JPS62875B2 - - Google Patents

Info

Publication number
JPS62875B2
JPS62875B2 JP54084926A JP8492679A JPS62875B2 JP S62875 B2 JPS62875 B2 JP S62875B2 JP 54084926 A JP54084926 A JP 54084926A JP 8492679 A JP8492679 A JP 8492679A JP S62875 B2 JPS62875 B2 JP S62875B2
Authority
JP
Japan
Prior art keywords
powder
sintered body
weight
strength
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54084926A
Other languages
Japanese (ja)
Other versions
JPS569278A (en
Inventor
Satoshi Shikauchi
Osamu Hirao
Hiroshi Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP8492679A priority Critical patent/JPS569278A/en
Publication of JPS569278A publication Critical patent/JPS569278A/en
Publication of JPS62875B2 publication Critical patent/JPS62875B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は耐熱高強度焼結体、特に窒化けい素
(Si3N4)系焼結体の製造方法に関する。 Si3N4を主成分とした窒化けい素焼結体(セラ
ミツク)は高温強度、耐熱衝撃性および耐食性な
どがすぐれているため、例えばガスタービン部
材、熱交換器材料など耐熱構造材料として多くの
関心を寄せられている。しかし、Si3N4粉末は、
それ自体では焼結性が著しく悪いため、通常は例
えばMgO,Al2O3,Y2O3,SiO2および周期律表
a族元素の酸化物などの焼結助剤を添加して焼
結が行なわれる。ところが、得られる最終焼結体
の物性はSi3N4(附随的不純物を含有)とこれら
焼結助剤の反応によつて、Si3N4粒子間に形成さ
れるいわゆる粒界相の性質によつて大きく支配さ
れる。 例えば、焼結助剤としてY2O3とAl2O3とを使用
した場合には、焼結によつて粒界相にはSi3N4
Y2O3系化合物、Si―Al―Y―N―O系ガラス質
などの混合物の相が形成される。この混合物のう
ちSi―Al―Y―N―O系ガラス質、Si―Al―Y―
O系ガラス質は焼結体の物性低下を来たすことが
知られている。即ち、高品質の焼結体を得るに
は、粒界をSi3N4/Y2O3型構造からなる安定相で
占めさせ、上記ガラス質の形成をできる限り少な
くするるように焼結条件を制御する必要がある。
特に工業上、利用価値のある大型、肉厚体では焼
結体内部のシリカ成分(SiO,SiO2)の散逸を困
難にするためガラス質が残り、組織の不均一化が
避けられない。 ところで、この改善策として、あらかじめ粒界
相物質である良質のSi3N4・Y2O3を合成して、α
型Si3N4―Si3N4・Y2O3系の混合粉末を原料とし
て、これをホツトプレスすることにより均質且つ
緻密な高強度の耐熱材料を製造しうる。 しかし、この種の焼結体については更に一層の
高強度化を達成するには次のような問題がある。
即ち、原料としてのSi3N4粉末には通常、酸化ア
ルミニウムや酸化鉄などの他に、特に附随的不純
物として避けがたく且つ取り除くことの困難なシ
リカ成分(SiO,SiO2)が含有している。シリカ
成分は一般的にSi3N4粒子の表面に存在し、前記
のようなSi3N4に添加する焼結助剤にY2O3
Al2O3とを使用する場合にはSi3N4およびY2O3
Al2O3と反応して、一度Si―Al―Y―N―O系ガ
ラス質を作り、その後ガラス質よりシリカ分の蒸
発にともなつて焼結体の粒界にSi3N4・Y2O3系の
高融点化合物を作る。その一連の反応機構は焼結
体内部ほど困難であり、組織の不均一化の原因に
なつているが、これを避けるために上記のように
Si3N4にあらかじめ合成した粒界相物質である
Si3N4・Y2O3を添加して焼結すると組織の不均一
化は阻止されるが、シリカ成分の散逸する反応機
構がないので添加したSi3N4・Y2O3との反応を招
き、Y5(SiO43N(H相)などの低融点化合物を
作り、さらにはガラス質に後退するので高強度化
達成にはおのずから限界がでてくる。 本発明者らはこのような不都合な点に対処して
検討した結果、上記Si3N4・Y2O3粉末を添加して
焼結体を得る製造方法において、微量の窒化アル
ミニウムを添加することにより、不純物のシリカ
成分を SiO2+AlN→“Al―Si―O―N”系 化合物生成反応によつて排除し、更にすぐれた耐
熱高強度焼結体が得られることを見い出した。 本発明はこのような知見に基ずき、耐熱構造材
料用として適する良質なSi3N4を主成分とした窒
化けい素焼結体(セラミツクス)を容易に製造し
得る方法を提供しようとするものである。 以下本発明を詳細に説明すると、本発明はα型
構造を少なくとも60%含む窒化けい素粉末98.9〜
75重量%,一般式、 (Si3-xAlx)N4-xx・Re2O3 (式中Reは周期律表a族元素、xは0〜0.5
の数)で示される粉末状物質1〜20重量%および
窒化アルミニウム粉末0.1〜5重量%を含む組成
物(配合物)を少なくとも100Kg/cm3の加圧下
1700〜1800℃で加圧焼結することを特徴とする高
強度耐熱材料の製造方法である。 なお、ここでいう(Si3-xAlx)N4-xx
Re2O3物質は大部分、即ち好ましくは85%以上
が、Si3N4・Y2O3型構造をもつ(Si3-xAlx)N4-x
x・Re2O3からなり、その他には例えば“Si―
Al―Re―O―N”系など上記以外の化合物を含
みうるものである。しかして本発明方法は例えば
次のように行なわれる。先ず粒度2.5μm以下好
ましくは1.2μm以下の微細に粉砕されたα型構
造のSi3N4を少なくとも60%好ましくは85%以上
を含有するSi3N4粉末(附随的不純物を含有)を
Si3N4原料として用意する。 一方、周期律表a族元素例えばイツトリウム
(Y)の酸化物Y2O3を用意し、これをSi3N4と1
対1のモル比で混合して窒素雰囲気中もしくは不
活性雰囲気中で焼成を施すと、Si3N4・Y2O3結晶
構造からなる粒度2.5μm以下の粉末が得られ
る。このSi3N4・Y2O3はこのままでも良いが、さ
らにイツトリウム(Y)成分の一部をアルミニウ
ム(Al)で置換したものでもよく、その場合の
Al置換量は高々50%までである。 本発明において、更に他の一添加成分となる窒
化アルミニウム(AlN)粉末を用意する。窒化ア
ルミニウム粉末は例えばアルミニウム(Al)粉
末を窒化することにより容易に得られたもので、
また市販されているものでよく、粒度は3μm以
下好ましくは1.5μm以下の微細な粉末がよい。 次いで上記用意されたα型構造を60%以上含む
Si3N4粉末98.9〜75重量%、(Si3-xAlx)N4-x
x・Re2O3系1〜20重量%およびAlN粉末0.1〜5
重量%をそれぞれ配合乃至混合し、この混合粉末
を成形し非酸化性雰囲気中で少なくとも100Kg/
cm3の加圧下、1700〜1850℃で加圧焼結を施す。こ
の加圧焼結はいわゆるホツトプレス、高圧でのガ
ス圧ホツトプレス、あるいは高温等方加圧方法な
どが適宜選ばれる。かくすることによつて高温で
高い強度を有する耐熱構造材料を容易に且つ再現
性よく製造しうる。 本発明において主たる出発原料となる窒化けい
素粉末(Si3N4)については、α型構造のものを少
なくとも60%含有していることが必要である。こ
の理由はα型構造の含有量が60%未満では最終的
に焼結体を構成する結晶粒形が長柱状である割合
が低いため強度の高い耐熱性焼結体が得られない
からである。 一方、前記Si3N4に添加配合する(Si3-xAlx
4-xx・Re2O3成分において、AlによるReの置
換量が高々50%に限定されるのは次の理由によ
る。即ちAlの置換量が50%を超えた場合には
(Si3-xAlx)N4-x・Re2O3結晶になり難い。しか
してこの(Si3-xAlx)N4-xx・Re2O3の組成比
が1〜20重量%の範囲に選ばれるのは1%末満で
は緻密化の効果がうすく、20%を超えると相対的
に主原料であるSi3N4粉を減じ、もはや焼結体の
特性を高めることはないからである。 さらに前記Si3N4に添加配合する窒化アルミニ
ウム(AlN)を0.1〜5重量%に限定するのは次
の理由による。原料としてのSi3CN4粉末に常に
存在しているシリカ成分を吸収し、化合物化させ
るためには、0.1%末満ではその作用効果が十分
に発揮されず、5%を超えると結果的に焼結体の
純度低下を招き相対的には緻密性、安定性を悪く
し、高品位の焼結体が得られないからである。 また、本発明においては焼結に当つて少なくと
も100Kg/cm3の圧力を加え、且つ焼結温度を1700
〜1850℃に選ぶ必要がある。その理由は100Kg/
cm3以上の圧力を加えつつ1700〜1850℃の温度範囲
内で加圧焼結しない場合には所望の高温高強度の
焼結体が得られ難いからである。 上記の如くα―Si3N4粉末と、少量の
(Si3-xAlx)N4-xx・Re2O3型粉末および微量の
窒化アルミニウム粉末の混合粉末を出発原料とす
る本発明方法によれば1200℃程度の高温で抗折強
度95Kg/mm2以上を高信頼性で示す高強度の耐熱性
焼結体を容易に製造し得る。このように本発明方
法によれば高強度の焼結体が得られるのは次のよ
うに考えられる。 即ち、主原料をなすα型構造のSi3N4は高温焼
結過程でβ型構造に変換して行くとともにSi3N4
粒が長柱状に成長する。 一方、窒化アルミニウムはシリカ成分と化合物
化して高融点の“Al―Si―O―N”系化合物を作
り、焼結時における不都合なシリカ成分や揮発成
分を吸収・排除するとともに(Si3-xAlx)N4-x
x・Re2O3の低融点化合物への変質もしくはガラ
ス質への後退を阻止する。このため緻密な、また
耐熱性の低下に関与する上記物質の混在しない良
質な焼結体が得られることになる。 このようにして得られたSi3N4焼結体を主成分
とする耐熱高強度焼結体は高融点化合物のみを高
融点粒界相として含有しており、しかもSi3N4
長柱状結晶の成長および焼結、緻密化の容易さに
よつて容易に、且つ再現性よく、高温でも高い強
度を有する焼結体が得られると解される。 次に本発明の実施例を記載する。 実施例 1 α型構造80%含む粒度1.2μmのSi3N4粉末と粒
度1.0μmのY2O3粉末とを等モル比で混合した混
合粉末50gをAlN製ルツボ内に収容しN2ガス中で
1650℃、4時間焼成を施した。かくして得た(合
成した)焼成粉末をX線回折により調べたところ
Si3N4・Y2O3の単一相からなつていた。 上記Si3N4・Y2O3粉末7重量部とα型構造85%
およびシリカ成分SiO21.2%含む粒度1.2μmの
Si3N4粉末91重量部と更に平均粒度1.3μmのAlN
粉末2重量部とを粉砕混合した粉末を原料とし、
30×30×10mmの成形体を得た。この成形体をN2
雰囲気下、500Kg/cm2、1780℃、3時間加圧加熱
を施して焼結を行なつた。かくして得た焼結体に
ついて密度、抗折強度をそれぞれ測定した結果、
密度は3.270g/cc、抗折強度は常温で94.5Kg/
mm2、1200℃で97.1Kg/mm2であつた。なお、抗折強
度は3点曲げ、スパン20mmでの測定値である。 上記において成形体を30×30×20〜40mmとした
以外は同一条件で製造した焼結体もほぼ同程度の
密度、抗折強度を示した。また、これら焼結体の
強度の信頼性も高く、例えば室温強度の場合でワ
イブル係数19であつた。 上記実施例に対し、他の実施例として各原料成
分比を変えた他は同じ条件で焼結体を製造し、特
性を評価した結果を併せて表―1に示した。尚表
には比較例としてAlNを原料成分として含まない
焼結体の特性例も示した。
The present invention relates to a method for producing a heat-resistant, high-strength sintered body, particularly a silicon nitride (Si 3 N 4 )-based sintered body. Silicon nitride sintered bodies (ceramics), which are mainly composed of Si 3 N 4 , have excellent high-temperature strength, thermal shock resistance, and corrosion resistance, so they are attracting a lot of attention as heat-resistant structural materials, such as gas turbine parts and heat exchanger materials. is being sent to us. However, Si3N4 powder is
Since sinterability is extremely poor by itself, sintering aids such as MgO, Al 2 O 3 , Y 2 O 3 , SiO 2 and oxides of Group A elements of the periodic table are usually added to sinter. will be carried out. However, the physical properties of the final sintered body obtained depend on the properties of the so-called grain boundary phase formed between Si 3 N 4 particles due to the reaction between Si 3 N 4 (containing incidental impurities) and these sintering aids. is largely dominated by For example, when Y 2 O 3 and Al 2 O 3 are used as sintering aids, Si 3 N 4 and Si 3 N 4 are added to the grain boundary phase by sintering.
A phase of a mixture of Y 2 O 3 based compounds, Si-Al-Y-N-O based glass, etc. is formed. Of this mixture, Si-Al-Y-N-O glassy, Si-Al-Y-
It is known that O-based glass deteriorates the physical properties of a sintered body. That is, in order to obtain a high-quality sintered body, the grain boundaries must be occupied by a stable phase consisting of a Si 3 N 4 /Y 2 O 3 type structure, and the sintering process must be carried out so as to minimize the formation of the above-mentioned glassy substance. Conditions need to be controlled.
Particularly in the case of large, thick-walled bodies that have industrial utility, vitreous remains, making it difficult for the silica components (SiO, SiO 2 ) inside the sintered body to dissipate, making it unavoidable that the structure will become non-uniform. By the way, as a measure to improve this, high-quality Si 3 N 4 Y 2 O 3 , which is a grain boundary phase material, is synthesized in advance and α
A homogeneous, dense, high-strength, heat-resistant material can be produced by hot pressing a Si 3 N 4 -Si 3 N 4 .Y 2 O 3 type mixed powder as a raw material. However, this type of sintered body has the following problems in achieving even higher strength.
That is, Si 3 N 4 powder as a raw material usually contains silica components (SiO, SiO 2 ), which are inevitable and difficult to remove, as incidental impurities, in addition to aluminum oxide, iron oxide, etc. There is. Silica components generally exist on the surface of Si 3 N 4 particles, and Y 2 O 3 and Y 2 O 3 are added to the sintering aids added to Si 3 N 4 as described above.
When using Al 2 O 3 , Si 3 N 4 and Y 2 O 3 ,
It reacts with Al 2 O 3 to form a Si-Al-Y-N-O glass, and then as the silica content evaporates from the glass, Si 3 N 4・Y forms at the grain boundaries of the sintered body. Create a 2 O 3 -based high melting point compound. The series of reaction mechanisms is more difficult inside the sintered body, causing the structure to become non-uniform, but in order to avoid this, as described above,
It is a grain boundary phase material synthesized in advance in Si 3 N 4 .
Sintering with the addition of Si 3 N 4 · Y 2 O 3 prevents the structure from becoming non-uniform, but since there is no reaction mechanism to dissipate the silica component, the sintering with the added Si 3 N 4 · Y 2 O 3 is difficult. This leads to reactions, forming low melting point compounds such as Y 5 (SiO 4 ) 3 N (H phase), and furthermore, regressing to a glassy state, which naturally limits the ability to achieve high strength. As a result of the inventors' studies to address these inconveniences, we found that in the manufacturing method for obtaining a sintered body by adding Si 3 N 4 Y 2 O 3 powder, a trace amount of aluminum nitride is added. It has been found that by doing so, the impurity silica component can be eliminated by the SiO 2 +AlN→"Al--Si--O--N" compound forming reaction, and a more excellent heat-resistant and high-strength sintered body can be obtained. Based on such knowledge, the present invention aims to provide a method for easily producing high-quality silicon nitride sintered bodies (ceramics) containing Si 3 N 4 as a main component and suitable for use as heat-resistant structural materials. It is. To explain the present invention in detail below, the present invention is a silicon nitride powder containing at least 60% α-type structure.
75% by weight, general formula, (Si 3-x Al x )N 4-x O x・Re 2 O 3 (In the formula, Re is an element in group a of the periodic table, x is 0 to 0.5
A composition (formulation) containing 1 to 20% by weight of a powdered substance indicated by the number of 0.1 to 5% by weight of aluminum nitride powder under a pressure of at least 100 Kg/cm 3
This is a method for producing a high-strength heat-resistant material, which is characterized by pressure sintering at 1700-1800°C. Note that (Si 3-x Al x )N 4-x O x
The majority of the Re 2 O 3 material, preferably 85% or more, has a structure of the Si 3 N 4 .Y 2 O 3 type (Si 3-x Al x )N 4-x
It consists of O x・Re 2 O 3 , and others include, for example, “Si—
It may contain compounds other than those mentioned above, such as Al--Re--O--N. However, the method of the present invention is carried out, for example, as follows. First, the particles are finely pulverized to a particle size of 2.5 μm or less, preferably 1.2 μm or less. Si 3 N 4 powder (containing incidental impurities) containing at least 60% and preferably 85% or more of Si 3 N 4 with an α-type structure.
Prepared as Si 3 N 4 raw material. On the other hand, prepare an oxide Y 2 O 3 of a group A element of the periodic table, such as yttrium (Y), and mix it with Si 3 N 4 and 1
When mixed at a molar ratio of 1 to 1 and calcined in a nitrogen atmosphere or an inert atmosphere, a powder having a Si 3 N 4 .Y 2 O 3 crystal structure and a particle size of 2.5 μm or less can be obtained. This Si 3 N 4・Y 2 O 3 may be used as is, but it may also be one in which part of the yttrium (Y) component is replaced with aluminum (Al).
The amount of Al substitution is up to 50%. In the present invention, aluminum nitride (AlN) powder is prepared as another additional component. Aluminum nitride powder is easily obtained by nitriding aluminum (Al) powder, for example.
Further, commercially available powders may be used, and fine powders having a particle size of 3 μm or less, preferably 1.5 μm or less are preferable. Next, contain 60% or more of the α-type structure prepared above.
Si3N4 powder 98.9-75% by weight, (Si3 - x Alx )N4 -xO
x・Re 2 O 3 system 1-20% by weight and AlN powder 0.1-5
The weight percentages are blended or mixed, and the mixed powder is molded to give a mass of at least 100 kg/kg in a non-oxidizing atmosphere.
Pressure sintering is performed at 1700-1850 °C under a pressure of cm3 . For this pressure sintering, so-called hot press, high pressure gas pressure hot press, high temperature isostatic press method, etc. are appropriately selected. By doing so, a heat-resistant structural material having high strength at high temperatures can be easily produced with good reproducibility. Silicon nitride powder (Si 3 N 4 ), which is the main starting material in the present invention, must contain at least 60% of α-type structure. The reason for this is that if the content of α-type structure is less than 60%, a high strength, heat-resistant sintered body cannot be obtained because the proportion of long columnar crystal grains that make up the final sintered body is low. . On the other hand, (Si 3-x Al x ) is added to the Si 3 N 4
The reason why the amount of Re substitution by Al in the N 4-x O x ·Re 2 O 3 component is limited to at most 50% is as follows. That is, when the amount of Al substitution exceeds 50%, it is difficult to form (Si 3-x Al x )N 4-x ·Re 2 O 3 crystals. However, the composition ratio of (Si 3-x Al x ) N 4-x O x ·Re 2 O 3 is selected in the range of 1 to 20% by weight because the densification effect is weak at less than 1%; This is because if it exceeds 20%, the Si 3 N 4 powder, which is the main raw material, will be relatively reduced and the properties of the sintered body will no longer be improved. Furthermore, the reason why aluminum nitride (AlN) added to the Si 3 N 4 is limited to 0.1 to 5% by weight is as follows. In order to absorb the silica component that is always present in the Si 3 CN 4 powder as a raw material and convert it into a compound, its action and effect are not fully exhibited at less than 0.1%, and as a result, when it exceeds 5%. This is because the purity of the sintered body decreases, resulting in relatively poor density and stability, making it impossible to obtain a high-quality sintered body. Furthermore, in the present invention, a pressure of at least 100 kg/cm 3 is applied during sintering, and the sintering temperature is set to 1700 kg/cm 3 .
It is necessary to choose ~1850℃. The reason is 100Kg/
This is because unless pressure sintering is performed within a temperature range of 1700 to 1850° C. while applying a pressure of cm 3 or more, it is difficult to obtain a sintered body with the desired high temperature and high strength. As mentioned above, the starting material is a mixed powder of α-Si 3 N 4 powder, a small amount of (Si 3-x Al x )N 4-x O x・Re 2 O 3 type powder, and a small amount of aluminum nitride powder. According to the method of the invention, it is possible to easily produce a high-strength, heat-resistant sintered body that reliably exhibits a bending strength of 95 Kg/mm 2 or more at a high temperature of about 1200°C. The reason why a high-strength sintered body can be obtained according to the method of the present invention is considered to be as follows. That is, Si 3 N 4 with an α-type structure, which is the main raw material, is converted into a β-type structure during the high-temperature sintering process, and Si 3 N 4
The grains grow into long columnar shapes. On the other hand, aluminum nitride is compounded with silica to create a high melting point "Al-Si-O-N" compound, which absorbs and eliminates the undesirable silica and volatile components during sintering (Si 3-x Al x ) N 4-x O
Prevents the transformation of x・Re 2 O 3 into a low melting point compound or regression to glassy state. Therefore, a dense sintered body and a high quality sintered body free from the above-mentioned substances that contribute to a decrease in heat resistance can be obtained. The heat-resistant, high-strength sintered body mainly composed of Si 3 N 4 sintered body thus obtained contains only a high-melting point compound as a high-melting point grain boundary phase, and is composed of long columnar Si 3 N 4 sintered bodies. It is understood that the ease of crystal growth, sintering, and densification makes it possible to easily obtain a sintered body with good reproducibility and high strength even at high temperatures. Next, examples of the present invention will be described. Example 1 50 g of a mixed powder obtained by mixing Si 3 N 4 powder with a particle size of 1.2 μm and Y 2 O 3 powder with a particle size of 1.0 μm in an equimolar ratio containing 80% α-type structure was placed in an AlN crucible, and N 2 gas Inside
Firing was performed at 1650°C for 4 hours. The thus obtained (synthesized) calcined powder was examined by X-ray diffraction.
It consisted of a single phase of Si 3 N 4・Y 2 O 3 . 7 parts by weight of the above Si 3 N 4 Y 2 O 3 powder and 85% α-type structure
and particle size 1.2 μm containing 1.2% silica component SiO 2
91 parts by weight of Si 3 N 4 powder and additionally AlN with an average particle size of 1.3 μm
The raw material is a powder obtained by pulverizing and mixing 2 parts by weight of powder,
A molded body of 30 x 30 x 10 mm was obtained. This molded body is heated with N2
Sintering was performed under pressure and heating in an atmosphere at 500 kg/cm 2 at 1780° C. for 3 hours. As a result of measuring the density and bending strength of the sintered body thus obtained,
Density is 3.270g/cc, bending strength is 94.5kg/cc at room temperature
mm 2 and 97.1 Kg/mm 2 at 1200°C. Note that the bending strength is a value measured with 3-point bending and a span of 20 mm. The sintered bodies produced under the same conditions as above except that the molded bodies were 30×30×20 to 40 mm also exhibited approximately the same density and bending strength. Furthermore, the reliability of the strength of these sintered bodies was high, for example, the Weibull coefficient was 19 at room temperature. In contrast to the above example, a sintered body was manufactured under the same conditions except that the ratio of each raw material component was changed as another example, and the results of evaluating the characteristics are also shown in Table 1. The table also shows, as a comparative example, a characteristic example of a sintered body that does not contain AlN as a raw material component.

【表】 実施例 2 α型構造85%含む粒度1.2μのSi3N4粉末と粒度
0.8μmのY2O3粉末との等モル比混合粉末、粒度
0.3μmのAl2O3粉末を表―2に示す如き組成比で
配合して混合粉末をそれぞれ調整した。これらの
調整粉末をAlN製ルツボ内に収容し、N2雰囲気中
1600〜1700℃で、1〜5時間焼成を施してX線的
にSi3N4・Y2O3型構造を有する粉末状化合物を合
成した。 上記によりそれぞれ合成したSi3N4・Y2O3型相
を有する粉末5重量部およびα型構造85%含む粒
度1.2μmのSi3N4粉末94重量部と更に粒度1.3μ
mのAlN粉末1重量部との混合粉末を原料とし、
50×50×20mmの成形体を作り実施例1の場合と同
じ条件で加圧加熱焼結を行なつて焼結体をそれぞ
れ得た。かくして得た焼結体についてそれぞれ求
めた1200℃における抗折強度を表―2に併せて示
した。なお、表―2中試料aは比較例である。
[Table] Example 2 Si 3 N 4 powder with particle size of 1.2 μ containing 85% α-type structure and particle size
Equimolar ratio mixed powder with 0.8μm Y2O3 powder , particle size
Mixed powders were prepared by blending 0.3 μm Al 2 O 3 powder in the composition ratio shown in Table 2. These prepared powders were placed in an AlN crucible and placed in an N2 atmosphere.
Firing was performed at 1600 to 1700° C. for 1 to 5 hours to synthesize a powdery compound having an X-ray structure of Si 3 N 4 .Y 2 O 3 type. 5 parts by weight of the Si 3 N 4 Y 2 O 3 type phase powder synthesized as above, 94 parts by weight of Si 3 N 4 powder containing 85% α-type structure and having a particle size of 1.2 μm, and further a particle size of 1.3 μm.
Using a mixed powder with 1 part by weight of AlN powder of m as raw material,
Molded bodies of 50 x 50 x 20 mm were made and sintered under pressure and heat under the same conditions as in Example 1 to obtain sintered bodies. The bending strength at 1200°C determined for each of the sintered bodies thus obtained is also shown in Table 2. Note that sample a in Table 2 is a comparative example.

【表】 実施例 3 α型構造96%含む粒度1.5μmのSi3N4粉末と、
粒度1.0μmのCe2O3粉末またはSm2O3粉末との
等モル比混合粉末をN2雰囲気下、1650℃、2時
間焼成を施し、Si3N4・Ce2O3またはSi3N4
Sm2O3をそれぞれ合成した。 次いでこれらSi3N4・Ce2O3,Si3C4・Sm2O3
α型構造96%を含む粒度1.0μm〓のSi3N4粉末
(Si3N4)粉末(イ)),α型構造85%含む粒度1.1μm
のSi3N4粉末(Si3N4粉末(ロ))とそれぞれに粒度
1.3μのAlN粉末を表―3に示す組成比(重量
部)にて配合し、混合粉末をそれぞれ調整した。
これらの混合粉末を用い30×30×20mmの成形体を
先ず作り、カーボン製モールド中に収容し、1800
℃、450Kg/cm2、3時記ホツトプレスして焼結体
を得た。この焼結体について密度、抗折強度をそ
れぞれ求めた結果を表―3に併わせて示した。
[Table] Example 3 Si 3 N 4 powder with a particle size of 1.5 μm containing 96% α-type structure,
A mixed powder with an equimolar ratio of Ce 2 O 3 powder or Sm 2 O 3 powder with a particle size of 1.0 μm was calcined at 1650°C for 2 hours in an N 2 atmosphere to form Si 3 N 4・Ce 2 O 3 or Si 3 N Four ·
Sm 2 O 3 was synthesized respectively. Next, these Si 3 N 4・Ce 2 O 3 , Si 3 C 4・Sm 2 O 3 ,
Si 3 N 4 powder (Si 3 N 4 ) powder (a) with a particle size of 1.0 μm containing 96% α-type structure, 1.1 μm particle size containing 85% α-type structure
Si 3 N 4 powder (Si 3 N 4 powder (b)) and particle size for each
1.3μ AlN powder was blended at the composition ratio (parts by weight) shown in Table 3 to prepare mixed powders.
Using these mixed powders, a molded body of 30 x 30 x 20 mm was first made, placed in a carbon mold, and heated at 1800 mm.
A sintered body was obtained by hot pressing at 450 Kg/cm 2 at 3°C. The results of determining the density and bending strength of this sintered body are also shown in Table 3.

【表】【table】

【表】 上記各実施例ではa族元素がY,Ce,Smの
場合を示したが、その他La,Nd,Pr、Dyなどの
場合も同様の結果が得られた。 上記各実施例から明らかのように本発明方法に
よれば、高温でも高い機械的強度を保持する耐熱
性焼結体(材料)が得られる。 かくして本発明方法は再現性よく所望の焼結体
が容易に得られることなどから耐熱性、高温高強
度を要求される大型部品の製造などに適するもの
と言える。
[Table] In each of the above Examples, cases where the a-group element was Y, Ce, or Sm were shown, but similar results were obtained when other elements such as La, Nd, Pr, or Dy were used. As is clear from the above examples, according to the method of the present invention, a heat-resistant sintered body (material) that maintains high mechanical strength even at high temperatures can be obtained. Thus, the method of the present invention can be said to be suitable for manufacturing large parts that require heat resistance and high strength at high temperatures, since desired sintered bodies can be easily obtained with good reproducibility.

Claims (1)

【特許請求の範囲】 1 α型構造を60%以上含む窒化けい素粉末98.9
〜75重量%、 一般式、 (Si3-xAlx)N4-xx・Re2O3 (式中Reは周期律表a族元素、xは0〜0.5
の数)で示される粉末状物質1〜20重量%および
窒化アルミニウム粉末0.1〜5重量%含む組成物
を少なくとも100Kg/cm3の加圧下、1700〜1850℃
で加圧・焼結することを特徴とする耐熱高強度焼
結体の製造方法。
[Claims] 1. Silicon nitride powder 98.9 containing 60% or more α-type structure
~75% by weight, general formula, (Si 3-x Al x )N 4-x O x・Re 2 O 3 (In the formula, Re is an element from group a of the periodic table, x is 0 to 0.5
A composition containing 1 to 20% by weight of a powdery substance represented by the number of 1 to 20% by weight of aluminum nitride powder and 0.1 to 5% by weight of aluminum nitride powder was heated at 1700 to 1850°C under a pressure of at least 100 kg/ cm3.
A method for producing a heat-resistant, high-strength sintered body, which is characterized by pressurizing and sintering.
JP8492679A 1979-07-06 1979-07-06 Manufacture of heat resistant high strength sintered body Granted JPS569278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8492679A JPS569278A (en) 1979-07-06 1979-07-06 Manufacture of heat resistant high strength sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8492679A JPS569278A (en) 1979-07-06 1979-07-06 Manufacture of heat resistant high strength sintered body

Publications (2)

Publication Number Publication Date
JPS569278A JPS569278A (en) 1981-01-30
JPS62875B2 true JPS62875B2 (en) 1987-01-09

Family

ID=13844293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8492679A Granted JPS569278A (en) 1979-07-06 1979-07-06 Manufacture of heat resistant high strength sintered body

Country Status (1)

Country Link
JP (1) JPS569278A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5867894A (en) * 1981-10-16 1983-04-22 Tateyama Alum Kogyo Kk Pattern pigmentation method of aluminum or aluminum alloy
EP0123292B1 (en) * 1983-04-22 1990-11-14 Toshiba Tungaloy Co. Ltd. Silicon nitride sintered body and method for preparing the same
JPS6090873A (en) * 1983-10-25 1985-05-22 東芝タンガロイ株式会社 Silicon nitride sintered body for tool part
JPS61178471A (en) * 1985-01-31 1986-08-11 トヨタ自動車株式会社 Manufacture of silicon nitride sintered body
JPS61183169A (en) * 1985-02-05 1986-08-15 トヨタ自動車株式会社 Manufacture of silicon nitride sintered body

Also Published As

Publication number Publication date
JPS569278A (en) 1981-01-30

Similar Documents

Publication Publication Date Title
US4073845A (en) High density high strength S13 N4 ceramics prepared by pressureless sintering of partly crystalline, partly amorphous S13 N4 powder
JP2842723B2 (en) Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same
US4071371A (en) High temperature ceramic material suitable for gas turbine applications and a process for producing same
JP2871410B2 (en) High thermal conductive silicon nitride sintered body and method for producing the same
JPS62875B2 (en)
JPS5953234B2 (en) Manufacturing method of high-strength silicon nitride sintered body
US5098623A (en) Method for producing ceramic composite materials containing silicon oxynitride and zirconium oxide
JP3034100B2 (en) Silicon nitride sintered body and method for producing the same
JPS6337064B2 (en)
JP3271123B2 (en) Method for producing composite of silicon nitride and boron nitride
JPH11322438A (en) High thermal conductive silicon nitride sintered compact and its production
JPS5855110B2 (en) Manufacturing method of carbide heat-resistant ceramics
JP3124867B2 (en) Silicon nitride sintered body and method for producing the same
JPS5940788B2 (en) composite material
JP3034099B2 (en) Silicon nitride sintered body and method for producing the same
JPS63252967A (en) Manufacture of silicon nitride base sintered body
JP2746760B2 (en) Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same
JP2783720B2 (en) Silicon nitride sintered body and method for producing the same
JPH02233560A (en) High-strength calcined sialon-based compact
JP2742621B2 (en) High toughness silicon nitride sintered body
JP2704194B2 (en) Black aluminum nitride sintered body
JPH0686331B2 (en) High-strength sialon-based sintered body
JPH0575716B2 (en)
JPS5929546B2 (en) Manufacturing method of heat-resistant ceramics
JPH0559077B2 (en)