JPH0559073B2 - - Google Patents

Info

Publication number
JPH0559073B2
JPH0559073B2 JP1052781A JP5278189A JPH0559073B2 JP H0559073 B2 JPH0559073 B2 JP H0559073B2 JP 1052781 A JP1052781 A JP 1052781A JP 5278189 A JP5278189 A JP 5278189A JP H0559073 B2 JPH0559073 B2 JP H0559073B2
Authority
JP
Japan
Prior art keywords
sialon
powder
sintered body
silicon nitride
based sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1052781A
Other languages
Japanese (ja)
Other versions
JPH02233560A (en
Inventor
Tetsuo Nakayasu
Tsuneo Shimamura
Yasuhiko Kamitoku
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP1052781A priority Critical patent/JPH02233560A/en
Publication of JPH02233560A publication Critical patent/JPH02233560A/en
Publication of JPH0559073B2 publication Critical patent/JPH0559073B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/597Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon oxynitride, e.g. SIALONS

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、高温高強度、高硬度及び高靱性を有
する各種エンジニアリングセラミツクスを製造す
るために有用な高強度サイアロン基焼結体に関す
る。 (従来技術及びその問題点) Yα−サイアロンは、α型窒化珪素のSi位置に
Aが、N位置にOが置換固溶すると同時に、Y
が侵入型固溶した物質であり、 式Yx(Si,A)12(O,N)16 〔〕 (式中、xは0<x≦2を満足する数である。) で表される。このYα−サイアロンは、高硬度、
低熱膨張率、優れた耐蝕性等のエンジニアリング
セラミツクスとしての特性を有している。 しかし、Yα−サイアロン相単体の焼結体は、
結晶形が粒状であるため、エンジニアリングセラ
ミツクスとしての強度、破壊靱性等の特性が充分
ではない。そこで、この欠点を改良するために、
特開昭58−185484号公報には、Yα−サイアロン
結晶と、β型窒化珪素のSi位置にAが、N位置
にOが置換固溶した 式Si6-zzOzN8-z 〔〕 (式中、zは0<z≦4.2を満足する数であ
る。) で表される針状のβ−サイアロン結晶とを複合化
させたサイアロン基焼結体が提案されている。 しかしながら、このサイアロン基焼結体の機械
的特性も実用上十分なものではない。 (発明の目的) 本発明の目的は、前記問題点を解決し、高温強
度及び靱性の高い新規なサイアロン基焼結体を提
供することである。 (発明の要旨) 本発明によれば、α−窒化珪素の結晶、前記式
〔〕で表されるYα−サイアロンの結晶、前記式
〔〕で表されるβ−サイアロンの結晶及びYを
含むガラス相からなる高強度サイアロン基焼結体
及びその製造法が提供される。 (発明の具体的説明) 本発明のサイアロン基焼結体における各相の含
有割合は、通常以下に示す範囲である。 0.1<α−窒化珪素の結晶相<40重量% 5<Yα−サイアロンの結晶相<50重量% 10<β−サイアロンの結晶相<95重量% 1<Yを含むガラス相<20重量% α−窒化珪素の結晶相の割合が前記範囲よりも
少ない場合には、得られるサイアロン基焼結体の
機械的強度の向上効果が得られず、また、前記範
囲よりも多い場合には焼結が不十分であり、強度
が低下するので好ましくない。 また、本発明のサイアロン基焼結体において、
α−窒化珪素の結晶の長径が0.01〜2μm、Yα−
サイアロンの結晶の長径が0.01〜10μm、β−サ
イアロンの結晶の長径が1〜50μmであることが
好ましい。 本発明のサイアロン基焼結体中には、Yα−サ
イアロンとα−窒化珪素との反応によつて生成す
ると考えられる、β−サイアロンの結晶、Yを含
むガラス相及び相転移を起こしていないα−窒化
珪素の微粒結晶が、原料のYα−サイアロンの組
成より式〔〕のxが若干低いYα−サイアロン
の結晶と共に存在する。 この様なα−窒化珪素の微粒結晶により強度特
性が向上し、また焼結体中には組成、結晶形及び
熱膨張率の異なる4種類の相が存在し、焼結後に
焼結体中に微小歪に基づく微小クラツクが発生す
ることにより、得られるサイアロン基焼結体の破
壊靱性等の機械的特性が向上するもとの考えられ
る。 本発明のサイアロン基焼結体を製造する方法と
しては、前記構造の焼結体が得られれば、どのよ
うな方法を用いてもよい。 以下に、本発明のサイアロン基焼結体を製造す
る方法の一例を示す。 本発明のサイアロン基焼結体は、前記式〔〕
で表されるYα−サイアロンを主たる相とし、か
つ式〔〕で規定される理論酸素量に対して8重
量%以下の過剰酸素を含有するYα−サイアロン
粉末50重量%以下と、残部がα−窒化珪素粉末か
らなる原料粉末を、最高温度1600〜2200℃の範囲
に加熱、焼結することにより得られる。 Yα−サイアロン粉末としては、式〔〕で表
されるYα−サイアロンを主たる相とする粉末で
あればいかなる粉末でも良いが、本出願人が先に
提案した特開昭62−223009号の発明に従つて調製
した粉末が好適である。この提案の方法は、 (a) 非晶質窒化珪素粉末、 (b) 金属アルミニウム又は窒化アルミニウム、 (c) Yα−サイアロンの格子間に侵入型固溶する
Yの酸化物を生成する金属塩類、及び必要に応
じて、 (d) アルミニウム又は珪素の酸素含有化合物 を所望のYα−サイアロン組成になるように混合
し、混合物を窒素含有雰囲気下で1300〜1900℃の
範囲の温度に加熱することにより、Yα−サイア
ロン粉末を製造する方法である。この方法で得ら
れるYα−サイアロン粉末は、一次粒子の大きさ
が0.2〜2μmの微細かつ均一粒度の粉末であつて、
遊離炭素及び金属不純物を殆ど含有しないので、
気孔及び異常粒成長のない焼結体を与えることが
できる。 Yα−サイアロン粉末の焼結体を高めると同時
に高強度のサイアロン基焼結体を得るためには、
焼結原料のYα−サイアロン粉末が式〔〕で規
定される論理酸素量に対して8重量%以下の過剰
酸素を含有していることが必要である。 Yα−サイアロン粉末に過剰の酸素を含有させ
る方法としては、例えば、Yα−サイアロン粉末
の調製段階で非晶質窒化珪素に珪素又はアルミニ
ウムの酸素含有化合物を過剰量添加する方法、
Yα−サイアロン粉末を酸素含有雰囲気中で加熱
する方法が採用される。後者の一例としては、
Yα−サイアロン粉末を酸素含有雰囲気中で800〜
1200℃の範囲の温度に加熱して、理論量より過剰
の酸素をYα−サイアロン粉末に含有させる方法
が挙げられる。加熱時間は通常0.5〜5時間であ
る。この処理は、例えばYα−サイアロン粉末を
保持板上に薄く乗せて酸素含有雰囲気中に放置す
る方法、α−サイアロン粉末を酸素含有雰囲気中
で流動化させる方法によつて行うことができる。 過剰酸素量は8重量%以下、好ましくは1〜
6.5重量%、特に好ましくは2〜4重量%である。
過剰酸素量が過度に多いと焼結体中に融点の低い
相が多く残留し、高温での機械特性が損なわれる
ようになる。 α−窒化珪素粉末としては、焼結性の面で1μm
以下の粒径を有していることが好ましく、さらに
得られる焼結体の高温での強度、耐蝕性、耐酸化
性を損なう不純物の含有量が1重量%以下である
ことが好ましい。 Yα−サイアロン粉末とα−窒化珪素粉末との
混合物中のα−窒化珪素粉末の配合割合は50重量
%以上、好ましくは60〜95重量%、さらに好まし
くは70〜90重量%である。上記範囲内において窒
化珪素粉末の配合割合を高めるに従つて生成サイ
アロン基焼結体中のα−窒化珪素相の割合が増大
する。α−窒化珪素粉末の配合割合が95重量%を
超えると、混合物の焼結性が低下し焼結体の緻密
化が進行しなくなる。 Yα−サイアロン粉末とα−窒化珪素粉末との
混合方法については特に制限はなく、それ自体公
知の方法、例えば、両者を乾式混合する方法、不
活性液体中で両者を湿式混合した後不活性液体を
除去する方法等を適宜採用することができる。混
合装置としては型混合機、ボールミル等が便利
に使用される。 混合粉末の加熱焼結は、例えば、混合粉末をそ
のまま乾式あるいは湿式で所定の形状に成形し、
湿式で成形した場合は乾燥処理を行つた後に、常
圧又は加圧下に窒素含有ガス雰囲気下で焼結する
方法、原料粉末を所定の形状のダイスに充填し、
ホツトプレスする方法等を採用することができ
る。また上記方法で得られた焼結体をさらに熱間
静水圧プレスすることにより、焼結体の物理的特
性を一層高めることもできる。 常圧又は加圧焼結に先立つ混合粉末の成形は公
知の方法、例えばラバープレス法、一軸成形法、
鋳込成形法、射出成形法、爆発圧縮成形法等によ
つて行うことができる。 焼結温度は通常1600〜2200℃であり、焼結時間
は通常0.5〜10時間である。焼結温度が過度に低
いと焼結が進行せず、また焼結温度が過度に高い
と焼結体に熱分解による組成変化が生じるように
なる。 (発明の効果) 本発明で得られるサイアロン基焼結体は、従来
のサイアロン基焼結体に比較して、高温強度、破
壊靱性等の機械的特性が向上しているので、信頼
性の高い構造材料、特に切削チツプ、ロール、ダ
イス、ノズル等の耐摩耗、耐熱材料として好適に
使用することができる。 (実施例) 以下に実施例及び比較例を示す。 実施例1〜6及び比較例1 非晶質窒化珪素粉末479.2g、Y2O3粉末59.4g及
び金属A粉末63gを窒素ガス雰囲気下に振動ミ
ルで1時間混合した。混合粉末をカーボン製ルツ
ボに充填して抵抗加熱式高温炉にセツトし、窒素
ガス雰囲気下、室温から1200℃迄を1時間、1200
℃から1400℃迄を4時間、さらに1400℃から1600
℃迄を2時間の昇温スケジユールで加熱すること
により結晶化させ、Yα−サイアロン粉末を得た。
得られたYα−サイアロン粉末の特性を以下に示
す。 理論組成 Y0.5Si9.75Al2.25O0.75N15.25 比表面積 2.5m2/g 粒 形 等軸結晶 生成相 α相≧90% 生成物組成(wt%) Y:7.2 Si:44.2 Al:9.8 O:4.9 N:33.9 過剰酸素量 2.9重量% 上記Yα−サイアロン粉末及びα−窒化珪素粉
末(平均径:0.5μm、比表面積:11m2/g)を第
1表に示す割合で、媒体としてエタノールを用い
48時間湿式ミリングした後、80℃で真空乾燥し
た。得られた原料粉末40gを表面が窒化硼素で被
覆された内径50mmの黒鉛製治具に充填し、ホツト
プレス焼結装置にセツトした後、250Kg/cm2の加
圧下に室温から1750℃まで20℃/分で昇温し、同
温度に1時間保持した。 得られたサイアロン基焼結体の特性を第1表に
示す。
(Industrial Application Field) The present invention relates to a high-strength sialon-based sintered body useful for producing various engineering ceramics having high-temperature high strength, high hardness, and high toughness. (Prior art and its problems) Yα-Sialon is a solid solution in which A is substituted at the Si position of α-type silicon nitride and O is substituted at the N position.
is an interstitial solid solution, and is expressed by the formula Y x (Si, A) 12 (O, N) 16 [] (where x is a number satisfying 0<x≦2). . This Yα-sialon has high hardness,
It has properties suitable for engineering ceramics, such as a low coefficient of thermal expansion and excellent corrosion resistance. However, the sintered body of Yα-sialon phase alone is
Since the crystal form is granular, the properties such as strength and fracture toughness are not sufficient for engineering ceramics. Therefore, in order to improve this shortcoming,
JP-A-58-185484 discloses a Yα-sialon crystal and β- type silicon nitride in which A is substituted in the Si position and O is substituted in the N position . [] (In the formula, z is a number that satisfies 0<z≦4.2.) A sialon-based sintered body has been proposed in which the acicular β-sialon crystal is combined with the following formula. However, the mechanical properties of this sialon-based sintered body are not sufficient for practical use. (Object of the Invention) An object of the present invention is to solve the above-mentioned problems and provide a novel sialon-based sintered body having high high-temperature strength and toughness. (Summary of the Invention) According to the present invention, a crystal of α-silicon nitride, a crystal of Yα-sialon represented by the above formula [], a crystal of β-sialon represented by the above formula [], and a glass containing Y A high-strength sialon-based sintered body consisting of a phase and a method for manufacturing the same are provided. (Specific Description of the Invention) The content ratio of each phase in the sialon-based sintered body of the present invention is usually within the range shown below. 0.1<α-crystalline phase of silicon nitride<40% by weight 5<Yα-crystalline phase of sialon<50% by weight 10<β-crystalline phase of sialon<95% by weight 1<glass phase containing Y<20% by weight α- If the proportion of the crystalline phase of silicon nitride is less than the above range, the effect of improving the mechanical strength of the resulting sialon-based sintered body cannot be obtained, and if it is greater than the above range, sintering may fail. However, it is not preferable because the strength decreases. Moreover, in the sialon-based sintered body of the present invention,
The long axis of α-silicon nitride crystal is 0.01 to 2 μm, Yα-
It is preferable that the long axis of the sialon crystal is 0.01 to 10 μm, and the long axis of the β-sialon crystal is 1 to 50 μm. The sialon-based sintered body of the present invention contains β-sialon crystals, which are thought to be produced by the reaction between Yα-sialon and α-silicon nitride, a glass phase containing Y, and α that has not undergone a phase transition. - Fine grain crystals of silicon nitride exist together with crystals of Yα-sialon whose x in formula [] is slightly lower than the composition of the raw material Yα-sialon. These fine grain crystals of α-silicon nitride improve strength properties, and the sintered body contains four types of phases with different compositions, crystal shapes, and coefficients of thermal expansion. It is thought that the occurrence of microcracks due to microstrain improves the mechanical properties such as fracture toughness of the obtained sialon-based sintered body. Any method may be used to produce the sialon-based sintered body of the present invention as long as a sintered body having the above structure can be obtained. An example of a method for manufacturing the sialon-based sintered body of the present invention is shown below. The sialon-based sintered body of the present invention has the above formula []
The main phase is Yα-sialon represented by 50% by weight or less of Yα-sialon powder containing 8% by weight or less of excess oxygen based on the theoretical oxygen amount defined by the formula [], and the balance is α-sialon powder. It is obtained by heating and sintering a raw material powder made of silicon nitride powder to a maximum temperature in the range of 1,600 to 2,200°C. The Yα-sialon powder may be any powder as long as it has Yα-sialon as the main phase represented by the formula []. Powders prepared accordingly are suitable. This proposed method consists of: (a) amorphous silicon nitride powder; (b) metallic aluminum or aluminum nitride; (c) a metal salt that generates an oxide of Y that forms an interstitial solid solution between the lattices of Yα-sialon; and optionally (d) by mixing an oxygen-containing compound of aluminum or silicon to the desired Yα-sialon composition and heating the mixture to a temperature in the range of 1300-1900°C under a nitrogen-containing atmosphere. , a method for producing Yα-sialon powder. The Yα-sialon powder obtained by this method is a fine and uniform powder with a primary particle size of 0.2 to 2 μm,
Contains almost no free carbon and metal impurities, so
A sintered body without pores and abnormal grain growth can be provided. In order to improve the sintered body of Yα-sialon powder and at the same time obtain a high-strength sialon-based sintered body,
It is necessary that the Yα-sialon powder as a sintering raw material contains 8% by weight or less of excess oxygen with respect to the theoretical oxygen amount defined by the formula []. Examples of methods for containing excess oxygen in Yα-sialon powder include adding an excessive amount of an oxygen-containing compound of silicon or aluminum to amorphous silicon nitride during the preparation stage of Yα-sialon powder;
A method is adopted in which Yα-sialon powder is heated in an oxygen-containing atmosphere. An example of the latter is
Yα-sialon powder in an oxygen-containing atmosphere from 800 to
An example is a method of heating the Yα-sialon powder to a temperature in the range of 1200° C. to make the Yα-sialon powder contain oxygen in excess of the theoretical amount. Heating time is usually 0.5 to 5 hours. This treatment can be carried out, for example, by placing Yα-sialon powder thinly on a holding plate and leaving it in an oxygen-containing atmosphere, or by fluidizing α-sialon powder in an oxygen-containing atmosphere. The amount of excess oxygen is 8% by weight or less, preferably 1~
6.5% by weight, particularly preferably 2-4% by weight.
If the amount of excess oxygen is too large, many phases with low melting points remain in the sintered body, and mechanical properties at high temperatures are impaired. As α-silicon nitride powder, it is 1 μm in terms of sinterability.
It is preferable that the particles have the following particle size, and that the content of impurities that impair the strength, corrosion resistance, and oxidation resistance at high temperatures of the obtained sintered body is 1% by weight or less. The proportion of α-silicon nitride powder in the mixture of Yα-sialon powder and α-silicon nitride powder is 50% by weight or more, preferably 60 to 95% by weight, and more preferably 70 to 90% by weight. As the blending ratio of silicon nitride powder increases within the above range, the ratio of α-silicon nitride phase in the produced sialon-based sintered body increases. When the blending ratio of the α-silicon nitride powder exceeds 95% by weight, the sinterability of the mixture decreases and the densification of the sintered body does not proceed. There are no particular restrictions on the method of mixing the Yα-sialon powder and the α-silicon nitride powder, and methods known per se may be used, such as a method of dry mixing the two, or a method of wet mixing the two in an inert liquid, followed by an inert liquid. A method for removing the above can be adopted as appropriate. As a mixing device, a mold mixer, a ball mill, etc. are conveniently used. Heat sintering of a mixed powder can be accomplished by, for example, forming the mixed powder directly into a predetermined shape using a dry or wet process.
In the case of wet molding, after performing a drying process, sintering is performed in a nitrogen-containing gas atmosphere under normal pressure or pressurization, the raw material powder is filled into a die of a predetermined shape,
A method such as hot pressing can be adopted. Moreover, by further subjecting the sintered body obtained by the above method to hot isostatic pressing, the physical properties of the sintered body can be further improved. Molding of the mixed powder prior to normal pressure or pressure sintering can be carried out using known methods such as rubber press method, uniaxial molding method,
This can be carried out by a casting method, an injection molding method, an explosive compression molding method, or the like. The sintering temperature is usually 1600-2200°C, and the sintering time is usually 0.5-10 hours. If the sintering temperature is too low, sintering will not proceed, and if the sintering temperature is too high, a compositional change will occur in the sintered body due to thermal decomposition. (Effect of the invention) The sialon-based sintered body obtained by the present invention has improved mechanical properties such as high-temperature strength and fracture toughness compared to conventional sialon-based sintered bodies, so it is highly reliable. It can be suitably used as a structural material, especially as a wear-resistant and heat-resistant material for cutting chips, rolls, dies, nozzles, etc. (Example) Examples and comparative examples are shown below. Examples 1 to 6 and Comparative Example 1 479.2 g of amorphous silicon nitride powder, 59.4 g of Y2O3 powder , and 63 g of metal A powder were mixed for 1 hour in a vibrating mill under a nitrogen gas atmosphere. The mixed powder was filled into a carbon crucible, set in a resistance heating high temperature furnace, and heated from room temperature to 1200°C for 1 hour at 1200°C under a nitrogen gas atmosphere.
℃ to 1400℃ for 4 hours, then 1400℃ to 1600℃
The mixture was crystallized by heating to a temperature of 0.degree. C. on a 2-hour heating schedule to obtain Y.alpha.-Sialon powder.
The properties of the obtained Yα-sialon powder are shown below. Theoretical composition Y 0.5 Si 9.75 Al 2.25 O 0.75 N 15.25 Specific surface area 2.5m 2 /g Grain shape Equiaxed crystal formation phase α phase ≥ 90% Product composition (wt%) Y: 7.2 Si: 44.2 Al: 9.8 O: 4.9 N: 33.9 Excess oxygen amount 2.9% by weight The above Yα-sialon powder and α-silicon nitride powder (average diameter: 0.5 μm, specific surface area: 11 m 2 /g) were mixed in the proportions shown in Table 1 using ethanol as a medium.
After wet milling for 48 hours, it was vacuum dried at 80°C. 40g of the obtained raw material powder was filled into a graphite jig with an inner diameter of 50mm whose surface was coated with boron nitride, and after setting it in a hot press sintering device, it was heated at 20℃ from room temperature to 1750℃ under a pressure of 250Kg/ cm2 . The temperature was raised at a rate of 1/min and maintained at the same temperature for 1 hour. Table 1 shows the properties of the obtained sialon-based sintered body.

【表】 β−サ:β−サイアロン
[Table] β-sa: β-sialon

Claims (1)

【特許請求の範囲】 1 α−窒化珪素の結晶、 式Yx(Si,A)12(O,N)16 (式中、xは0<x≦2を満足する数である。) で表されるYα−サイアロンの結晶、 式Si6-zzOzN8-z (式中、zは0<z≦4.2を満足する数であ
る。) で表されるβ−サイアロンの結晶及びYを含むガ
ラス相からなる高強度サイアロン基焼結体。
[Claims] 1 α-silicon nitride crystal, represented by the formula Y x (Si, A) 12 (O, N) 16 (wherein x is a number satisfying 0<x≦2) A crystal of Yα-sialon expressed by the formula Si 6-z A z O z N 8-z (where z is a number satisfying 0<z≦4.2); A high-strength sialon-based sintered body consisting of a glass phase containing Y.
JP1052781A 1989-03-07 1989-03-07 High-strength calcined sialon-based compact Granted JPH02233560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1052781A JPH02233560A (en) 1989-03-07 1989-03-07 High-strength calcined sialon-based compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1052781A JPH02233560A (en) 1989-03-07 1989-03-07 High-strength calcined sialon-based compact

Publications (2)

Publication Number Publication Date
JPH02233560A JPH02233560A (en) 1990-09-17
JPH0559073B2 true JPH0559073B2 (en) 1993-08-30

Family

ID=12924390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1052781A Granted JPH02233560A (en) 1989-03-07 1989-03-07 High-strength calcined sialon-based compact

Country Status (1)

Country Link
JP (1) JPH02233560A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0563396B1 (en) * 1991-10-21 1997-02-26 Sumitomo Electric Industries, Ltd. Silicon nitride sinter
US5502011A (en) * 1991-10-21 1996-03-26 Sumitomo Electric Industries, Ltd. Silicon nitride sintered body
JPWO2014003150A1 (en) 2012-06-27 2016-06-02 京セラ株式会社 Sialon sintered body and wear-resistant parts using the same

Also Published As

Publication number Publication date
JPH02233560A (en) 1990-09-17

Similar Documents

Publication Publication Date Title
JPH0925166A (en) Aluminum nitride sintered compact and its production
JP2871410B2 (en) High thermal conductive silicon nitride sintered body and method for producing the same
JPH0559073B2 (en)
JPH0772108B2 (en) Method for manufacturing β-sialon sintered body
JP2649220B2 (en) Silicon nitride / silicon carbide composite powder, composite compact, method for producing them, and method for producing silicon nitride / silicon carbide composite sintered body
JPH0259471A (en) Silicon nitride-based sintered body having high strength at high temperature and production thereof
JPH03177361A (en) Production of beta-sialon-boron nitride-based conjugate sintered compact
JPH0559074B2 (en)
JP2662863B2 (en) Method for producing silicon nitride based sintered body
JP3152790B2 (en) Method for producing silicon nitride based sintered body
JPH01145380A (en) Production of silicon nitride sintered form
JP3124867B2 (en) Silicon nitride sintered body and method for producing the same
JPH0559076B2 (en)
JPH0559075B2 (en)
JPH11322438A (en) High thermal conductive silicon nitride sintered compact and its production
JPH042664A (en) High-strength sialon based sintered compact
JP3008415B2 (en) Sialon-boron nitride-based composite sintered body and method for producing the same
JPH0559077B2 (en)
JP2700786B2 (en) High-temperature high-strength silicon nitride sintered body and method for producing the same
JP2000191376A (en) Aluminum nitride sintered body and its production
JPH1129361A (en) Silicon nitride sintered product and its production
JPH0461834B2 (en)
JPS63100072A (en) Manufacture of whisker-reinforced sialon base sintered body
JP2671539B2 (en) Method for producing silicon nitride sintered body
JP2746760B2 (en) Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same