JP2746760B2 - Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same - Google Patents

Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same

Info

Publication number
JP2746760B2
JP2746760B2 JP2416050A JP41605090A JP2746760B2 JP 2746760 B2 JP2746760 B2 JP 2746760B2 JP 2416050 A JP2416050 A JP 2416050A JP 41605090 A JP41605090 A JP 41605090A JP 2746760 B2 JP2746760 B2 JP 2746760B2
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
silicon carbide
weight
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2416050A
Other languages
Japanese (ja)
Other versions
JPH04231381A (en
Inventor
政宏 佐藤
祥二 高坂
広一 田中
正喜 寺園
英樹 内村
政仁 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2416050A priority Critical patent/JP2746760B2/en
Publication of JPH04231381A publication Critical patent/JPH04231381A/en
Application granted granted Critical
Publication of JP2746760B2 publication Critical patent/JP2746760B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、窒化珪素および炭化珪
素を主体とする窒化珪素−炭化珪素質複合焼結体および
その製造方法に関するもので、詳細には、高温構造材料
に適し、室温強度、高温強度および硬度に優れた焼結体
およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon nitride-silicon carbide composite sintered body mainly composed of silicon nitride and silicon carbide, and a method for producing the same. And a sintered body having excellent high-temperature strength and hardness and a method for producing the same.

【0002】[0002]

【従来技術】窒化珪素質焼結体は、従来から、強度、高
度、熱的化学的安定性に優れることからエンジニアリン
グセラミックスとして、特に熱機関構造用材料としてそ
の応用が進められている。
2. Description of the Related Art Conventionally, silicon nitride-based sintered bodies have been applied to engineering ceramics, particularly as structural materials for heat engines, because of their excellent strength, advanced properties, and excellent thermal and chemical stability.

【0003】このような窒化珪素質焼結体を得る方法と
しては、窒化珪素粉末に対して周期律表第3a族元素酸
化物等の焼結助剤を添加混合し、成形後、非酸化性雰囲
気中で1500〜2000℃の温度にて焼成することに
より得られている。
[0003] As a method of obtaining such a silicon nitride sintered body, a sintering aid such as an oxide of an element of Group 3a of the periodic table is added to silicon nitride powder, mixed, molded, and then non-oxidized. It is obtained by firing at a temperature of 1500 to 2000 ° C. in an atmosphere.

【0004】ところが、窒化珪素質焼結体は、優れた特
性を有する反面、高温において強度等が低下するという
問題を有している。この高温強度の劣化という問題に対
してこれまで、焼結助剤の改良や焼成雰囲気や焼成パタ
ーン等を変更することにより改善が進められてきたが、
決定的な対策には至っていないのが現状である。
[0004] However, while the silicon nitride sintered body has excellent characteristics, it has a problem that its strength and the like are reduced at high temperatures. Up to now, the problem of deterioration of the high-temperature strength has been improved by improving the sintering aid and changing the firing atmosphere and the firing pattern.
At present, no definitive measures have been taken.

【0005】[0005]

【発明が解決しようとする問題点】この強度の劣化の1
つの要因として、その焼成過程において例えばα−Si
3 4 は1600℃付近でβ─Si3 4 に相転位する
とともに窒化珪素粒子の粒成長が生じるために、比較的
粒径の大きい針状の結晶が析出しこの大きな粒子が破壊
源となり特性が劣化することが考えられる。このような
焼結挙動は窒化珪素の焼結において不可避的な要因であ
るために窒化珪素質焼結体自体の強度も室温において約
1000MPa、1400℃で約700MPaが限界で
ある。
Problems to be Solved by the Invention
One factor is that, for example, α-Si
3 N 4 in order to produce the grain growth of silicon nitride grains as well as phase transition to Beta─Si 3 N 4 at around 1600 ° C., a relatively large needle-like crystals of a particle size of precipitated this large particles becomes broken source The characteristics may be degraded. Since such sintering behavior is an inevitable factor in sintering silicon nitride, the strength of the silicon nitride sintered body itself is limited to about 1000 MPa at room temperature and about 700 MPa at 1400 ° C.

【0006】また、硬度の点からも組織的に上記の理由
から粒径のバラツキ等が生じやすいために高硬度を望む
にも限界があった。
[0006] Also, from the viewpoint of hardness, there is also a limit to the desire for high hardness because the grain size tends to vary systematically for the above reasons.

【0007】かかる現象に対して、窒化珪素に対して炭
化珪素等を添加することにより窒化珪素の粒成長を抑制
しようとする試みもあるが、強度、硬度等の総合的な特
性の見地からは検討されておらず、十分な効果を発揮し
ていないのが現状であった。
[0007] In response to such a phenomenon, there has been an attempt to suppress the grain growth of silicon nitride by adding silicon carbide or the like to silicon nitride, but from the viewpoint of overall characteristics such as strength and hardness. At present, it has not been studied and has not been sufficiently effective.

【0008】[0008]

【問題点を解決するための手段】本発明者等は、上記の
問題に対して詳細に検討を行ったところ、窒化珪素に対
して周期律表第3a族元素酸化物を添加した系に対して
炭化珪素を特定量添加するとともに、焼結過程において
焼成することにより窒化珪素のα−Si3 4 からβ−
Si3 4 への相転位を抑制しつつ緻密化し、焼結体中
にα−Si3 4 を残存させることによって、窒化珪素
結晶の粒成長を効果的に抑制し微細な構造からなる強度
および硬度に優れた焼結体が得られることを知見した。
Means for Solving the Problems The present inventors have examined the above problems in detail, and found that a system obtained by adding a Group 3a element oxide of the periodic table to silicon nitride was used. Silicon carbide is added in a specific amount, and sintering is performed in the sintering process to convert silicon nitride from α-Si 3 N 4 to β-
Densification while suppressing phase transition to Si 3 N 4 , leaving α-Si 3 N 4 in the sintered body, thereby effectively suppressing the grain growth of silicon nitride crystals and the strength of a fine structure And that a sintered body excellent in hardness can be obtained.

【0009】即ち、本発明は、不純物酸素を含む窒化珪
素を93〜99.5モル%と、周期律表第3a族元素を
酸化物換算で0.5〜7モル%の割合でそれぞれ含有す
る窒化珪素成分100重量部に対して、炭化珪素成分を
1〜100重量部の割合で分散含有してなる複合焼結体
であって、前記窒化珪素が平均粒径1μm以下、前記炭
化珪素が平均粒径1μm以下の結晶としてそれぞれ存在
し、前記窒化珪素結晶におけるα−Si3 4 /β−S
3 4 の割合が0.01〜1であり、且つ焼結体中に
おけるAl、Ca、Mgの酸化物換算による合量が0.
5重量%以下であることを特徴とするものである。
That is, the present invention contains 93 to 99.5 mol% of silicon nitride containing impurity oxygen and 0.5 to 7 mol% of a Group 3a element of the periodic table in terms of oxide. A composite sintered body in which a silicon carbide component is dispersed and contained in a proportion of 1 to 100 parts by weight with respect to 100 parts by weight of a silicon nitride component, wherein the silicon nitride has an average particle diameter of 1 μm or less, and the silicon carbide has an average Α-Si 3 N 4 / β-S in the silicon nitride crystal exists as crystals each having a particle size of 1 μm or less.
i 3 ratio of N 4 is 0.01, and Al in the sintered body, Ca, is the total amount of an oxide in terms of Mg 0.
It is characterized by being at most 5% by weight.

【0010】また、本発明の複合焼結体の製造方法とし
ては、不純物酸素を含む窒化珪素を93〜99.5モル
%と、周期律表第3a族元素を酸化物で0.5〜7モル
%の割合でそれぞれ含有する窒化珪素成分100重量部
に対して、炭化珪素成分を1〜100重量部の割合で分
散含有してなり、Al、Ca、Mgの酸化物換算による
合量が0.5重量%以下である成形体をガラス層を介し
て50MPa以上の圧力下で1450〜1900℃の温
度で焼成して、窒化珪素が平均粒径1μm以下、炭化珪
素が平均粒径1μm以下の結晶としてそれぞれ存在し、
前記窒化珪素結晶におけるα−Si3 4 /β−Si3
4 の割合が0.01〜1の焼結体を作製することを特
徴とするものである。
The method for producing a composite sintered body according to the present invention is characterized in that silicon nitride containing impurity oxygen is 93 to 99.5 mol% and Group 3a element of the periodic table is an oxide of 0.5 to 7%. The silicon carbide component is dispersed and contained at a ratio of 1 to 100 parts by weight with respect to 100 parts by weight of the silicon nitride component respectively contained at a ratio of mol%, and the total amount of Al, Ca and Mg in terms of oxide is 0. The sintered body having a weight ratio of not more than 0.5% by weight is fired at a temperature of 1450 to 1900 ° C. through a glass layer under a pressure of 50 MPa or more, so that silicon nitride has an average particle size of 1 μm or less and silicon carbide has an average particle size of 1 μm or less. Each exists as a crystal,
Α-Si 3 N 4 / β-Si 3 in the silicon nitride crystal
It is characterized in that a sintered body having a N 4 ratio of 0.01 to 1 is produced.

【0011】本発明の窒化珪素−炭化珪素質複合焼結体
によれば、組成上、大きく窒化珪素成分と炭化珪素成分
とから構成される。炭化珪素成分は基本的には炭化珪素
粒子のみを意味し、一方窒化珪素成分は、不純物酸素を
含有する窒化珪素を含め、焼結体中の焼結助剤成分を含
む系からなる。
According to the silicon nitride-silicon carbide composite sintered body of the present invention, it is composed mainly of a silicon nitride component and a silicon carbide component in terms of composition. The silicon carbide component basically means only silicon carbide particles, while the silicon nitride component comprises a system containing a sintering aid component in a sintered body, including silicon nitride containing impurity oxygen.

【0012】窒化珪素成分は、不純物酸素を含む窒化珪
素を93〜99.5モル%、特に95〜99.5モル
%、周期律表第3a族元素を酸化物換算で0.5〜7モ
ル%、、特に1〜5モル%の割合で含有される。周期律
表第3a族元素は酸化物として系全体の焼結性を高める
作用を成すもので、その量が0.5モル%より少ないと
焼結性が低下し緻密質な焼結体が得られず特性が劣化
し、7モル%を越えると高温強度が劣化する。
The silicon nitride component contains 93 to 99.5 mol%, particularly 95 to 99.5 mol% of silicon nitride containing impurity oxygen, and 0.5 to 7 mol of a Group 3a element of the periodic table in terms of oxide. %, Especially 1 to 5 mol%. The Group 3a element of the periodic table acts as an oxide to increase the sinterability of the entire system. If the amount is less than 0.5 mol%, the sinterability is reduced and a dense sintered body is obtained. The properties are deteriorated, and if it exceeds 7 mol%, the high temperature strength is deteriorated.

【0013】なお、窒化珪素成分中、窒化珪素中に含有
される不純物酸素も周期律表第3a族元素と同様に例え
ばSiO2 として焼結性の向上に寄与するもので、より
望ましくは周期律表第3a族元素の酸化物換算量(RE
23 )と不純物酸素のSiO2 換算量とのSiO2
RE2 3 で表されるモル比が0.5〜10、特に1〜
4であることが望ましい。
In the silicon nitride component, the impurity oxygen contained in the silicon nitride also contributes to the improvement of sinterability as, for example, SiO 2 , similarly to the Group 3a element of the periodic table. Table 3a Group element oxide equivalent (RE
2 O 3) and SiO and SiO 2 in terms of the impurity oxygen 2 /
When the molar ratio represented by RE 2 O 3 is 0.5 to 10, particularly 1 to
4 is desirable.

【0014】本発明によれば、かかる窒化珪素成分10
0重量部に対して炭化珪素成分を1〜100重量部の割
合で添加する。この炭化珪素成分量を上記の範囲に限定
したのは、炭化珪素成分が1重量部より少ないと、炭化
珪素添加により窒化珪素結晶の粒成長抑制効果がなく、
窒化珪素のα−Si3 4からβ−Si3 4 への転位
が進行し高強度、高硬度が得られず、100重量部を越
えると焼結性が低下し強度が劣化するためである。な
お、特性の点からは炭化珪素成分量は上記窒化珪素成分
100重量部に対して30〜70重量部であることが望
ましい。
According to the present invention, such a silicon nitride component 10
Silicon carbide component is added at a ratio of 1 to 100 parts by weight with respect to 0 parts by weight. The amount of the silicon carbide component is limited to the above range. When the silicon carbide component is less than 1 part by weight, there is no effect of suppressing the grain growth of silicon nitride crystal by adding silicon carbide,
The dislocation of silicon nitride from α-Si 3 N 4 to β-Si 3 N 4 progresses, and high strength and high hardness cannot be obtained. If it exceeds 100 parts by weight, sinterability is reduced and strength is deteriorated. is there. From the viewpoint of characteristics, the amount of the silicon carbide component is desirably 30 to 70 parts by weight based on 100 parts by weight of the silicon nitride component.

【0015】本発明の複合焼結体によれば、窒化珪素結
晶がα−Si3 4 とβ−Si3 4 が焼結体中に共存
し、且つα−Si3 4 /β−Si3 4 の比率が0.
01〜1、特に0.05〜0.5であることが重要であ
る。これは、上記比率が0.01より小さいとα−Si
3 4 からβ−Si3 4 への転位がほぼ完全に進行し
たものと考えられるために窒化珪素結晶の平均粒径が大
きくなるとともに異常粒も発生しやすくなるために所望
の高強度、高硬度が得られないからであり、逆に1を越
えると焼結が進行していないことを意味し、焼結体の密
度が低く強度、硬度とも大きく低下する。
According to the composite sintered body of the present invention, the silicon nitride crystal has α-Si 3 N 4 and β-Si 3 N 4 coexisting in the sintered body, and α-Si 3 N 4 / β- When the ratio of Si 3 N 4 is 0.
It is important that it is from 01 to 1, especially from 0.05 to 0.5. This is because when the ratio is smaller than 0.01, α-Si
Since it is considered that the dislocation from 3 N 4 to β-Si 3 N 4 has almost completely progressed, the average grain size of the silicon nitride crystal increases, and abnormal grains easily occur. This is because high hardness cannot be obtained. Conversely, if it exceeds 1, it means that sintering has not progressed, and the density of the sintered body is low, and both the strength and the hardness are greatly reduced.

【0016】また、窒化珪素結晶および炭化珪素結晶は
上記の見地から、その平均粒径(短径)が1μm 以下、
特に0.8μm 以下、長径/短径で表されるアスペクト
比が平均で2〜10、特に3〜9の粒子形状で存在し、
炭化珪素結晶は、それ自体粒状形状として、前記窒化珪
素結晶の粒界あるいは窒化珪素結晶粒内に平均粒径1μ
m 以下、特に0.8μm 以下の粒子として存在すること
が望ましい。なお、この炭化珪素結晶はほとんどがβ型
であるが、場合によってはα型が存在してもよい。
Further, from the above viewpoint, the silicon nitride crystal and the silicon carbide crystal have an average particle diameter (minor diameter) of 1 μm or less,
In particular, 0.8 μm or less, present in the form of particles having an aspect ratio represented by a major axis / minor axis of 2 to 10, particularly 3 to 9 on average,
The silicon carbide crystal itself has a granular shape, and has an average particle size of 1 μm in the grain boundary of the silicon nitride crystal or in the silicon nitride crystal grain.
It is desirable that the particles be present as particles having a particle size of at most m, particularly at most 0.8 μm. Most of the silicon carbide crystals are β-type, but α-type may exist in some cases.

【0017】このように窒化珪素結晶および炭化珪素結
晶の形状を上記のように限定したのは、窒化珪素結晶が
1μm より大きいと、これが焼結体の破壊源となりやす
く、強度の劣化の原因となり、アスペクト比が2より小
さいと粒子同士の絡み合いが小さくなるために高温にお
いて粒子が移動し易くなりクリープ特性が劣化するため
である。一方、炭化珪素結晶の粒径が1μm より大きい
と、焼結性が劣化するとともに窒化珪素結晶の針状化が
阻害され特性が劣化する。
As described above, the shapes of the silicon nitride crystal and the silicon carbide crystal are limited as described above. If the silicon nitride crystal is larger than 1 μm, it easily becomes a source of fracture of the sintered body and causes deterioration in strength. If the aspect ratio is smaller than 2, the entanglement between the particles becomes small, so that the particles easily move at a high temperature and the creep characteristics are deteriorated. On the other hand, when the particle size of the silicon carbide crystal is larger than 1 μm, the sinterability is deteriorated, and the needle-like formation of the silicon nitride crystal is hindered, and the characteristics are deteriorated.

【0018】また、粒界を構成する成分として、例えば
従来から焼結性を高める成分としてAl2 3 、Ca
O、MgO等を用いることが知られているが、これらの
酸化物が粒界に、あるいは一部窒化珪素結晶に固溶して
存在すると粒界の融点が低くなるとともに高温での粘性
も低下することから高温強度とともにクリープ特性も劣
化する。よって、Al、Ca、Mgの金属元素は酸化物
換算で全量中に0.5重量%以下、特に0.3重量%以
下になるように制御することが望ましい。
Further, as a component constituting a grain boundary, for example, Al 2 O 3 , Ca
It is known to use O, MgO, etc., but if these oxides are present at the grain boundary or partially dissolved in the silicon nitride crystal, the melting point of the grain boundary is lowered and the viscosity at high temperature is also lowered. Therefore, the creep characteristics are deteriorated together with the high temperature strength. Therefore, it is desirable to control the metal elements of Al, Ca, and Mg to be 0.5% by weight or less, particularly 0.3% by weight or less in the total amount in terms of oxide.

【0019】なお、本発明において用いられる周期律表
第3a族元素としては、Y、Sc、Er、Yb、Ho、
Dyが挙げられるが、これらの中でもYは、焼結体中に
おいて凝集し易く異常粒成長を生じやすいためにEr、
Ybが特に望ましい。
The elements of Group 3a of the periodic table used in the present invention include Y, Sc, Er, Yb, Ho,
Among them, Y is easily aggregated in the sintered body and abnormal grain growth is apt to occur.
Yb is particularly desirable.

【0020】次に、本発明の窒化珪素−炭化珪素質複合
焼結体の製造方法について説明すると、まず、出発原料
として、窒化珪素粉末、炭化珪素粉末、周期律表第3a
族元素酸化物、場合により酸化珪素粉末を使用する。
Next, the method for producing the silicon nitride-silicon carbide composite sintered body of the present invention will be described. First, as starting materials, silicon nitride powder, silicon carbide powder, 3a of the periodic table
Group oxides and, in some cases, silicon oxide powders are used.

【0021】窒化珪素粉末としては、炭化珪素を系中に
含むために焼結性が低いためにα−Si3 4 が95%
以上の割合で存在することがよく、平均粒径1μm 以
下、不純物酸素量2重量%以下のものが好適に使用され
る。また、炭化珪素粉末としてはα型、β型のいずれで
も使用でき、平均粒径1μm 以下、不純物酸素量2重量
%以下の粉末を用いる。これらの窒化珪素粉末および炭
化珪素粉末は、それぞれ個別の粉末として存在する他、
窒化珪素と炭化珪素を所定の割合で複合化した粉末を用
いることもできる。
The silicon nitride powder contains 95% of α-Si 3 N 4 because of its low sinterability due to the fact that silicon carbide is contained in the system.
It is preferred that it be present in the above ratio, and those having an average particle size of 1 μm or less and an impurity oxygen content of 2% by weight or less are suitably used. As the silicon carbide powder, any of α-type and β-type can be used, and a powder having an average particle diameter of 1 μm or less and an impurity oxygen amount of 2% by weight or less is used. These silicon nitride powder and silicon carbide powder are each present as individual powders,
Powder obtained by compounding silicon nitride and silicon carbide at a predetermined ratio can also be used.

【0022】次に、上記粉末を用いて不純物酸素を含む
窒化珪素を92〜99.5モル%と、周期律表第3a族
元素酸化物を0.5〜10モル%の割合で含有する窒化
珪素成分100重量部に対して炭化珪素成分を1〜10
0重量部となるように秤量後、十分に混合した後に、周
知の成形方法、例えば、プレス成形、射出成形、押し出
し成形、鋳込み成形、冷間静水圧成形等の成形法により
所望の形状に成形する。なお、上記の過程において成形
体中に含まれるAl、Mg、Caの各元素が酸化物換算
量での合量が0.5重量%以下になるように各工程から
のこれらの元素の混入を避ける。例えば、これらの元素
量の小さい原料を用いたり、混合に際し例えばボールミ
ル混合等において用いるボールの材質を考慮し、混合か
らの混入を制限する等の配慮が必要である。
Next, using the above powder, a nitride containing 92 to 99.5 mol% of silicon nitride containing impurity oxygen and 0.5 to 10 mol% of an oxide of a Group 3a element of the periodic table. 1 to 10 parts by weight of silicon carbide component per 100 parts by weight of silicon component
After being weighed to 0 parts by weight and thoroughly mixed, the mixture is molded into a desired shape by a known molding method, for example, a molding method such as press molding, injection molding, extrusion molding, casting molding, or cold isostatic pressing. I do. It should be noted that in the above process, the mixing of Al, Mg, and Ca elements contained in the compact from each step was performed so that the total amount in terms of oxide would be 0.5% by weight or less. avoid. For example, it is necessary to use raw materials having a small amount of these elements, or to consider the material of the balls used in, for example, ball mill mixing or the like when mixing, and to limit mixing from mixing.

【0023】次に、上記の方法により得られた成形体を
焼成温度1450〜1900℃の温度で焼成する。ま
た、焼成手段としては、常圧焼成、ホットプレス焼成、
窒素ガス圧力焼成(QPS焼成)、熱間静水圧焼成(H
IP焼成)等が採用され、場合によってはこれらを組合
せて焼成することもできるが、α−Si3 4 からβ−
Si3 4 への転位を抑制しつつ焼成する最適な方法
は、上記のようにして得られた成形体を表面にガラス等
からなるシール材を塗布形成し高温高圧下で焼成する、
いわゆるシールHIP法が採用される。
Next, the compact obtained by the above method is fired at a firing temperature of 1450 to 1900 ° C. As the firing means, normal pressure firing, hot press firing,
Nitrogen gas pressure firing (QPS firing), hot isostatic pressure firing (H
IP baking) and the like, and in some cases, baking can be performed in combination with these. However, from α-Si 3 N 4 to β-
An optimal method of firing while suppressing dislocation to Si 3 N 4 is to apply a sealing material made of glass or the like to the surface of the molded body obtained as described above, and to fire at a high temperature and a high pressure.
The so-called seal HIP method is adopted.

【0024】この具体的な方法としては、まず焼成に先
立ち前述した方法で得た成形体に対して、焼成工程にお
いてシール材であるガラス等との反応防止することを目
的としてBN粉末等のガラスと濡れ性の悪い粉末をスラ
リー化して成形体に塗布するか、または上記スラリーを
スプレー塗布する。
As a specific method, first, a glass such as BN powder or the like is used for the purpose of preventing the molded body obtained by the above-mentioned method from reacting with glass or the like as a sealing material in the firing step before firing. A slurry having poor wettability with the slurry is applied to a molded body, or the slurry is spray applied.

【0025】次に、BNが塗布された成形体に対して、
焼成時にシールを形成するガラス粉末をその表面に塗布
するかあるいは上記成形体をガラス製カプセルに封入す
る。また、他の方法として、前記成形体を内部にガラス
粉末が充填された容器内に埋める。
Next, for the molded body to which BN has been applied,
A glass powder which forms a seal at the time of firing is applied to the surface thereof, or the above-mentioned molded body is encapsulated in a glass capsule. As another method, the molded body is buried in a container filled with glass powder.

【0026】その後、HIP法により1450〜190
0℃の温度で、50MPa以上の圧力下でHIP焼成す
る。焼成は、まず成形体表面に存在するガラスの軟化点
以上で、該温度における窒化珪素の分解平衡圧と同等も
しくはそれより0.01〜0.2MPa程度高い窒素ガ
スを導入しつつ、前記ガラスを軟化させ成形体の表面に
ガラスによる不透過性膜を形成する。ガス不透過性膜が
完全に形成された後、炉内の圧力を十分に緻密化しうる
条件まで、昇温昇圧する。この時の圧力媒体は、窒素、
アルゴン等の不活性ガスを用いる。その後、焼成が十分
に進行した後に温度、圧力を下げ焼成を終了する。
Thereafter, 1450 to 190 by the HIP method.
HIP baking is performed at a temperature of 0 ° C. and a pressure of 50 MPa or more. The sintering is performed by first introducing a nitrogen gas having a temperature equal to or higher than the softening point of the glass present on the surface of the molded body and equal to or higher than the decomposition equilibrium pressure of silicon nitride at the temperature by about 0.01 to 0.2 MPa. It is softened to form an impermeable film made of glass on the surface of the molded body. After the gas-impermeable membrane is completely formed, the temperature and pressure are increased until the pressure in the furnace can be sufficiently densified. The pressure medium at this time is nitrogen,
Use an inert gas such as argon. Thereafter, after the sintering has sufficiently proceeded, the temperature and pressure are reduced to end the sintering.

【0027】なお、焼成時の温度を1450〜1900
℃に限定したのは、焼成温度が1900℃より高いと焼
結体中において窒化珪素のα型からβ型への転位が進行
するとともに結晶が粒成長しその粒径が大きくなり、こ
れにより強度が劣化するためである。
The firing temperature was set to 1450 to 1900.
The reason why the firing temperature is limited to 1 ° C. is that if the firing temperature is higher than 1900 ° C., the dislocation of silicon nitride from α-type to β-type proceeds in the sintered body and crystals grow and the grain size increases, thereby increasing the strength. Is deteriorated.

【0028】また、得られた焼結体に対しては、130
0〜1700℃の非酸化性雰囲気中で熱処理することに
より焼結体の粒界を結晶化させ、例えばSi3 4 −R
2 3 (RE:周期律表第3a族元素)−SiO2
の周知の結晶相を析出させることにより高温特性の向上
を図ることができる。
The obtained sintered body is
The grain boundary of the sintered body is crystallized by heat treatment in a non-oxidizing atmosphere at 0 to 1700 ° C., for example, Si 3 N 4 —R
High temperature properties can be improved by precipitating a known crystal phase of E 2 O 3 (RE: Group 3a element of the periodic table) -SiO 2 system.

【0029】[0029]

【実施例】原料粉末として平均粒径0.3μm 、α−S
3 4 含有率98%、酸素含有量1.3重量%の窒化
珪素粉末と、平均粒径が0.3μm の炭化珪素粉末、並
びに平均粒径が0.5μm のY2 3 、Sc2 3 、E
2 3 、Yb2 3 、Ho2 3 、Dy2 3 の各粉
末および酸化珪素粉末を用いて、これらの組成が表1の
割合になるように秤量混合し、これをバインダーととも
にメタノール中で混合粉砕した。得られたスラリーを乾
燥造粒した後、1ton/cm2 の圧力でプレス成形し
た。
EXAMPLE The raw material powder had an average particle size of 0.3 μm and α-S
Silicon nitride powder having an i 3 N 4 content of 98% and oxygen content of 1.3% by weight, silicon carbide powder having an average particle diameter of 0.3 μm, and Y 2 O 3 and Sc having an average particle diameter of 0.5 μm 2 O 3 , E
Using each powder of r 2 O 3 , Yb 2 O 3 , Ho 2 O 3 , Dy 2 O 3 and silicon oxide powder, they were weighed and mixed so that the composition became the ratio of Table 1, and this was mixed with a binder. It was mixed and ground in methanol. After drying and granulating the obtained slurry, it was press-molded at a pressure of 1 ton / cm 2 .

【0030】得られた成形体に対してBN粉末(粒径1
〜5μm )のペーストを1〜10mmの厚みで塗布後、
SiO2 を主成分とするガラスを1〜10mmの厚みで
塗布した。この成形体を1750℃で、196MPaの
窒素加圧雰囲気下で1時間熱間静水圧焼成した。なお、
表1中試料番号14については、焼成温度1950℃に
上げて焼成した。
BN powder (particle size: 1)
55 μm) after applying the paste with a thickness of 1 to 10 mm,
Glass having SiO 2 as a main component was applied in a thickness of 1 to 10 mm. This molded body was fired at 1750 ° C. under a 196 MPa nitrogen pressurized atmosphere for 1 hour under hot isostatic pressure. In addition,
Sample No. 14 in Table 1 was fired at a firing temperature of 1950 ° C.

【0031】得られた焼結体に対して、アルキメデス法
により相対密度を、JISR1601に基づき室温およ
び1400℃における4点曲げ抗折強度を、さらに電子
顕微鏡写真から窒化珪素結晶および炭化珪素結晶の平均
粒径を測定した。また、荷重20kg下におけるビッカ
ース硬度を測定した。
For the obtained sintered body, the relative density was determined by Archimedes method, the four-point bending strength at room temperature and 1400 ° C. based on JISR1601, and the average of silicon nitride crystal and silicon carbide crystal was determined from an electron micrograph. The particle size was measured. Further, Vickers hardness under a load of 20 kg was measured.

【0032】なお、焼結体に対してはX線回折曲線から
β−Si3 4 の(101)、(210)の強度をL(10
1)、L(210)、α−Si3 4 の(102)、(210)
の各結晶相のピーク強度をl(102)、l(210)とした時に、
下記式 α/β=Σ[L(101) +L(210)] /Σ[l(102)+l(210)] にてα/β比率を求めた。結果は表2に示した。
For the sintered body, the intensity of (101) and (210) of β-Si 3 N 4 was determined from the X-ray diffraction curve to L (10).
1), L (210), (102), (210) of α-Si 3 N 4
When the peak intensity of each crystal phase is l (102) and l (210),
The α / β ratio was determined by the following equation: α / β = Σ [L (101) + L (210)] / Σ [l (102) + l (210)]. The results are shown in Table 2.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【表2】 [Table 2]

【0035】表1および表2の結果によれば、焼結体中
にα−Si3 4 を全く残存させない試料No,14で
は、1400℃において63MPaの強度しか得られな
いが、本発明により焼成温度を下げるとともにSiCを
適量添加することによりα−Si3 4 を残存させるこ
とにより、Si3 4 およびSiCを微細な粒子として
存在させることができ、1400℃の強度も800MP
a以上、硬度19GPa以上が達成された。
According to the results shown in Tables 1 and 2, in Sample No. 14, in which no α-Si 3 N 4 was left in the sintered body, only a strength of 63 MPa at 1400 ° C. was obtained. By lowering the sintering temperature and leaving α-Si 3 N 4 by adding an appropriate amount of SiC, Si 3 N 4 and SiC can be present as fine particles, and the strength at 1400 ° C. is 800 MPa.
a and a hardness of 19 GPa or more.

【0036】しかし、窒化珪素成分中の周期律表第3a
族元素量が酸化物換算で7モル%を越える試料では、高
温特性の劣化が大きく、0.5モル%未満では焼結性が
大きく低下し、高密度の焼結体が得られなかった。
However, the periodic table 3a in the silicon nitride component
In the sample in which the amount of the group element exceeds 7 mol% in terms of the oxide, the high-temperature characteristics are greatly deteriorated, and when it is less than 0.5 mol%, the sinterability is greatly reduced, and a high-density sintered body cannot be obtained.

【0037】[0037]

【発明の効果】以上詳述したように、本発明によれば、
周期律表第3a族元素酸化物を含む窒化珪素に対して炭
化珪素を添加し、焼結体中にα−Si3 4 を残存させ
ることにより、窒化珪素結晶および炭化珪素結晶のそれ
ぞれを微細な粒子として存在させ、室温および1400
℃の高温において優れた強度を有するとともに、高い硬
度を付与することができる。これにより、この複合焼結
体のガスタービンやターボロータ等の熱機関構造用とし
て、またはその他の耐熱材料、耐摩耗材料として実用化
を推進するとともに、その用途を拡大することができ
る。
As described in detail above, according to the present invention,
Silicon carbide is added to silicon nitride containing a Group 3a element oxide of the periodic table, and α-Si 3 N 4 is left in the sintered body, so that each of the silicon nitride crystal and the silicon carbide crystal is finely divided. Room temperature and 1400
It has excellent strength at high temperatures of ° C. and can provide high hardness. Thereby, the composite sintered body can be used for heat engine structures such as gas turbines and turbo rotors, or as other heat-resistant and wear-resistant materials, and can be used in a wide range of applications.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内村 英樹 鹿児島県国分市山下町1番4号 京セラ 株式会社総合研究所内 (72)発明者 中西 政仁 鹿児島県国分市山下町1番4号 京セラ 株式会社総合研究所内 審査官 後谷 陽一 (56)参考文献 特開 平1−275470(JP,A) 特開 昭58−74570(JP,A) ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hideki Uchimura 1-4-4 Yamashita-cho, Kokubu-shi, Kagoshima Inside the Kyocera Research Institute (72) Inventor Masahito Nakanishi 1-4-4 Yamashita-cho, Kokubu-shi, Kagoshima Kyocera Corporation Examiner in the Research Institute Yoichi Gotani (56) References JP-A-1-275470 (JP, A) JP-A-58-74570 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】不純物酸素を含む窒化珪素を93〜99.
5モル%と、周期律表第3a族元素を酸化物換算で0.
5〜7モル%の割合でそれぞれ含有する窒化珪素成分1
00重量部に対して、炭化珪素成分を1〜100重量部
の割合で分散含有してなる複合焼結体であって、前記窒
化珪素が平均粒径1μm以下、前記炭化珪素が平均粒径
1μm以下の結晶としてそれぞれ存在し、前記窒化珪素
結晶におけるα−Si3 4 /β−Si3 4 の割合が
0.01〜1であり、且つ焼結体中におけるAl、C
a、Mgの酸化物換算による合量が0.5重量%以下で
あることを特徴とする窒化珪素−炭化珪素質複合焼結
体。
1. A method according to claim 1, wherein the silicon nitride containing impurity oxygen is 93 to 99.
5 mol%, and 0.3% of an element of Group 3a of the periodic table in terms of oxide.
Silicon nitride component 1 contained at a ratio of 5 to 7 mol%
A composite sintered body in which a silicon carbide component is dispersed and contained at a ratio of 1 to 100 parts by weight with respect to 00 parts by weight, wherein the silicon nitride has an average particle diameter of 1 μm or less, and the silicon carbide has an average particle diameter of 1 μm. The following crystals are present, respectively, the ratio of α-Si 3 N 4 / β-Si 3 N 4 in the silicon nitride crystal is 0.01 to 1, and Al, C in the sintered body
(a) A silicon nitride-silicon carbide composite sintered body, wherein the total amount of Mg in terms of oxide is 0.5% by weight or less.
【請求項2】不純物酸素を含む窒化珪素を93〜99.
5モル%と、周期律表第3a族元素を酸化物で0.5〜
7モル%の割合でそれぞれ含有する窒化珪素成分100
重量部に対して、炭化珪素成分を1〜100重量部の割
合で分散含有してなり、Al、Ca、Mgの酸化物換算
による合量が0.5重量%以下である成形体をガラス層
を介して50MPa以上の圧力下で1450〜1900
℃の温度で焼成して、窒化珪素が平均粒径1μm以下、
炭化珪素が平均粒径1μm以下の結晶としてそれぞれ存
在し、前記窒化珪素結晶におけるα−Si3 4 /β−
Si3 4 の割合が0.01〜1の焼結体を作製するこ
とを特徴とする窒化珪素−炭化珪素質複合焼結体の製造
方法。
2. The method according to claim 1, wherein the silicon nitride containing impurity oxygen is 93 to 99.
5 mol%, and an oxide of the Group 3a element of the periodic table in an oxide of 0.5 to
Silicon nitride components 100 each containing 7 mol%
A molded article containing a silicon carbide component dispersedly in a proportion of 1 to 100 parts by weight with respect to parts by weight and having a total amount of 0.5% by weight or less in terms of oxides of Al, Ca, and Mg is a glass layer. From 1450 to 1900 under a pressure of 50 MPa or more
Sintering at a temperature of 0 ° C., the silicon nitride has an average particle size of 1 μm or less,
Silicon carbide exists as crystals each having an average particle size of 1 μm or less, and α-Si 3 N 4 / β-
A method for producing a silicon nitride-silicon carbide composite sintered body, which comprises producing a sintered body having a Si 3 N 4 ratio of 0.01 to 1.
JP2416050A 1990-12-27 1990-12-27 Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same Expired - Fee Related JP2746760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2416050A JP2746760B2 (en) 1990-12-27 1990-12-27 Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2416050A JP2746760B2 (en) 1990-12-27 1990-12-27 Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH04231381A JPH04231381A (en) 1992-08-20
JP2746760B2 true JP2746760B2 (en) 1998-05-06

Family

ID=18524303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2416050A Expired - Fee Related JP2746760B2 (en) 1990-12-27 1990-12-27 Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2746760B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3142058A1 (en) * 1981-10-23 1983-05-05 Elektroschmelzwerk Kempten GmbH, 8000 München PRACTICAL, PORE-FREE, MOLDED BODIES MADE OF POLYCRYSTALLINE SILICON NITRIDE AND SILICON CARBIDE AND METHOD FOR THEIR PRODUCTION BY ISOSTATIC HOT PRESSING
JPH01275470A (en) * 1988-04-28 1989-11-06 Mitsubishi Gas Chem Co Inc Production of silicon nitride-silicon carbide combined sintered body

Also Published As

Publication number Publication date
JPH04231381A (en) 1992-08-20

Similar Documents

Publication Publication Date Title
JP2842723B2 (en) Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same
JP2746760B2 (en) Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same
JPH0259471A (en) Silicon nitride-based sintered body having high strength at high temperature and production thereof
JP3152790B2 (en) Method for producing silicon nitride based sintered body
JP2746761B2 (en) Method for producing silicon nitride-silicon carbide composite sintered body
JP3034100B2 (en) Silicon nitride sintered body and method for producing the same
JP2892186B2 (en) Method for producing silicon nitride-silicon carbide composite sintered body
JP2687632B2 (en) Method for producing silicon nitride sintered body
JPH09157028A (en) Silicon nitride sintered compact and its production
JPS62875B2 (en)
JP3124867B2 (en) Silicon nitride sintered body and method for producing the same
JPS5855110B2 (en) Manufacturing method of carbide heat-resistant ceramics
JP3667145B2 (en) Silicon nitride sintered body
JP3034099B2 (en) Silicon nitride sintered body and method for producing the same
JP2700786B2 (en) High-temperature high-strength silicon nitride sintered body and method for producing the same
JP3207065B2 (en) Silicon nitride sintered body
JP2694368B2 (en) Method for producing silicon nitride based sintered body
JPH0559073B2 (en)
JPH0840774A (en) Silicon nitride sintered product
JPH10182237A (en) Silicon nitride-base composite sintered compact and its production
JP3236733B2 (en) Silicon nitride sintered body
JP3981510B2 (en) Method for producing silicon nitride sintered body
JP2671539B2 (en) Method for producing silicon nitride sintered body
JP2777051B2 (en) Method for producing silicon nitride based sintered body
JP2946593B2 (en) Silicon nitride sintered body and method for producing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees