JPH035371A - Production of si3n4 sintered compact - Google Patents

Production of si3n4 sintered compact

Info

Publication number
JPH035371A
JPH035371A JP1137363A JP13736389A JPH035371A JP H035371 A JPH035371 A JP H035371A JP 1137363 A JP1137363 A JP 1137363A JP 13736389 A JP13736389 A JP 13736389A JP H035371 A JPH035371 A JP H035371A
Authority
JP
Japan
Prior art keywords
powder
si3n4
strength
weight
powder mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1137363A
Other languages
Japanese (ja)
Inventor
Satoshi Uenosono
上ノ園 聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1137363A priority Critical patent/JPH035371A/en
Publication of JPH035371A publication Critical patent/JPH035371A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To improve strength at high temp. by subjecting a powdery raw material which consists of a powder mixture consisting of Si3N4 powder, spinel powder or powder mixture of MgO and Al2O3, and powder mixture of Y2O3 and one or more kinds among La2O3, CeO2, and Yb2O3 to compacting and then to sintering. CONSTITUTION:A powder mixture consisting of 1.5-6% (by weight, the same applies to the following) of either or both of spinel powder and powder mixture in which MgO and Al2O3 are blended in a molar ratio of 1 to 1, a sintering auxiliary in which the total content of 2-5% Y2O3 and one or more kinds selected from the group consisting of La2O3, CeO2, and Yb2O2 is regulated to 3.5-6.30% and the relations in Y2O3/(Y2O3+La2O3+CaO2+Yb2O3)<=0.8 are satisfied, and Si3N4 powder as the balance is compacted. The resulting green compact is sintered at 1650-1950 deg.C under an N2 atmosphere, by which an Si3N4 sintered compact minimal in reduction in strength at high temp. is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高温高強度を要求される構造材料に用いられ
るSi3N4焼結体の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a Si3N4 sintered body used as a structural material requiring high temperature and high strength.

〔従来の技術l Si3N4焼結体は高温強度、耐食性、耐熱衝撃性に優
れ、−5iCに比較して、大きな破壊靭性をもつなど、
材料特性のバランスにすぐれた耐熱材料であり、ターボ
チャージャーのロータ、ガスタービン部材などの耐熱構
造材料として注目されている。
[Conventional technology l Si3N4 sintered bodies have excellent high-temperature strength, corrosion resistance, and thermal shock resistance, and have greater fracture toughness than -5iC.
It is a heat-resistant material with excellent balance of material properties, and is attracting attention as a heat-resistant structural material for turbocharger rotors, gas turbine components, etc.

Si3N4は共有結合性が大きいために自己拡散係数が
小さ(、難焼結材料であるため、通常、Y2O3 、A
 122Oa 、M g O等(7)酸化物ヲ添加し、
それらが形成する液相を利用した液相焼結法が採用され
ている。
Si3N4 has a small self-diffusion coefficient due to its large covalent bonding properties (because it is a difficult-to-sinter material, it is usually
Adding (7) oxides such as 122Oa and MgO,
A liquid phase sintering method that utilizes the liquid phase they form has been adopted.

ところがこのようにして製造された焼結体は液相から生
成するガラス相が800〜1000℃を超えると軟化す
るため、焼結体の高温強度の劣化が認められる。
However, in the sintered body produced in this manner, the glass phase generated from the liquid phase softens when the temperature exceeds 800 to 1000°C, so that the high temperature strength of the sintered body deteriorates.

この問題を解決するために、 (1)ガラス相の組成を制御してガラス相の耐熱性を上
げること、 (2)ガラス相を結晶化し耐熱性を上げること、が提案
されている。
In order to solve this problem, it has been proposed to (1) increase the heat resistance of the glass phase by controlling the composition of the glass phase, and (2) increase the heat resistance by crystallizing the glass phase.

Si3N4の助剤系として、スピネル(M g O・A
l22O3 )−Y2 oa系は中でも高温強度にすぐ
れる系であり、特開昭62−59572号においては必
要に応じて上記組成物に0.01〜1.0重量%のLa
2O3 、CeO2といったランタニド元素の酸化物を
添加し、1600℃〜1750℃で焼成後、ガラス相を
結晶化させるために1100〜1350℃で再焼成を行
い、高温強度を改善させることが提案されている。
As an auxiliary agent system for Si3N4, spinel (M g O・A
The 12O3 )-Y2 oa system is a system with excellent high-temperature strength, and in JP-A-62-59572, 0.01 to 1.0% by weight of La is added to the above composition as necessary.
It has been proposed to improve high-temperature strength by adding lanthanide element oxides such as 2O3 and CeO2, firing at 1600-1750°C, and then re-firing at 1100-1350°C to crystallize the glass phase. There is.

上記熱処理によるガラス相の結晶化により高温強度はか
なり改善されるが、熱処理工程を別途設ける必要があり
、生産性が悪くかつコスト高になる。
Although the high-temperature strength is considerably improved by the crystallization of the glass phase by the above-mentioned heat treatment, it is necessary to provide a separate heat treatment step, resulting in poor productivity and high cost.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明者らはSi3N4焼結体の焼結助剤の効果、特に
スピネル−Y2 oa系にランタニド系酸化物を添加す
る効果について詳細に検討した結果、焼結助剤の組成を
厳密に制御することにより特開昭62−59572に示
されたような粒界相の結晶化機構でなく、高融点ガラス
化によってSi3N4焼結体の高温強度特性を発現しう
ることを見出した。
The present inventors have conducted detailed studies on the effects of sintering aids for Si3N4 sintered bodies, particularly the effects of adding lanthanide oxides to spinel-Y2 OA systems, and have determined that the composition of the sintering aids can be strictly controlled. As a result, it has been found that the high-temperature strength characteristics of the Si3N4 sintered body can be expressed not by the crystallization mechanism of the grain boundary phase as shown in JP-A-62-59572, but by high melting point vitrification.

すなわち、本発明はMgAl22O4−Y2 Oa系の
改良特許として位置付けられる。
That is, the present invention is positioned as an improved patent for the MgAl22O4-Y2Oa system.

特開昭62−59572においては、 0粒界の結晶化を再熱処理することにより達成すること
、 ■場合によっては、焼結助剤としてスピネル−Y2O3
に加えて結晶化を阻害しない範囲(0,01〜1.0%
)のLa2O3 、CeO2を添加すること、 を特徴としているが、本発明では粒界ガラスの耐熱性を
従来のスピネル−Y2O3系より高(することを意図し
、これを実現するために従来のスピネル−Y2O3の配
合割合の中でY2O3の添加量のうち80%以下をLa
2Oa 、CeO2、Yb2 oaといったランタニド
元素で置換した助剤系を採用したものである。
In JP-A No. 62-59572, crystallization of zero grain boundaries is achieved by reheating; ■ In some cases, spinel-Y2O3 is used as a sintering aid.
In addition to the range that does not inhibit crystallization (0.01 to 1.0%
However, in the present invention, the grain boundary glass is intended to have higher heat resistance than the conventional spinel-Y2O3 system, and in order to achieve this, the conventional spinel-Y2O3 system is -In the blending ratio of Y2O3, 80% or less of the added amount of Y2O3
It employs an auxiliary agent system substituted with lanthanide elements such as 2Oa, CeO2, and Yb2oa.

本発明は、再熱処理といった手段を講することなく、室
温から1300℃まで機械的強度の劣化の少ないSi3
N4質焼結体を提供することを目的とするものである。
The present invention provides Si3 with minimal deterioration in mechanical strength from room temperature to 1300°C without taking any measures such as reheat treatment.
The purpose is to provide an N4 quality sintered body.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、スピネル(MgAj22O4 )またはMg
OとAe2Oaをモル比で1:1に配合した混合粉末1
.5〜6重量%と、Y2 oa 2〜5重量%と、La
2O3 、CeO2およびYb2 oaから選ばれた1
種以上およびY2O3の合計3.5〜6.3重量%を含
み、かつ ≦0.8 であって残部がSi3N4粉末からなる混合粉末を成形
し、得られた成形体を窒素雰囲気下で1650〜195
0℃の温度範囲で焼成することを特徴とするSi3N4
焼結体の製造方法であり、かくしてSi3N4焼結体の
粒界ガラス相の耐熱性を、スピネル−Y2O3系におけ
るそれより向上せしめ、特開昭62−59572のよう
な焼成コストの高くなる再熱処理を必要とせずに、室温
から1300℃まで機械的性質の劣化の少ないSi3N
4焼結体を供給するものである。
The present invention uses spinel (MgAj22O4) or Mg
Mixed powder 1 containing O and Ae2Oa in a molar ratio of 1:1
.. 5-6% by weight, Y2 oa 2-5% by weight, and La
1 selected from 2O3, CeO2 and Yb2 oa
A mixed powder containing a total of 3.5 to 6.3 wt. 195
Si3N4 characterized by being fired in a temperature range of 0°C
This is a method for producing a sintered body, thus improving the heat resistance of the grain boundary glass phase of the Si3N4 sintered body compared to that in the spinel-Y2O3 system, and eliminating the need for reheat treatment, which increases the firing cost, as in JP-A-62-59572. Si3N with minimal deterioration of mechanical properties from room temperature to 1300℃ without the need for
4 sintered bodies.

〔作用1 本発明においては、その焼結助剤の配合が特徴となる。[Effect 1 The present invention is characterized by the combination of the sintering aid.

スピネルまたはMgOとAl22O3をモル比1:1で
配合した混合粉末の何れかまたはけ両者を1.5重量%
〜6重量%配合する。1.5重量%未満では緻密な焼結
体が得られず強度の低下を招き、6重量%を越えて配合
してもその効果は変わらず、かえって粒界ガラス相の量
を増やすことになり高温強度の低下を招(ので、上記の
ように制限する。
1.5% by weight of either spinel or a mixed powder containing MgO and Al22O3 at a molar ratio of 1:1, or both.
~6% by weight is blended. If it is less than 1.5% by weight, it will not be possible to obtain a dense sintered body, leading to a decrease in strength, and if it is more than 6% by weight, the effect will not change, but the amount of grain boundary glass phase will increase. This leads to a decrease in high-temperature strength (therefore, it is limited as described above).

Y2O3 、La2O3 、CeO2、Yb2O3の総
記合量を3.5〜6.3重量%とする。これらの総記合
量が3.5重量%未満では、緻密な焼結体が得られない
ため強度の低下を招き、6重量%を越える配合では、粒
界ガラス相の量が多すぎるため、高温強度の低下を招く
The total amount of Y2O3, La2O3, CeO2, and Yb2O3 is 3.5 to 6.3% by weight. If the total amount of these is less than 3.5% by weight, a dense sintered body cannot be obtained, leading to a decrease in strength, and if it exceeds 6% by weight, the amount of grain boundary glass phase is too large, so it cannot be used at high temperatures. This results in a decrease in strength.

またY2O3 / (Y2O3 +La2O3 +Ce
O2+Yb2O3 )≦0.8(重量比)の範囲に限定
するのは、このモル比が0.3未満ではY2O3の配合
が少なすぎるためSi3N4特有の柱状組織が形成しに
くくなり、破壊靭性値の低下を招く。また逆にこのモル
比が0.8を越えると粒界ガラス相の耐熱性の向上が少
ないためか高温強度の低下を招く。
Also, Y2O3 / (Y2O3 +La2O3 +Ce
O2 + Yb2O3 ) ≦ 0.8 (weight ratio) is limited to the range of 0.8 (weight ratio) because if this molar ratio is less than 0.3, the proportion of Y2O3 is too small, making it difficult to form the columnar structure peculiar to Si3N4, and decreasing the fracture toughness value. invite. On the other hand, if this molar ratio exceeds 0.8, the heat resistance of the grain boundary glass phase will be little improved, leading to a decrease in high-temperature strength.

Y2Oa / (Y2O3 +La2O3 +CeO2
+Yb2Oa ):重量比で整理したのは、Y2O3の
配合が必須であり、かつY2O3に対してランタニド元
素をどの程度置換えるかを示すパラメータが本発明にお
いて必要であるためである。
Y2Oa / (Y2O3 +La2O3 +CeO2
+Yb2Oa): The reason why the weight ratio was arranged is that the blending of Y2O3 is essential, and the present invention requires a parameter indicating how much lanthanide element is substituted for Y2O3.

Y2O3が2%未満ではSi3N4特有の針状晶組織が
形成しにくくなり、破壊靭性値の低下を招く。またY2
O3が5%を越えると粒界のガラス相の量が必要以上に
多くなり、高温強度の低下を招(。
If Y2O3 is less than 2%, it becomes difficult to form the acicular crystal structure peculiar to Si3N4, resulting in a decrease in fracture toughness. Also Y2
If O3 exceeds 5%, the amount of glass phase at the grain boundaries will be larger than necessary, leading to a decrease in high-temperature strength (.

本発明において焼成温度を1650−1950℃に限定
したのは1650’未満ではSi3N4の緻密化が進ま
ず、強度の低下を招き、1950℃を越えると、焼成中
の重量損失が大きく、異常粒成長が見られるようになり
強度の低下を招くからである。
In the present invention, the firing temperature is limited to 1650-1950°C.If the temperature is less than 1650°C, the densification of Si3N4 will not proceed, resulting in a decrease in strength.If it exceeds 1950°C, the weight loss during firing will be large and abnormal grain growth will occur. This is because the cracks become visible, leading to a decrease in strength.

本発明に用いるSi3N4粉末は平均粒径が4μm以下
、好ましくは1μm以下とする。このようなSi3N4
は金属不純物が1%以下で好適である。
The Si3N4 powder used in the present invention has an average particle size of 4 μm or less, preferably 1 μm or less. Si3N4 like this
The metal impurity content is preferably 1% or less.

MgO1A 122O3 、M g2 A 122Os
 、Y2O3 、La2O3、CeO2、Yb2O3は
純度97%以上、平均粒径が2μm以下のものが好まし
い。
MgO1A 122O3, Mg2A 122Os
, Y2O3, La2O3, CeO2, and Yb2O3 preferably have a purity of 97% or more and an average particle size of 2 μm or less.

〔実施例] 平均粒径0,7μm、酸素含有量2.0重量%、金属不
純物量0.05重量%の高純度Si3N4粉末と、平均
粒径1.Ogm、純度99.9重量%のMgA92O4
粉末、Y2O3扮末、Yb2O3粉末、L a 2O3
粉末、CeO2粉末を第1表。
[Example] High purity Si3N4 powder with an average particle size of 0.7 μm, an oxygen content of 2.0% by weight, and a metal impurity amount of 0.05% by weight, and an average particle size of 1.0% by weight. Ogm, MgA92O4 with purity 99.9% by weight
Powder, Y2O3 powder, Yb2O3 powder, L a 2O3
Table 1 shows powder and CeO2 powder.

第2表に示す9合で総量がIkgになるように秤量し、
バイ2フ2Og、エタノールt 000gをSi3N4
ボールと共にプラスチック製ポットに入れ、回転ミルに
て24時時間式混合した。
Weigh the 9 cups shown in Table 2 so that the total amount is I kg,
Bi2F2Og, ethanol t000g to Si3N4
The mixture was placed in a plastic pot together with a ball, and mixed 24 hours a day in a rotary mill.

混合後スラリーをスプレードライヤーにて乾燥造粒し、
成形用粉末とした。
After mixing, the slurry is dried and granulated using a spray dryer.
It was made into powder for molding.

この粉末を0.5t/crn’の圧力で一軸成形後。This powder was uniaxially molded at a pressure of 0.5t/crn'.

1.5t/crn”の圧力でコールド・アイソスタチッ
クプレス処理を行い、50mmX50mmx2Ommの
大きさの成形体を得た。
A cold isostatic press treatment was performed at a pressure of 1.5 t/crn'' to obtain a molded product with a size of 50 mm x 50 mm x 2 O mm.

この成形体をN2気流中で500℃にて脱脂を行った後
、その成形体を黒鉛容器内にて第1表。
After degreasing this molded body at 500°C in a N2 stream, the molded body was placed in a graphite container as shown in Table 1.

第2表に示す条件でN2:9.5kg/cm”の圧力の
もとて焼成し、窒化珪素質焼結体を得た。
It was fired under the conditions shown in Table 2 under a pressure of N2: 9.5 kg/cm'' to obtain a silicon nitride sintered body.

これら焼結体の相対密度および室温、12O0℃、13
00℃での4点曲げ強度を測定した。結果は第1表2第
2表に併記した。
Relative density of these sintered bodies and room temperature, 12O0℃, 13
Four-point bending strength at 00°C was measured. The results are also listed in Table 1 and Table 2.

実施例1〜22に見られるように、1300℃まで強度
の劣化の少ないS i 3 N 4質焼結体が得られる
。この時の破壊靭性値を5EPB法(Single E
dge Precracked Beam法)で測定し
たところ、すべて6 M N / m ”2以上であっ
た。
As seen in Examples 1 to 22, Si3N4 sintered bodies with little deterioration in strength up to 1300°C can be obtained. The fracture toughness value at this time was determined using the 5EPB method (Single E
When measured by dge Precracked Beam method), all of them were 6 M N/m''2 or more.

また、実施例23〜25ではスピネルの代りにMgOと
/12O3をモル比で1=1で混合したものを用いたも
のを示し、これらも全く同様の効果が得られることがわ
かる。
Moreover, in Examples 23 to 25, a mixture of MgO and /12O3 in a molar ratio of 1=1 was used instead of spinel, and it can be seen that exactly the same effect can be obtained with these.

比較例1.2においては、スピネル−Y2O3単独添加
の場合は、室温〜12O0°Cまでは本発明と同等の強
度を有するが、1300℃においては30kg/mm″
程度まで強度が低下することを示した。
In Comparative Example 1.2, when spinel-Y2O3 is added alone, it has the same strength as the present invention from room temperature to 1200°C, but at 1300°C, it has a strength of 30 kg/mm''
It was shown that the strength decreased to a certain degree.

比較例3〜5ではY2O3 +La2Oa +CeO2
+Yb2O3が6.30重量%を越えると、1350℃
での強度が極めて低いことがわかる。
In Comparative Examples 3 to 5, Y2O3 +La2Oa +CeO2
+Yb2O3 exceeds 6.30% by weight, 1350℃
It can be seen that the strength is extremely low.

比較例6ではスピネルの配合が6%をこえるため130
0℃での強度が小さい。
In Comparative Example 6, the spinel content exceeded 6%, so 130
The strength at 0°C is low.

比較例7〜8によればY 2O a / (Y 2O3
 +Yb2Oa)が0.8を越えたとき、および0.3
未満では1300℃での強度が小さいことがわかる。
According to Comparative Examples 7 and 8, Y 2O a / (Y 2O3
+Yb2Oa) exceeds 0.8, and 0.3
It can be seen that the strength at 1300° C. is low when the temperature is less than 1300° C.

比較例の9、lOではY2O3の配合量が2%より少な
いので、1300℃での強度も小さく。
In Comparative Example 9, 1O, the amount of Y2O3 blended is less than 2%, so the strength at 1300°C is also low.

破壊靭性値も4MN/m3′2と低かった。The fracture toughness value was also as low as 4 MN/m3'2.

〔発明の効果〕〔Effect of the invention〕

本発明により再熱処理を用いることなく、1300℃ま
で機械的性質の劣化の少ないSi3N4質焼結体の製造
が可能となった。
According to the present invention, it has become possible to produce a Si3N4 sintered body with little deterioration in mechanical properties up to 1300° C. without using reheat treatment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による5−i3N4の高温強度の改善を
示すグラフである。
FIG. 1 is a graph showing the improvement in high temperature strength of 5-i3N4 according to the present invention.

Claims (1)

【特許請求の範囲】 1 スピネル(MgAl_2O_4)またはMgOとA
l_2O_3をモル比で1:1に配合した混合粉末1.
5〜6重量%と、Y_2O_32〜5重量%と、La_
2O_3、CeO_2およびYb_2O_3から選ばれ
た1種以上およびY_2O_3の合計3.5〜6.30
重量%を含み、かつ(Y_2O_3)/(Y_2O_3
+La_2O_3+CeO_2+Yb_2O_3)≦0
.8であって残部がSi_3N_4粉末からなる混合粉
末を成形し、得られた成形体を窒素雰囲気下で 1650〜1950℃の温度範囲で焼成することを特徴
とするSi_3N_4焼結体の製造方法。
[Claims] 1 Spinel (MgAl_2O_4) or MgO and A
Mixed powder containing l_2O_3 at a molar ratio of 1:1 1.
5-6% by weight, Y_2O_32-5% by weight, and La_
2O_3, one or more selected from CeO_2 and Yb_2O_3, and a total of 3.5 to 6.30 Y_2O_3
% by weight, and (Y_2O_3)/(Y_2O_3
+La_2O_3+CeO_2+Yb_2O_3)≦0
.. A method for producing a Si_3N_4 sintered body, characterized in that a mixed powder of No. 8 and the remainder is Si_3N_4 powder is molded, and the obtained molded body is fired in a temperature range of 1650 to 1950°C in a nitrogen atmosphere.
JP1137363A 1989-06-01 1989-06-01 Production of si3n4 sintered compact Pending JPH035371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1137363A JPH035371A (en) 1989-06-01 1989-06-01 Production of si3n4 sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1137363A JPH035371A (en) 1989-06-01 1989-06-01 Production of si3n4 sintered compact

Publications (1)

Publication Number Publication Date
JPH035371A true JPH035371A (en) 1991-01-11

Family

ID=15196924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1137363A Pending JPH035371A (en) 1989-06-01 1989-06-01 Production of si3n4 sintered compact

Country Status (1)

Country Link
JP (1) JPH035371A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6388139A (en) * 1986-10-02 1988-04-19 Asahi Chem Ind Co Ltd Production of cycloolefin
US5457251A (en) * 1992-01-24 1995-10-10 Asahi Kasei Kogyo Kabushiki Kaisha Method for partially hydrogenating a monocyclic aromatic hydrocarbon
US7056850B2 (en) * 2001-07-24 2006-06-06 Kabushiki Kaisha Toshiba Wear-resistant silicon nitride member and method of manufacture thereof
JP2007308368A (en) * 2007-07-13 2007-11-29 Toshiba Corp Method for producing silicon nitride wear resistant member

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6388139A (en) * 1986-10-02 1988-04-19 Asahi Chem Ind Co Ltd Production of cycloolefin
US5457251A (en) * 1992-01-24 1995-10-10 Asahi Kasei Kogyo Kabushiki Kaisha Method for partially hydrogenating a monocyclic aromatic hydrocarbon
US7056850B2 (en) * 2001-07-24 2006-06-06 Kabushiki Kaisha Toshiba Wear-resistant silicon nitride member and method of manufacture thereof
JP2007308368A (en) * 2007-07-13 2007-11-29 Toshiba Corp Method for producing silicon nitride wear resistant member

Similar Documents

Publication Publication Date Title
JPH0232230B2 (en)
JPH035371A (en) Production of si3n4 sintered compact
JP3273099B2 (en) Rare earth composite oxide-based sintered body and method for producing the same
EP0356244A2 (en) Silicon nitride sintered body
JP2687632B2 (en) Method for producing silicon nitride sintered body
JPH0459659A (en) Production of sintered silicon nitride
JPH08208317A (en) Alumina sintered body and production thereof
JPH05139840A (en) Siliceous nitride sintered compact and its production
JPH0840774A (en) Silicon nitride sintered product
JPH04238868A (en) Production of silicon nitride-silicon carbide compounded sintered material
JP3207065B2 (en) Silicon nitride sintered body
JP2742622B2 (en) Silicon nitride sintered body and method for producing the same
JP2687633B2 (en) Method for producing silicon nitride sintered body
JP2746760B2 (en) Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same
JPH042664A (en) High-strength sialon based sintered compact
JP2627922B2 (en) Silicon nitride sintered body
JP2801455B2 (en) Silicon nitride sintered body
JP2000001370A (en) Silicon nitride-base sintered compact and its production
JPH10182237A (en) Silicon nitride-base composite sintered compact and its production
JPH0524926A (en) Production of silicon nitride-silicon carbide combined sintered compact
JPH04219372A (en) Silicon nitride-based sintered compact
JPH04219374A (en) Silicon nitride-based sintered compact and its production
JPH05170542A (en) Silicon nitride-silicon carbide composite sintered product
JPH04292466A (en) Silicon nitride sintered compact and its production
JPH05163066A (en) Sintered material of siliceous nitrite