JPH04231381A - Silicon nitride-silicon carbide composite sintered body and its production - Google Patents

Silicon nitride-silicon carbide composite sintered body and its production

Info

Publication number
JPH04231381A
JPH04231381A JP2416050A JP41605090A JPH04231381A JP H04231381 A JPH04231381 A JP H04231381A JP 2416050 A JP2416050 A JP 2416050A JP 41605090 A JP41605090 A JP 41605090A JP H04231381 A JPH04231381 A JP H04231381A
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
silicon carbide
silicon
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2416050A
Other languages
Japanese (ja)
Other versions
JP2746760B2 (en
Inventor
Masahiro Sato
政宏 佐藤
Shoji Kosaka
祥二 高坂
Koichi Tanaka
広一 田中
Masaki Terasono
正喜 寺園
Hideki Uchimura
内村 英樹
Masahito Nakanishi
政仁 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2416050A priority Critical patent/JP2746760B2/en
Publication of JPH04231381A publication Critical patent/JPH04231381A/en
Application granted granted Critical
Publication of JP2746760B2 publication Critical patent/JP2746760B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a composite sintered body excellent in room temp. strength, high-temp. strength, and hardness by adding a specified amt. of silicon carbide to silicon nitride containing oxides of group 3a elements so that alpha-Si3N4 remains in the sintered body. CONSTITUTION:A mixture powder is prepared from 90-99.5mol% of silicon nitride containing impurity oxygen and 10-0.5mol% oxides of group 3a elements (e.g. Y2O3). To 100 pts.wt. of this mixture powder, 1-100 pts.wt. of silicon carbide powder is added, mixed and molded into a desired shape by press molding, injection molding, etc. Then a sealing material such as glass is applied on the surface of the molded body. Then >=50MPa pressure is given to the molded body through the glass layer and the body is calcined at 1450-1900 deg.C. Thereby, silicon nitride-silicon carbide composite sintered body having the alpha-Si3N4/beta-Si3N4 ratio from 0.01 to 1 is obtd. This composite sintered body is suitable as a structural material of heat engine, or other heat-resistant material or wear-resistant material.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、窒化珪素および炭化珪
素を主体とする窒化珪素−炭化珪素質複合焼結体および
その製造方法に関するもので、詳細には、高温構造材料
に適し、室温強度、高温強度および硬度に優れた焼結体
およびその製造方法に関する。
[Field of Industrial Application] The present invention relates to a silicon nitride-silicon carbide composite sintered body mainly composed of silicon nitride and silicon carbide, and a method for manufacturing the same. , relates to a sintered body with excellent high-temperature strength and hardness, and a method for producing the same.

【0002】0002

【従来技術】窒化珪素質焼結体は、従来から、強度、高
度、熱的化学的安定性に優れることからエンジニアリン
グセラミックスとして、特に熱機関構造用材料としてそ
の応用が進められている。
BACKGROUND OF THE INVENTION Silicon nitride sintered bodies have been used as engineering ceramics, particularly as structural materials for heat engines, because of their excellent strength, sophistication, and thermal and chemical stability.

【0003】このような窒化珪素質焼結体を得る方法と
しては、窒化珪素粉末に対して周期律表第3a族元素酸
化物等の焼結助剤を添加混合し、成形後、非酸化性雰囲
気中で1500〜2000℃の温度にて焼成することに
より得られている。
[0003] As a method for obtaining such a silicon nitride sintered body, a sintering aid such as an oxide of a group 3a element of the periodic table is added to and mixed with silicon nitride powder, and after molding, a non-oxidizing It is obtained by firing in an atmosphere at a temperature of 1500 to 2000°C.

【0004】ところが、窒化珪素質焼結体は、優れた特
性を有する反面、高温において強度等が低下するという
問題を有している。この高温強度の劣化という問題に対
してこれまで、焼結助剤の改良や焼成雰囲気や焼成パタ
ーン等を変更することにより改善が進められてきたが、
決定的な対策には至っていないのが現状である。
However, although silicon nitride sintered bodies have excellent properties, they have a problem in that their strength etc. decrease at high temperatures. Up until now, efforts have been made to address this problem of deterioration of high-temperature strength by improving sintering aids and changing the firing atmosphere and firing pattern.
At present, no definitive countermeasures have been taken.

【0005】[0005]

【発明が解決しようとする問題点】この強度の劣化の1
つの要因として、その焼成過程において例えばα−Si
3 N4 は1600℃付近でβ─Si3 N4 に相
転位するとともに窒化珪素粒子の粒成長が生じるために
、比較的粒径の大きい針状の結晶が析出しこの大きな粒
子が破壊源となり特性が劣化することが考えられる。こ
のような焼結挙動は窒化珪素の焼結において不可避的な
要因であるために窒化珪素質焼結体自体の強度も室温に
おいて約1000MPa、1400℃で約700MPa
が限界である。
[Problems to be solved by the invention] Part 1 of this deterioration of strength
One factor is that in the firing process, for example, α-Si
3N4 undergoes a phase transition to β-Si3N4 at around 1600℃ and grain growth of silicon nitride particles occurs, so acicular crystals with relatively large grain sizes precipitate, and these large particles become a source of destruction and deteriorate properties. It is possible to do so. Since such sintering behavior is an unavoidable factor in the sintering of silicon nitride, the strength of the silicon nitride sintered body itself is approximately 1000 MPa at room temperature and approximately 700 MPa at 1400°C.
is the limit.

【0006】また、硬度の点からも組織的に上記の理由
から粒径のバラツキ等が生じやすいために高硬度を望む
にも限界があった。
[0006] Also, from the viewpoint of hardness, there is a limit to the desire for high hardness because the grain size tends to vary due to the above-mentioned microstructure.

【0007】かかる現象に対して、窒化珪素に対して炭
化珪素等を添加することにより窒化珪素の粒成長を抑制
しようとする試みもあるが、強度、硬度等の総合的な特
性の見地からは検討されておらず、十分な効果を発揮し
ていないのが現状であった。
[0007] In response to this phenomenon, there have been attempts to suppress the grain growth of silicon nitride by adding silicon carbide or the like to silicon nitride, but from the standpoint of overall properties such as strength and hardness, At present, it has not been studied and is not fully effective.

【0008】[0008]

【問題点を解決するための手段】本発明者等は、上記の
問題に対して詳細に検討を行ったところ、窒化珪素に対
して周期律表第3a族元素酸化物を添加した系に対して
炭化珪素を特定量添加するとともに、焼結過程において
焼成することにより窒化珪素のα−Si3 N4 から
β−Si3 N4 への相転位を抑制しつつ緻密化し、
焼結体中にα−Si3 N4 を残存させることによっ
て、窒化珪素結晶の粒成長を効果的に抑制し微細な構造
からなる強度および硬度に優れた焼結体が得られること
を知見した。
[Means for solving the problem] The present inventors conducted a detailed study on the above problem and found that a system in which an oxide of a group 3a element of the periodic table is added to silicon nitride. By adding a specific amount of silicon carbide and firing in the sintering process, silicon nitride is densified while suppressing the phase transition from α-Si3 N4 to β-Si3 N4,
It has been found that by leaving α-Si3N4 in the sintered body, grain growth of silicon nitride crystals can be effectively suppressed, and a sintered body having a fine structure and excellent strength and hardness can be obtained.

【0009】即ち、本発明は、不純物酸素を含む窒化珪
素を90〜99.5モル%と、周期律表第3a族元素を
酸化物換算で0.5〜10モル%の割合でそれぞれ含有
する窒化珪素成分100重量部に対して、炭化珪素成分
を1〜100重量部の割合で分散含有してなる複合焼結
体であって、焼結体中の窒化珪素結晶におけるα−Si
3 N4 /β−Si3 N4 の割合が0.01〜1
であることを特徴とするものである。
That is, the present invention contains 90 to 99.5 mol % of silicon nitride containing impurity oxygen and 0.5 to 10 mol % of Group 3a elements of the periodic table in terms of oxide. A composite sintered body containing 1 to 100 parts by weight of a silicon carbide component dispersed in 100 parts by weight of a silicon nitride component, wherein α-Si in the silicon nitride crystal in the sintered body is
3N4/β-Si3N4 ratio is 0.01 to 1
It is characterized by:

【0010】また、本発明の複合焼結体の製造方法とし
ては、不純物酸素を含む窒化珪素を90〜99.5モル
%と、周期律表第3a族元素を酸化物換算で0.5〜1
0モル%の割合でそれぞれ含有する窒化珪素成分100
重量部に対して、炭化珪素成分を1〜100重量部の割
合で添加してなる成形体をガラス層を介して50MPa
以上の圧力下で1450〜1900℃の温度で焼成する
ことを特徴とするものである。
[0010] Furthermore, in the method for producing the composite sintered body of the present invention, silicon nitride containing impurity oxygen is contained in an amount of 90 to 99.5 mol %, and a Group 3a element of the periodic table is contained in an amount of 0.5 to 99.5 mol% in terms of oxide. 1
Silicon nitride component 100 each contained in a proportion of 0 mol%
A molded product obtained by adding a silicon carbide component at a ratio of 1 to 100 parts by weight to parts by weight is heated to 50 MPa through a glass layer.
It is characterized by firing at a temperature of 1450 to 1900°C under the above pressure.

【0011】本発明の窒化珪素−炭化珪素質複合焼結体
によれば、組成上、大きく窒化珪素成分と炭化珪素成分
とから構成される。炭化珪素成分は基本的には炭化珪素
粒子のみを意味し、一方窒化珪素成分は、不純物酸素を
含有する窒化珪素を含め、焼結体中の焼結助剤成分を含
む系からなる。
According to the silicon nitride-silicon carbide composite sintered body of the present invention, the composition is mainly composed of a silicon nitride component and a silicon carbide component. The silicon carbide component basically means only silicon carbide particles, while the silicon nitride component consists of a system including silicon nitride containing impurity oxygen and a sintering aid component in the sintered body.

【0012】窒化珪素成分は、不純物酸素を含む窒化珪
素を90〜99.5モル%、特に95〜99モル%、周
期律表第3a族元素を酸化物換算で0.5〜10モル%
、特に1〜5モル%の割合で含有される。周期律表第3
a族元素は酸化物として系全体の焼結性を高める作用を
成すものでその量が0.5モル%より少ないと焼結性が
低下し緻密質な焼結体が得られず特性が劣化し、10モ
ル%を越えると高温強度が劣化する。
The silicon nitride component contains 90 to 99.5 mol%, particularly 95 to 99 mol% of silicon nitride containing impurity oxygen, and 0.5 to 10 mol% of Group 3a elements of the periodic table in terms of oxides.
, especially in a proportion of 1 to 5 mol%. periodic table 3
Group A elements act as oxides to improve the sinterability of the entire system, and if the amount is less than 0.5 mol%, the sinterability decreases, making it impossible to obtain a dense sintered body and deteriorating the properties. However, if it exceeds 10 mol%, high temperature strength deteriorates.

【0013】なお、窒化珪素成分中、窒化珪素中に含有
される不純物酸素も周期律表第3a族元素と同様に例え
ばSiO2 として焼結性の向上に寄与するもので、よ
り望ましくは周期律表第3a族元素の酸化物換算量(R
E2O3 )と不純物酸素のSiO2 換算量とのSi
O2 /RE2 O3 で表されるモル比が0.5〜1
0、特に1〜4であることが望ましい。
[0013] In the silicon nitride component, the impurity oxygen contained in the silicon nitride also contributes to improving the sinterability as, for example, SiO2, like the elements of group 3a of the periodic table, and more preferably Oxide equivalent amount of Group 3a elements (R
E2O3 ) and the SiO2 equivalent amount of impurity oxygen
The molar ratio expressed as O2 /RE2 O3 is 0.5 to 1
It is preferably 0, especially 1 to 4.

【0014】本発明によれば、かかる窒化珪素成分10
0重量部に対して炭化珪素成分を1〜100重量部の割
合で添加する。この炭化珪素成分量を上記の範囲に限定
したのは、炭化珪素成分が1重量部より少ないと、炭化
珪素添加により窒化珪素結晶の粒成長抑制効果がなく、
窒化珪素のα−Si3 N4からβ−Si3 N4 へ
の転位が進行し高強度、高硬度が得られず、100重量
部を越えると焼結性が低下し強度が劣化するためである
。なお、特性の点からは炭化珪素成分量は上記窒化珪素
成分100重量部に対して30〜70重量部であること
が望ましい。
According to the present invention, such silicon nitride component 10
The silicon carbide component is added at a ratio of 1 to 100 parts by weight relative to 0 parts by weight. The reason for limiting the amount of silicon carbide component to the above range is that if the silicon carbide component is less than 1 part by weight, the addition of silicon carbide will not have the effect of suppressing grain growth of silicon nitride crystals.
This is because dislocation of silicon nitride from α-Si3 N4 to β-Si3 N4 progresses, making it impossible to obtain high strength and high hardness, and if it exceeds 100 parts by weight, sinterability decreases and strength deteriorates. From the viewpoint of properties, the amount of silicon carbide component is preferably 30 to 70 parts by weight based on 100 parts by weight of the silicon nitride component.

【0015】本発明の複合焼結体によれば、窒化珪素結
晶がα−Si3 N4 とβ−Si3 N4 が焼結体
中に共存し、且つα−Si3 N4 /β−Si3 N
4 の比率が0.01〜1、特に0.05〜0.5であ
ることが重要である。これは、上記比率が0.01より
小さいとα−Si3 N4 からβ−Si3 N4 へ
の転位がほぼ完全に進行したものと考えられるために窒
化珪素結晶の平均粒径が大きくなるとともに異常粒も発
生しやすくなるために所望の高強度、高硬度が得られな
いからであり、逆に1を越えると焼結が進行していない
ことを意味し、焼結体の密度が低く強度、硬度とも大き
く低下する。
According to the composite sintered body of the present invention, in the silicon nitride crystal, α-Si3 N4 and β-Si3 N4 coexist in the sintered body, and α-Si3 N4 /β-Si3 N
It is important that the ratio of 4 is between 0.01 and 1, especially between 0.05 and 0.5. This is because when the above ratio is smaller than 0.01, the dislocation from α-Si3 N4 to β-Si3 N4 is considered to have progressed almost completely, so the average grain size of silicon nitride crystals increases and abnormal grains also occur. This is because the desired high strength and hardness cannot be obtained because the sintered body tends to have a low density and hardness. Significant decline.

【0016】また、窒化珪素結晶および炭化珪素結晶は
上記の見地から、その平均粒径(短径)が1μm 以下
、特に0.8μm 以下、長径/短径で表されるアスペ
クト比が平均で2〜10、特に3〜9の粒子形状で存在
し、炭化珪素結晶は、それ自体粒状形状として、前記窒
化珪素結晶の粒界あるいは窒化珪素結晶粒内に平均粒径
1μm 以下、特に0.8μm 以下の粒子として存在
することが望ましい。なお、この炭化珪素結晶はほとん
どがβ型であるが、場合によってはα型が存在してもよ
い。
Furthermore, from the above point of view, silicon nitride crystals and silicon carbide crystals have an average grain size (minor diameter) of 1 μm or less, particularly 0.8 μm or less, and an average aspect ratio expressed by major axis/breadth axis of 2. ~10, especially 3 to 9 grains, and the silicon carbide crystal itself exists in a grain shape at the grain boundary of the silicon nitride crystal or within the silicon nitride crystal grain with an average grain size of 1 μm or less, particularly 0.8 μm or less. It is desirable that the particles exist as particles. Note that although most of this silicon carbide crystal is of the β type, the α type may exist in some cases.

【0017】このように窒化珪素結晶および炭化珪素結
晶の形状を上記のように限定したのは、窒化珪素結晶が
1μm より大きいと、これが焼結体の破壊源となりや
すく、強度の劣化の原因となり、アスペクト比が2より
小さいと粒子同士の絡み合いが小さくなるために高温に
おいて粒子が移動し易くなりクリープ特性が劣化するた
めである。一方、炭化珪素結晶の粒径が1μm より大
きいと、焼結性が劣化するとともに窒化珪素結晶の針状
化が阻害され特性が劣化する。
The reason why the shapes of the silicon nitride crystal and silicon carbide crystal are limited as described above is that if the silicon nitride crystal is larger than 1 μm, this easily becomes a source of destruction of the sintered body and causes deterioration of the strength. This is because if the aspect ratio is smaller than 2, the particles become less entangled with each other, making it easier for the particles to move at high temperatures and deteriorating the creep characteristics. On the other hand, if the grain size of the silicon carbide crystal is larger than 1 μm, the sinterability deteriorates and the acicular formation of the silicon nitride crystal is inhibited, resulting in deterioration of the characteristics.

【0018】また、粒界を構成する成分として、例えば
従来から焼結性を高める成分としてAl2 O3 、C
aO、MgO等を用いることが知られているが、これら
の酸化物が粒界に、あるいは一部窒化珪素結晶に固溶し
て存在すると粒界の融点が低くなるとともに高温での粘
性も低下することから高温強度とともにクリープ特性も
劣化する。よって、Al、Ca、Mgの金属元素は酸化
物換算で全量中に0.5重量%以下、特に0.3重量%
以下になるように制御することが望ましい。
[0018] In addition, as a component constituting grain boundaries, for example, Al2 O3, C
It is known to use aO, MgO, etc., but if these oxides exist at the grain boundaries or as a solid solution in some silicon nitride crystals, the melting point of the grain boundaries will lower and the viscosity at high temperatures will also decrease. As a result, not only the high-temperature strength but also the creep properties deteriorate. Therefore, the metal elements such as Al, Ca, and Mg should be 0.5% by weight or less, especially 0.3% by weight in the total amount in terms of oxides.
It is desirable to control it so that it is as follows.

【0019】なお、本発明において用いられる周期律表
第3a族元素としては、Y、Sc、Er、Yb、Ho、
Dyが挙げられるが、これらの中でもYは、焼結体中に
おいて凝集し易く異常粒成長を生じやすいためにEr、
Ybが特に望ましい。
[0019] The elements of Group 3a of the periodic table used in the present invention include Y, Sc, Er, Yb, Ho,
Among them, Y is easily agglomerated in the sintered body and tends to cause abnormal grain growth, so Er,
Yb is particularly preferred.

【0020】次に、本発明の窒化珪素−炭化珪素質複合
焼結体の製造方法について説明すると、まず、出発原料
として、窒化珪素粉末、炭化珪素粉末、周期律表第3a
族元素酸化物、場合により酸化珪素粉末を使用する。
Next, the method for producing a silicon nitride-silicon carbide composite sintered body according to the present invention will be explained. First, silicon nitride powder, silicon carbide powder, and a material from periodic table 3a are used as starting materials.
Group element oxides, optionally silicon oxide powders are used.

【0021】窒化珪素粉末としては、炭化珪素を系中に
含むために焼結性が低いためにα−Si3 N4 が9
5%以上の割合で存在することがよく、平均粒径1μm
 以下、不純物酸素量2重量%以下のものが好適に使用
される。また、炭化珪素粉末としてはα型、β型のいず
れでも使用でき、平均粒径1μm 以下、不純物酸素量
2重量%以下の粉末を用いる。これらの窒化珪素粉末お
よび炭化珪素粉末は、それぞれ個別の粉末として存在す
る他、窒化珪素と炭化珪素を所定の割合で複合化した粉
末を用いることもできる。
The silicon nitride powder contains silicon carbide and has low sinterability, so α-Si3 N4 is
Often present in a proportion of 5% or more, with an average particle size of 1 μm
Hereinafter, those having an impurity oxygen content of 2% by weight or less are preferably used. Further, as the silicon carbide powder, either α type or β type can be used, and a powder having an average particle size of 1 μm or less and an impurity oxygen content of 2% by weight or less is used. These silicon nitride powder and silicon carbide powder may be present as individual powders, or may be a composite powder of silicon nitride and silicon carbide in a predetermined ratio.

【0022】次に、上記粉末を用いて不純物酸素を含む
窒化珪素を92〜99.5モル%と、周期律表第3a族
元素酸化物を0.5〜10モル%の割合で含有する窒化
珪素成分100重量部に対して炭化珪素成分を1〜10
0重量部となるように秤量後、十分に混合した後に、周
知の成形方法、例えば、プレス成形、射出成形、押し出
し成形、鋳込み成形、冷間静水圧成形等の成形法により
所望の形状に成形する。なお、上記の過程において成形
体中に含まれるAl、Mg、Caの各元素が酸化物換算
量での合量が0.5重量%以下になるように各工程から
のこれらの元素の混入を避ける。例えば、これらの元素
量の小さい原料を用いたり、混合に際し例えばボールミ
ル混合等において用いるボールの材質を考慮し、混合か
らの混入を制限する等の配慮が必要である。
Next, using the above powder, nitride containing 92 to 99.5 mol % of silicon nitride containing impurity oxygen and 0.5 to 10 mol % of oxide of Group 3a element of the periodic table was prepared. 1 to 10 parts of silicon carbide component per 100 parts by weight of silicon component
After weighing to give 0 parts by weight and thoroughly mixing, mold into a desired shape by a well-known molding method such as press molding, injection molding, extrusion molding, cast molding, cold isostatic pressing, etc. do. In addition, in the above process, the elements Al, Mg, and Ca contained in the molded product are mixed in from each step so that the total amount in terms of oxide amount is 0.5% by weight or less. avoid. For example, it is necessary to use raw materials with a small amount of these elements, or to take into consideration the material of the balls used in, for example, ball mill mixing, to limit contamination from mixing.

【0023】次に、上記の方法により得られた成形体を
焼成温度1450〜1900℃の温度で焼成する。また
、焼成手段としては、常圧焼成、ホットプレス焼成、窒
素ガス圧力焼成(QPS焼成)、熱間静水圧焼成(HI
P焼成)等が採用され、場合によってはこれらを組合せ
て焼成することもできるが、α−Si3 N4 からβ
−Si3 N4 への転位を抑制しつつ焼成する最適な
方法は、上記のようにして得られた成形体を表面にガラ
ス等からなるシール材を塗布形成し高温高圧下で焼成す
る、いわゆるシールHIP法が採用される。
Next, the molded body obtained by the above method is fired at a firing temperature of 1450 to 1900°C. In addition, firing methods include normal pressure firing, hot press firing, nitrogen gas pressure firing (QPS firing), hot isostatic pressure firing (HI
P firing) etc. are adopted, and in some cases these can be combined for firing, but from α-Si3 N4 to β
The optimal method for firing while suppressing the dislocation to -Si3N4 is the so-called seal HIP, in which the molded body obtained as described above is coated with a sealing material made of glass or the like on the surface and then fired under high temperature and high pressure. law is adopted.

【0024】この具体的な方法としては、まず焼成に先
立ち前述した方法で得た成形体に対して、焼成工程にお
いてシール材であるガラス等との反応防止することを目
的としてBN粉末等のガラスと濡れ性の悪い粉末をスラ
リー化して成形体に塗布するか、または上記スラリーを
スプレー塗布する。
[0024] In this specific method, first, prior to firing, a glass such as BN powder is applied to the molded body obtained by the above-mentioned method in order to prevent reaction with the sealing material such as glass during the firing process. A powder with poor wettability is made into a slurry and applied to the molded body, or the slurry is applied by spraying.

【0025】次に、BNが塗布された成形体に対して、
焼成時にシールを形成するガラス粉末をその表面に塗布
するかあるいは上記成形体をガラス製カプセルに封入す
る。また、他の方法として、前記成形体を内部にガラス
粉末が充填された容器内に埋める。
Next, for the molded body coated with BN,
Glass powder that forms a seal upon firing is applied to its surface, or the molded body is encapsulated in a glass capsule. Another method is to bury the molded body in a container filled with glass powder.

【0026】その後、HIP法により1450〜190
0℃の温度で、50MPa以上の圧力下でHIP焼成す
る。焼成は、まず成形体表面に存在するガラスの軟化点
以上で、該温度における窒化珪素の分解平衡圧と同等も
しくはそれより0.01〜0.2MPa程度高い窒素ガ
スを導入しつつ、前記ガラスを軟化させ成形体の表面に
ガラスによる不透過性膜を形成する。ガス不透過性膜が
完全に形成された後、炉内の圧力を十分に緻密化しうる
条件まで、昇温昇圧する。この時の圧力媒体は、窒素、
アルゴン等の不活性ガスを用いる。その後、焼成が十分
に進行した後に温度、圧力を下げ焼成を終了する。
[0026] After that, 1450 to 190
HIP firing is performed at a temperature of 0° C. and a pressure of 50 MPa or more. Firing is performed by first heating the glass while introducing nitrogen gas at a temperature equal to or higher than the decomposition equilibrium pressure of silicon nitride at a temperature equal to or higher than the softening point of the glass existing on the surface of the molded body by about 0.01 to 0.2 MPa. The glass is softened to form an impermeable film on the surface of the molded product. After the gas-impermeable membrane is completely formed, the temperature and pressure within the furnace are increased to a level that allows for sufficient densification. The pressure medium at this time is nitrogen,
Use an inert gas such as argon. Thereafter, after the firing has sufficiently progressed, the temperature and pressure are lowered and the firing is completed.

【0027】なお、焼成時の温度を1450〜1900
℃に限定したのは、焼成温度が1900℃より高いと焼
結体中において窒化珪素のα型からβ型への転位が進行
するとともに結晶が粒成長しその粒径が大きくなり、こ
れにより強度が劣化するためである。
[0027] The temperature during firing is 1450 to 1900.
The reason for limiting the temperature to 1900°C is that if the firing temperature is higher than 1900°C, the dislocation of silicon nitride from α type to β type will progress in the sintered body, and the crystal grains will grow and the grain size will increase, which will reduce the strength. This is because it deteriorates.

【0028】また、得られた焼結体に対しては、130
0〜1700℃の非酸化性雰囲気中で熱処理することに
より焼結体の粒界を結晶化させ、例えばSi3 N4 
−RE2 O3 (RE:周期律表第3a族元素)−S
iO2 系の周知の結晶相を析出させることにより高温
特性の向上を図ることができる。
[0028] Also, for the obtained sintered body, 130
The grain boundaries of the sintered body are crystallized by heat treatment in a non-oxidizing atmosphere at 0 to 1700°C, for example, Si3N4
-RE2 O3 (RE: Group 3a element of the periodic table) -S
By precipitating the well-known iO2-based crystal phase, high-temperature properties can be improved.

【0029】[0029]

【実施例】原料粉末として平均粒径0.3μm 、α−
Si3 N4 含有率98%、酸素含有量1.3重量%
の窒化珪素粉末と、平均粒径が0.3μm の炭化珪素
粉末、並びに平均粒径が0.5μm のY2 O3 、
Sc2 O3 、Er2 O3 、Yb2 O3 、H
o2 O3 、Dy2 O3 の各粉末および酸化珪素
粉末を用いて、これらの組成が表1の割合になるように
秤量混合し、これをバインダーとともにメタノール中で
混合粉砕した。得られたスラリーを乾燥造粒した後、1
ton/cm2 の圧力でプレス成形した。
[Example] As raw material powder, the average particle size is 0.3 μm, α-
Si3 N4 content 98%, oxygen content 1.3% by weight
silicon nitride powder, silicon carbide powder with an average particle size of 0.3 μm, and Y2O3 with an average particle size of 0.5 μm,
Sc2 O3 , Er2 O3 , Yb2 O3 , H
O2 O3, Dy2 O3 powders, and silicon oxide powder were weighed and mixed so that their compositions would be in the proportions shown in Table 1, and mixed and ground together with a binder in methanol. After drying and granulating the obtained slurry, 1
Press molding was performed at a pressure of ton/cm2.

【0030】得られた成形体に対してBN粉末(粒径1
〜5μm )のペーストを1〜10mmの厚みで塗布後
、SiO2 を主成分とするガラスを1〜10mmの厚
みで塗布した。この成形体を1750℃で、196MP
aの窒素加圧雰囲気下で1時間熱間静水圧焼成した。な
お、表1中試料番号14については、焼成温度1950
℃に上げて焼成した。
[0030] BN powder (particle size 1
After coating the paste with a thickness of 1 to 10 mm (~5 μm), glass containing SiO2 as a main component was coated with a thickness of 1 to 10 mm. This molded body was heated to 196MP at 1750°C.
Hot isostatic firing was carried out for 1 hour in a nitrogen pressurized atmosphere (a). For sample number 14 in Table 1, the firing temperature was 1950.
It was heated to ℃ and fired.

【0031】得られた焼結体に対して、アルキメデス法
により相対密度を、JISR1601に基づき室温およ
び1400℃における4点曲げ抗折強度を、さらに電子
顕微鏡写真から窒化珪素結晶および炭化珪素結晶の平均
粒径および平均アスペクト比を測定した。また、荷重2
0kg下におけるビッカース硬度を測定した。
For the obtained sintered body, the relative density was determined by the Archimedes method, the 4-point bending strength at room temperature and 1400° C. was determined based on JISR1601, and the average of silicon nitride crystals and silicon carbide crystals was determined from electron micrographs. Particle size and average aspect ratio were measured. Also, load 2
Vickers hardness under 0 kg was measured.

【0032】なお、焼結体に対してはX線回折曲線から
β−Si3 N4 の(101)、(210)の強度を
L(101)、L(210)、α−Si3 N4 の(
102)、(210)の各結晶相のピーク強度をl(1
02)、l(210)とした時に、下記式 α/β=Σ[L(101) +L(210)] /Σ[
l(102)+l(210)] にてα/β比率を求め
た。結果は表2に示した。
For the sintered body, the (101) and (210) intensities of β-Si3 N4 are determined from the X-ray diffraction curve by L(101), L(210), and (
The peak intensity of each crystal phase of (102) and (210) is expressed as l(1
02), l(210), the following formula α/β=Σ[L(101) +L(210)]/Σ[
l(102)+l(210)] The α/β ratio was determined. The results are shown in Table 2.

【0033】[0033]

【表1】[Table 1]

【0034】[0034]

【表2】[Table 2]

【0035】表1および表2の結果によれば、焼結体中
にα−Si3 N4 を全く残存させない試料No,1
4では、1400℃において63MPaの強度しか得ら
れないが、本発明により焼成温度を下げるとともにSi
Cを適量添加することによりα−Si3 N4 を残存
させることにより、Si3 N4 およびSiCを微細
な粒子として存在させることができ、1400℃の強度
も800MPa以上、硬度19GPa以上が達成された
According to the results in Tables 1 and 2, sample No. 1 in which no α-Si3 N4 remains in the sintered body
4, only a strength of 63 MPa can be obtained at 1400°C, but the present invention lowers the firing temperature and increases the strength of Si.
By adding an appropriate amount of C and allowing α-Si3N4 to remain, Si3N4 and SiC can be present as fine particles, and a strength at 1400°C of 800 MPa or more and a hardness of 19 GPa or more were achieved.

【0036】しかし、窒化珪素成分中の周期律表第3a
族元素量が10モル%を越える試料では、高温特性の劣
化が大きく、0.5モル%未満では焼結性が大きく低下
し、高密度の焼結体が得られなかった。
However, the periodic table 3a in the silicon nitride component
Samples in which the group element content exceeds 10 mol % exhibit significant deterioration in high-temperature properties, while those in which the group element content is less than 0.5 mol % greatly reduce sinterability, making it impossible to obtain a high-density sintered body.

【0037】[0037]

【発明の効果】以上詳述したように、本発明によれば、
周期律表第3a族元素酸化物を含む窒化珪素に対して炭
化珪素を添加し、焼結体中にα−Si3 N4 を残存
させることにより、窒化珪素結晶および炭化珪素結晶の
それぞれを微細な粒子として存在させ、室温および14
00℃の高温において優れた強度を有するとともに、高
い硬度を付与することができる。これにより、この複合
焼結体のガスタービンやターボロータ等の熱機関構造用
として、またはその他の耐熱材料、耐摩耗材料として実
用化を推進するとともに、その用途を拡大することがで
きる。
[Effects of the Invention] As detailed above, according to the present invention,
By adding silicon carbide to silicon nitride containing an oxide of a Group 3a element of the periodic table and leaving α-Si3 N4 in the sintered body, silicon nitride crystals and silicon carbide crystals are each made into fine particles. at room temperature and 14
It has excellent strength at a high temperature of 00°C and can be imparted with high hardness. Thereby, it is possible to promote the practical use of this composite sintered body for heat engine structures such as gas turbines and turbo rotors, or as other heat-resistant materials and wear-resistant materials, and to expand its uses.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  不純物酸素を含む窒化珪素を90〜9
9.5モル%と、周期律表第3a族元素を酸化物換算で
0.5〜10モル%の割合でそれぞれ含有する窒化珪素
成分100重量部に対して、炭化珪素成分を1〜100
重量部の割合で分散含有してなる複合焼結体であって、
焼結体中の窒化珪素結晶におけるα−Si3 N4 /
β−Si3 N4 の割合が0.01〜1であることを
特徴とする窒化珪素−炭化珪素質複合焼結体。
[Claim 1] Silicon nitride containing impurity oxygen is 90 to 9
For 100 parts by weight of a silicon nitride component containing 9.5 mol% and a Group 3a element of the periodic table at a ratio of 0.5 to 10 mol% in terms of oxide, 1 to 100 parts by weight of a silicon carbide component.
A composite sintered body containing dispersed parts in parts by weight,
α-Si3 N4 / in silicon nitride crystal in sintered body
A silicon nitride-silicon carbide composite sintered body, characterized in that the proportion of β-Si3 N4 is 0.01 to 1.
【請求項2】  窒化珪素結晶が平均粒径が1μm 以
下、平均アスペクト比が2〜10の粒子として、前記炭
化珪素が平均粒径1μm 以下の粒子として存在する請
求項1記載の窒化珪素−炭化珪素質複合焼結体。
2. The silicon nitride-carbide according to claim 1, wherein the silicon nitride crystals are present as particles with an average grain size of 1 μm or less and an average aspect ratio of 2 to 10, and the silicon carbide is present as particles with an average grain size of 1 μm or less. Silicon composite sintered body.
【請求項3】  不純物酸素を含む窒化珪素を90〜9
9.5モル%と、周期律表第3a族元素を酸化物換算で
0.5〜10モル%の割合でそれぞれ含有する窒化珪素
成分100重量部に対して、炭化珪素成分を1〜100
重量部の割合で分散含有してなる成形体をガラス層を介
して50MPa以上の圧力下で1450〜1900℃の
温度で焼成することを特徴とする窒化珪素−炭化珪素質
複合焼結体の製造方法。
[Claim 3] Silicon nitride containing impurity oxygen is 90 to 9
For 100 parts by weight of a silicon nitride component containing 9.5 mol% and a Group 3a element of the periodic table at a ratio of 0.5 to 10 mol% in terms of oxide, 1 to 100 parts by weight of a silicon carbide component.
Manufacture of a silicon nitride-silicon carbide composite sintered body, characterized in that a molded body containing dispersed particles in parts by weight is fired at a temperature of 1450 to 1900°C under a pressure of 50 MPa or more through a glass layer. Method.
JP2416050A 1990-12-27 1990-12-27 Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same Expired - Fee Related JP2746760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2416050A JP2746760B2 (en) 1990-12-27 1990-12-27 Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2416050A JP2746760B2 (en) 1990-12-27 1990-12-27 Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH04231381A true JPH04231381A (en) 1992-08-20
JP2746760B2 JP2746760B2 (en) 1998-05-06

Family

ID=18524303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2416050A Expired - Fee Related JP2746760B2 (en) 1990-12-27 1990-12-27 Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2746760B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5874570A (en) * 1981-10-23 1983-05-06 エレクトロシユメルツヴエルク・ケンプテン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Substantially pore-free formed body comprising polycrystal silicon nitride and silicon carbide and manufacture of same by equilibrium thermal compression
JPH01275470A (en) * 1988-04-28 1989-11-06 Mitsubishi Gas Chem Co Inc Production of silicon nitride-silicon carbide combined sintered body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5874570A (en) * 1981-10-23 1983-05-06 エレクトロシユメルツヴエルク・ケンプテン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Substantially pore-free formed body comprising polycrystal silicon nitride and silicon carbide and manufacture of same by equilibrium thermal compression
JPH01275470A (en) * 1988-04-28 1989-11-06 Mitsubishi Gas Chem Co Inc Production of silicon nitride-silicon carbide combined sintered body

Also Published As

Publication number Publication date
JP2746760B2 (en) 1998-05-06

Similar Documents

Publication Publication Date Title
JP2842723B2 (en) Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same
JPH04231381A (en) Silicon nitride-silicon carbide composite sintered body and its production
JP2742619B2 (en) Silicon nitride sintered body
JPH0259471A (en) Silicon nitride-based sintered body having high strength at high temperature and production thereof
JP2746761B2 (en) Method for producing silicon nitride-silicon carbide composite sintered body
JP2687632B2 (en) Method for producing silicon nitride sintered body
JPH1121175A (en) Silicon nitride sintered compact
JP2892186B2 (en) Method for producing silicon nitride-silicon carbide composite sintered body
JP2694368B2 (en) Method for producing silicon nitride based sintered body
JPH035371A (en) Production of si3n4 sintered compact
JPH05139840A (en) Siliceous nitride sintered compact and its production
JPH01145380A (en) Production of silicon nitride sintered form
JP3667145B2 (en) Silicon nitride sintered body
JP2671539B2 (en) Method for producing silicon nitride sintered body
JPH0559073B2 (en)
JPH10182237A (en) Silicon nitride-base composite sintered compact and its production
JPH03170374A (en) Sintered material of silicon nitride
JPH0316983A (en) Ceramic thermal insulating member and production thereof
JP2687633B2 (en) Method for producing silicon nitride sintered body
JP2783702B2 (en) Silicon nitride sintered body
JPH05170542A (en) Silicon nitride-silicon carbide composite sintered product
JPH05178667A (en) Production of silicon nitride-silicon carbide composite sintered body
JPH0840774A (en) Silicon nitride sintered product
JPH04254472A (en) Silicon nitride sintered body and production thereof
JP2000247749A (en) Silicon nitride-silicon carbide-based composite sintered compact and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees