidation resistance, particularly at around 900 ° C.

【0012】また、Lu、あるいはLuとLu以外の周
期律表第3a族元素の1種以上の含有量は酸化物換算の
合計で0.1〜10モル%、特に0.3〜5モル%であ
ることが望ましく、10モル%を越えると、焼結体中に
占める粒界相の体積分率が増加し、焼結体の高温強度を
劣化させてしまうためである。なお、Luとその他の周
期律表第3a族元素との複合系では、Luが酸化物換算
量で0.1モル%、特に0.3モル%を下回らないよう
にすることが必要である。
The content of Lu or one or more elements of Group 3a of the periodic table other than Lu and Lu is 0.1 to 10 mol%, especially 0.3 to 5 mol% in terms of oxide. This is because, if it exceeds 10 mol%, the volume fraction of the grain boundary phase in the sintered body increases, and the high-temperature strength of the sintered body deteriorates. In a composite system of Lu and another element of Group 3a of the periodic table, it is necessary that Lu does not fall below 0.1 mol%, particularly 0.3 mol% in terms of oxide.

【0013】本発明によれば、粒界にLu、あるいはL
uとLu以外の周期律表第3a族元素の1種以上のRE
2 Si2 7 (RE:周期律表第3a族元素)を析出さ
せるが、前述した(SiO2 /RE2 3 )モル比が
2.0以上、およそ2.5以下では結晶相としてRE2
Si2 7 結晶相のみ析出するが、モル比率が2.5よ
り大きくなると、RE2 Si2 7 結晶以外にSi2
2 Oが析出し始めるが、特性の点からは何ら問題がな
い。
According to the present invention, Lu or L
one or more REs of group 3a elements of the periodic table other than u and Lu
2 Si 2 O 7 (RE: element of Group 3a of the periodic table) is deposited. When the (SiO 2 / RE 2 O 3 ) molar ratio described above is 2.0 or more and about 2.5 or less, RE is formed as a crystal phase. Two
Precipitated only Si 2 O 7 crystal phase, but when the molar ratio is greater than 2.5, RE 2 Si 2 O 7 in addition to crystalline Si 2 N
2 O starts to precipitate, but there is no problem in terms of characteristics.

【0014】なお、本発明に用いられるLu以外の周期
律表第3a族元素としては、Yやランタノイド元素が挙
げられるが、特にYb、Erが好ましい。
The Group 3a element of the periodic table other than Lu used in the present invention includes Y and lanthanoid elements, and Yb and Er are particularly preferable.

【0015】次に、本発明の窒化珪素質焼結体を製造す
る方法について説明すると、まず原料粉末として窒化珪
素を主成分とし、添加成分としてLu2 3 、あるいは
Lu2 3 とLu2 3 以外の周期律表第3a族酸化物
の1種以上の粉末、さらに場合により酸化珪素粉末を添
加する。また、周期律表第3a族酸化物粉末と酸化珪素
粉末に代わり、これらの複合化合物粉末を用いたり、さ
らにこれらと窒化珪素との複合化合物粉末を用いること
も当然できる。用いる窒化珪素粉末は、それ自体α−S
3 4 、β−Si3 4 のいずれでもよく、それらの
粒子径は0.4〜1.2μmが適当である。
Next, the method for producing the silicon nitride sintered body of the present invention will be described. First, silicon nitride is used as a main component as a raw material powder, and Lu 2 O 3 or Lu 2 O 3 and Lu 2 are used as additional components. One or more powders of an oxide of Group 3a of the periodic table other than O 3 , and optionally a silicon oxide powder are added. Also, instead of the Group 3a oxide powder and the silicon oxide powder in the periodic table, a composite compound powder of these can be used, or a composite compound powder of these and silicon nitride can be used. The silicon nitride powder used is itself α-S
Any of i 3 N 4 and β-Si 3 N 4 may be used, and their particle diameter is suitably 0.4 to 1.2 μm.

【0016】本発明によれば、これらの粉末を用いて、
Lu2 3 、またはLu2 3 とLu2 3 以外の周期
律表第3a族酸化物の1種以上が0.1〜10モル%、
特に0.3〜5モル%と、酸化珪素との配合により、過
剰酸素の酸化珪素換算量とLu2 3 を含む周期律表第
3a族元素酸化物(RE2 3 )の合量とのSiO2
RE2 3 で表されるモル比が2以上になるように調
製、混合する。この時の過剰酸素の酸化珪素換算量と
は、窒化珪素粉末に含まれる不純物酸素をSiO2換算
した量と添加する酸化珪素粉末、または珪素含有化合物
の酸化珪素換算量との合量である。
According to the present invention, using these powders,
0.1 to 10 mol% of Lu 2 O 3 , or at least one oxide of Group 3a oxide of the periodic table other than Lu 2 O 3 and Lu 2 O 3 ;
In particular, by mixing with 0.3 to 5 mol% and silicon oxide, the amount of excess oxygen in terms of silicon oxide and the total amount of group 3a element oxides (RE 2 O 3 ) of the periodic table containing Lu 2 O 3 are determined. SiO 2 /
It is prepared and mixed so that the molar ratio represented by RE 2 O 3 becomes 2 or more. The amount of excess oxygen in terms of silicon oxide at this time is the total amount of the amount of impurity oxygen contained in the silicon nitride powder in terms of SiO 2 and the amount of silicon oxide powder to be added or the amount of silicon oxide in terms of silicon oxide.

【0017】このように得られた混合粉末を公知の成形
方法、例えば、プレス成形、鋳込み成形、押し出し成
形、射出成形、冷間静水圧成形等により所望の形状に成
形した後、得られた成形体を公知の焼成方法、例えば、
ホットプレス方法、常圧焼成、窒素ガス圧焼成により緻
密化することができる。さらには、これらの焼成後に熱
間静水圧焼成(HIP)法により処理することにより緻
密化を高めることができる。また、その他の方法として
上記成形体または焼結体をガラスシ−ルしてHIP法に
て焼成することもできる。具体的な焼成条件は、窒化珪
素が分解しない窒素圧下で1500〜1950℃の温度
で焼成する。なお、焼成温度が1950℃を越えると窒
化珪素結晶が粒子成長を起こし強度低下を引き起こす。
The mixed powder thus obtained is molded into a desired shape by a known molding method, for example, press molding, cast molding, extrusion molding, injection molding, cold isostatic pressing, etc. The body is fired in a known firing method, for example,
Densification can be achieved by hot pressing, normal pressure firing, and nitrogen gas pressure firing. Furthermore, densification can be improved by performing treatment by hot isostatic pressing (HIP) after the calcination. As another method, the above-mentioned molded body or sintered body can be glass-sealed and fired by the HIP method. Specific firing conditions are firing at a temperature of 1500 to 1950 ° C. under a nitrogen pressure at which silicon nitride does not decompose. If the sintering temperature exceeds 1950 ° C., the silicon nitride crystal causes grain growth and lowers the strength.

【0018】次に、焼成後の冷却過程において徐冷する
か、またはその冷却過程で一時的に1000〜1600
℃で保持する。あるいは、焼成終了後に、1000〜1
600℃の非酸化性雰囲気中で1〜48時間熱処理する
と、焼結体の粒界相に少なくともRE2 Si2 7 (R
Eは周期律第3a族元素)結晶を析出させることができ
る。
Next, it is gradually cooled in a cooling process after firing, or it is temporarily 1000 to 1600 in the cooling process.
Hold at ° C. Alternatively, after firing, 1000 to 1
When heat treatment is performed for 1 to 48 hours in a non-oxidizing atmosphere at 600 ° C., at least RE 2 Si 2 O 7 (R
E is a group 3a element of the periodic law) and can precipitate crystals.

【0019】本発明の窒化珪素質焼結体およびその製法
によれば、Al2 3 、MgO、CaO等の低融点の金
属酸化物が存在すると粒界相の結晶化が阻害されるとと
もに高温強度、高温耐酸化特性を劣化させるためにこれ
らの酸化物は合量で0.5重量%以下に制御することが
望ましい。
According to the silicon nitride sintered body of the present invention and the method for producing the same, the presence of a metal oxide having a low melting point such as Al 2 O 3 , MgO, CaO inhibits crystallization of the grain boundary phase and increases the temperature. These oxides are desirably controlled to a total amount of 0.5% by weight or less in order to deteriorate strength and high-temperature oxidation resistance.

【0020】一方、周期律表4a、5a、6a族金属や
それらの炭化物、窒化物、珪化物、またはSiCなど
は、分散粒子やウイスカーとして本発明の焼結体中に存
在しても特性を劣化させるような影響が小さいことから
これらを周知技術に基づき、適量添加して複合材料とし
て特性の改善を行うことも当然可能である。
On the other hand, metals of Group 4a, 5a and 6a of the Periodic Table, and their carbides, nitrides, silicides, SiC, etc., have characteristics even when present in the sintered body of the present invention as dispersed particles or whiskers. Since the influence of deterioration is small, it is of course possible to improve the properties as a composite material by adding an appropriate amount of these based on a known technique.

【0021】[0021]

【作用】窒化珪素焼結体の機械的特性および耐酸化特性
は粒界相によって決定される。
The mechanical properties and oxidation resistance of a silicon nitride sintered body are determined by the grain boundary phase.

【0022】粒界結晶相をRE2 Si2 7 (REは周
期律表第3a族元素)に結晶化させることで、耐酸化特
性を向上できる。周期律表第3a族元素の中でもイオン
半径の小さい方が酸素の拡散が小さくなり、さらに耐酸
化特性が向上すると同時に、RE2 Si2 7 の融点や
窒化珪素とRE2 Si2 7 の二成分系の融点を向上で
きる。ランタニド化合物の中で、Luは最もイオン半径
が小さく、Lu元素を用いることにより、室温から高
温、特に1500℃まで優れた耐酸化特性と機械的特性
を付与することができる。
The oxidation resistance can be improved by crystallizing the grain boundary crystal phase into RE 2 Si 2 O 7 (RE is a Group 3a element in the periodic table). Among the elements of Group 3a of the periodic table, the smaller the ionic radius, the smaller the diffusion of oxygen and the better the oxidation resistance. At the same time, the melting point of RE 2 Si 2 O 7 and the melting point of silicon nitride and RE 2 Si 2 O 7 The melting point of a two-component system can be improved. Among the lanthanide compounds, Lu has the smallest ionic radius, and by using the Lu element, excellent oxidation resistance and mechanical properties can be imparted from room temperature to high temperatures, particularly from 1500 ° C.

【0023】[0023]

【実施例】原料粉末として窒化珪素粉末(BET比表面
積8m2 /g、α率98%、酸素量1.2重量%、金属
不純物量0.03重量%)とLu2 3 粉末、Lu2
3以外の周期律表第3a族元素酸化物粉末、酸化珪素粉
末を用いて、成形体組成が表1になるように秤量混合し
た。また、Lu2 3 粉末、あるいはLu2 3 粉末と
その他の周期律表第3a族酸化物粉末と酸化珪素粉末か
ら合成したRE2 Si2 7 粉末を用いて(試料No.
9)同様に表1に示す組成になるように調合した。そし
てその調合物にバインダ−を添加し、1t/cm2 で金
型成形した。
EXAMPLES As raw material powders, silicon nitride powder (BET specific surface area 8 m 2 / g, α rate 98%, oxygen content 1.2 wt%, metal impurity content 0.03 wt%), Lu 2 O 3 powder, Lu 2 O
Powders of Group 3a element oxides and silicon oxide powders other than 3 were weighed and mixed such that the composition of the compact was as shown in Table 1. Further, Lu 2 O 3 powder or RE 2 Si 2 O 7 powder synthesized from Lu 2 O 3 powder, other oxide powder of Group 3a of the periodic table and silicon oxide powder (Sample No. 1) was used.
9) Similarly, it was prepared to have the composition shown in Table 1. Then, a binder was added to the mixture, and a mold was formed at 1 t / cm 2 .

【0024】得られた成形体を所定の温度に上げ、バイ
ンダ−を除去した後に焼成した。
The obtained molded body was heated to a predetermined temperature, and after removing the binder, was fired.

【0025】焼成では、表1中、試料No.1〜14の
成形体を組成変動を少なくするために炭化珪素中の匣鉢
に入れ、10気圧窒素ガス気流中、1850℃で4時間
焼成した(GPS法)。その後、粒界相の結晶化を十分
にするために、得られた焼結体に窒素気流中、1400
℃、24時間熱処理を施した。
In the firing, the sample No. Each of the molded products Nos. 1 to 14 was placed in a sagger in silicon carbide in order to reduce the composition fluctuation, and calcined at 1850 ° C. for 4 hours in a nitrogen gas flow of 10 atm (GPS method). Thereafter, in order to sufficiently crystallize the grain boundary phase, the obtained sintered body is placed in a nitrogen stream at 1400 μm.
Heat treatment was performed at 24 ° C. for 24 hours.

【0026】また、試料No.15〜22の成形体につ
いては、ガラスシ−ルHIP法にて焼結体を作製した。
具体的には、まず焼成に先立ち、成形体に対して焼成時
にシ−ル材であるガラス等との反応を防止するためガラ
スと濡れ性の悪いBN粉末をスラリー化して成形体に塗
布するか、または、上記スラリ−をスプレ−塗布した。
次に、BN等が塗布された成形体をガラス製カプセルに
封入し、HIP法にて1700℃、2000気圧で1時
間焼成した。その後、粒界相の結晶化を十分にするため
に、得られた焼結体に対して窒素気流中、1400℃で
24時間熱処理を施した。
The sample No. For the molded bodies of Nos. 15 to 22, sintered bodies were produced by a glass seal HIP method.
Specifically, first, before firing, the BN powder having poor wettability with glass is slurried and applied to the molded body in order to prevent the molded body from reacting with glass or the like as a sealing material during firing. Alternatively, the slurry was spray-coated.
Next, the molded body coated with BN or the like was sealed in a glass capsule, and fired at 1700 ° C. and 2000 atm for 1 hour by the HIP method. Thereafter, in order to sufficiently crystallize the grain boundary phase, the obtained sintered body was subjected to a heat treatment at 1400 ° C. for 24 hours in a nitrogen stream.

【0027】得られた焼結体をJIS−R1601にて
指定されている形状まで切断、加工、研磨して試料を作
製した。この試料についてアルキメデス法に基づく比重
測定し対理論密度比を算出し、JIS−R1601に基
づく室温および1500℃での4点曲げ抗折試験を実施
した。また。試料を900℃空気中、または1500℃
空気中に100時間暴らし、重量増加量と試料の表面積
から単位表面積当たりの重量変化を求めた。また、X線
回折測定により、焼結体中の粒界相の結晶相を同定し
た。結果は表2に示した。
The obtained sintered body was cut, processed, and polished to the shape specified in JIS-R1601, to prepare a sample. The specific gravity of this sample was measured based on the Archimedes method, the theoretical density ratio was calculated, and a four-point bending test at room temperature and 1500 ° C. based on JIS-R1601 was performed. Also. Sample in air at 900 ° C or 1500 ° C
The sample was exposed to air for 100 hours, and the weight change per unit surface area was determined from the weight increase and the surface area of the sample. Further, the crystal phase of the grain boundary phase in the sintered body was identified by X-ray diffraction measurement. The results are shown in Table 2.

【0028】なお、焼結体組成について、試料を粉砕
し、酸素量は最終二酸化炭素にて変換しての赤外線吸収
法で定量し、窒素量は熱伝導度により、珪素、Luを含
む周期律表第3a族元素はICP発光分光分析により測
定したが、実質上、成形体組成から変化なかった。
For the composition of the sintered body, a sample was pulverized, the oxygen content was determined by an infrared absorption method after conversion with final carbon dioxide, and the nitrogen content was determined by the thermal conductivity based on the periodic rule containing silicon and Lu. The Group 3a elements in Table 3 were measured by ICP emission spectroscopy, but substantially did not change from the composition of the compact.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】表1および表2の結果によると、Lu2
3 を含まない他の周期律第3a族元素の酸化物単独を添
加した試料No.1〜3、15は高温強度が低く、Si
2/RE2 3 比が1.5の試料No.10は粒界に
アパタイトが結晶化しており、耐酸化特性が大幅に劣化
していた。また、Lu2 3 、あるいはLu2 3 と周
期律表第3a族元素の1種以上が10モル%を越える試
料No.14は、耐酸化特性が劣化していた。
According to the results of Tables 1 and 2, Lu 2 O
Sample No. 3 to which only oxides of other Group 3a elements of the periodic rule not containing 3 were added. 1-3, 15 have low high-temperature strength,
Sample No. having an O 2 / RE 2 O 3 ratio of 1.5. In No. 10, apatite was crystallized at the grain boundary, and the oxidation resistance was significantly deteriorated. Sample No. 1 containing Lu 2 O 3 , or Lu 2 O 3 and at least one element of Group 3a of the Periodic Table exceeding 10 mol%. In No. 14, the oxidation resistance was deteriorated.

【0032】これらの比較例に対して、その他の本発明
に基づく試料は、いずれも粒界にRE2 Si2 7 、あ
るいはRE2 Si2 7 結晶とSi2 2 7 結晶の析
出が認められ、いずれも優れた抗折強度、耐酸化特性を
示していた。
In contrast to these comparative examples, all of the other samples according to the present invention showed that RE 2 Si 2 O 7 or RE 2 Si 2 O 7 crystals and Si 2 N 2 O 7 crystals were precipitated at the grain boundaries. All of them showed excellent bending strength and oxidation resistance.

【0033】[0033]

【発明の効果】以上詳述したように、本発明によれば、
室温から高温、特に1500℃まで強度劣化が小さく、
優れた耐酸化特性を有する窒化珪素焼結体を提供するこ
とができる。これにより、窒化珪素質焼結体のガスター
ビンなどの熱機関などをはじめとする各種構造用材料へ
の応用を拡大することができる。
As described in detail above, according to the present invention,
Strength degradation is small from room temperature to high temperature, especially 1500 ° C,
A silicon nitride sintered body having excellent oxidation resistance can be provided. As a result, the application of the silicon nitride sintered body to various structural materials including heat engines such as gas turbines can be expanded.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田島 健一 鹿児島県国分市山下町1番4号 京セラ 株式会社総合研究所内 (72)発明者 岩井田 智広 鹿児島県国分市山下町1番4号 京セラ 株式会社総合研究所内 審査官 大工原 大二 (56)参考文献 特開 昭63−100067(JP,A) 特開 平3−218969(JP,A) 特開 平1−93469(JP,A) (58)調査した分野(Int.Cl.6,DB名) C04B 35/584 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Kenichi Tajima 1-4-4 Yamashitacho, Kokubu-shi, Kagoshima Inside Kyocera Research Institute (72) Inventor Tomohiro Iwaida 1-4-4 Yamashitacho, Kokubu-shi, Kagoshima Kyocera Corporation Examiner in the Research Institute Daiji Daikohara (56) References JP-A-63-100067 (JP, A) JP-A-3-218969 (JP, A) JP-A-1-93469 (JP, A) (58) Investigation Field (Int.Cl. 6 , DB name) C04B 35/584

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】窒化珪素結晶相を主相とし、Lu、あるい
はLuとLu以外の周期律表第3a族元素のうちの1種
以上、Si、OおよびNとを含む粒界相からなる焼結体
であって、前記周期律表第3a族元素が酸化物換算量の
合計量で0.1〜10モル%の割合で含有され、且つ前
記粒界相に少なくともRE2 Si2 7(REは周期律
表第3a族元素)結晶が析出してなることを特徴とする
窒化珪素質焼結体。
1. A sintering method comprising a silicon nitride crystal phase as a main phase and a grain boundary phase containing Si, O, and N and at least one of Lu and at least one element of Group 3a of the periodic table other than Lu and Lu. Wherein the group 3a element of the periodic table is contained in a proportion of 0.1 to 10 mol% in terms of oxide in total, and at least RE 2 Si 2 O 7 ( RE is a silicon nitride-based sintered body characterized in that crystals are precipitated from the 3a group element of the periodic table).
【請求項2】前記焼結体中の周期律表第3a族元素(R
E)の酸化物換算量(RE2 3 )と過剰酸素の酸化珪
素換算量(SiO2 )のSiO2 /RE2 3で表され
るモル比が2以上である請求項1記載の窒化珪素質焼結
体。
2. An element (R) of Group 3a of the periodic table in said sintered body.
2. The nitriding method according to claim 1, wherein the molar ratio expressed by SiO 2 / RE 2 O 3 of the amount of E) in terms of oxide (RE 2 O 3 ) and the amount of excess oxygen in terms of silicon oxide (SiO 2 ) is 2 or more. Silicone sintered body.
【請求項3】窒化珪素を主成分とし、Lu2 3 、ある
いはLu2 3 とLu2 3 以外の周期律表第3a族元
素酸化物の1種以上を0.1〜10モル%、酸化珪素
(SiO2 )と前記周期律表第3a族元素酸化物(RE
2 3 )の合量とのSiO2 /RE2 3 で表されるモ
ル比が2以上である組成からなる成形体を非酸化性雰囲
気で焼成した後、焼成後の冷却過程あるいは焼成後の熱
処理により粒界相に少なくともRE2 Si2 7 (RE
は周期律表第3a族元素)結晶を析出させることを特徴
とする窒化珪素質焼結体の製造方法。
3. An oxide containing silicon nitride as a main component and containing at least one of Lu 2 O 3 or an oxide of a Group 3a element of the periodic table other than Lu 2 O 3 and Lu 2 O 3 in an amount of 0.1 to 10 mol%. , Silicon oxide (SiO 2 ) and an oxide of an element of Group 3a of the periodic table (RE)
After sintering in a non-oxidizing atmosphere a molded body having a composition in which the molar ratio represented by SiO 2 / RE 2 O 3 to the total amount of 2 O 3 ) is 2 or more, a cooling process after sintering or after sintering At least RE 2 Si 2 O 7 (RE
(3a group element of the periodic table). A method for producing a silicon nitride-based sintered body, comprising:
JP5022662A 1993-02-10 1993-02-10 Silicon nitride sintered body and method for producing the same Expired - Lifetime JP2892246B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5022662A JP2892246B2 (en) 1993-02-10 1993-02-10 Silicon nitride sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5022662A JP2892246B2 (en) 1993-02-10 1993-02-10 Silicon nitride sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH06234571A JPH06234571A (en) 1994-08-23
JP2892246B2 true JP2892246B2 (en) 1999-05-17

Family

ID=12089064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5022662A Expired - Lifetime JP2892246B2 (en) 1993-02-10 1993-02-10 Silicon nitride sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP2892246B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0792854B1 (en) 1996-02-28 2001-11-21 Honda Giken Kogyo Kabushiki Kaisha Silicon nitride sintered body
JP2010235335A (en) * 2009-03-30 2010-10-21 Kyocera Corp Ceramic sintered compact, heat dissipating substrate and electronic device

Also Published As

Publication number Publication date
JPH06234571A (en) 1994-08-23

Similar Documents

Publication Publication Date Title
JP2892246B2 (en) Silicon nitride sintered body and method for producing the same
JP3454993B2 (en) Silicon nitride sintered body and method for producing the same
JP3152790B2 (en) Method for producing silicon nitride based sintered body
JP3034100B2 (en) Silicon nitride sintered body and method for producing the same
JP3124863B2 (en) Silicon nitride sintered body and method for producing the same
JP3124867B2 (en) Silicon nitride sintered body and method for producing the same
JP3124862B2 (en) Method for producing silicon nitride based sintered body
JP3124865B2 (en) Silicon nitride sintered body and method for producing the same
JP2708136B2 (en) Silicon nitride sintered body and method for producing the same
JP3140122B2 (en) Silicon nitride sintered body
JP3124864B2 (en) Silicon nitride sintered body and method for producing the same
JP3034106B2 (en) Method for producing silicon nitride based sintered body
JP3207065B2 (en) Silicon nitride sintered body
JP3034099B2 (en) Silicon nitride sintered body and method for producing the same
JP2783720B2 (en) Silicon nitride sintered body and method for producing the same
JP2783711B2 (en) Silicon nitride sintered body
JP3207045B2 (en) Method for producing silicon nitride based sintered body
JP2652936B2 (en) Silicon nitride sintered body and method for producing the same
JP2801447B2 (en) Method for producing silicon nitride based sintered body
JP3236733B2 (en) Silicon nitride sintered body
JP2736427B2 (en) Silicon nitride sintered body and method for producing the same
JP2801455B2 (en) Silicon nitride sintered body
JPH0686331B2 (en) High-strength sialon-based sintered body
JP3207044B2 (en) Silicon nitride sintered body
JPH0840774A (en) Silicon nitride sintered product

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090226

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100226

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100226

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110226

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110226

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120226

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120226

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 14

EXPY Cancellation because of completion of term