JP2742621B2 - High toughness silicon nitride sintered body - Google Patents

High toughness silicon nitride sintered body

Info

Publication number
JP2742621B2
JP2742621B2 JP1333798A JP33379889A JP2742621B2 JP 2742621 B2 JP2742621 B2 JP 2742621B2 JP 1333798 A JP1333798 A JP 1333798A JP 33379889 A JP33379889 A JP 33379889A JP 2742621 B2 JP2742621 B2 JP 2742621B2
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
toughness
particles
hard particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1333798A
Other languages
Japanese (ja)
Other versions
JPH03193667A (en
Inventor
祥二 高坂
政仁 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP1333798A priority Critical patent/JP2742621B2/en
Publication of JPH03193667A publication Critical patent/JPH03193667A/en
Application granted granted Critical
Publication of JP2742621B2 publication Critical patent/JP2742621B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高い靭性を有する窒化珪素質焼結体に関す
るもので、詳細には工具をはじめ各種の機械部品、構造
用部品に好適な材料に関する。
Description: TECHNICAL FIELD The present invention relates to a silicon nitride sintered body having a high toughness, and more specifically, a material suitable for various machine parts and structural parts including tools. About.

(従来技術) 窒化珪素質焼結体は、従来からその強度、硬度および
熱的化学的安定性に優れることから各種の機械的部品等
への応用が進められている。
(Prior Art) A silicon nitride sintered body has been conventionally applied to various mechanical parts because of its excellent strength, hardness and thermal and chemical stability.

しかしながら、窒化珪素質焼結体は抗折強度に優れる
ものの靭性が低いという問題があった。
However, the silicon nitride-based sintered body has a problem that the toughness is low although the bending strength is excellent.

そこで従来からこの窒化珪素質焼結体の靭性値をより
高め、その利用分野をさらに拡大しようとする試みがな
されている。
Therefore, conventionally, attempts have been made to further increase the toughness value of this silicon nitride-based sintered body and further expand its application field.

窒化珪素質焼結体の高靭性化にあたり、Lange等は、
一次原料中のα−Si3N4が多いほど破壊靭性値が高くな
ることを報告している(Am,Ceram,Soc,Bull.,62,1369,1
983)。また、Faber等は窒化珪素の結晶粒子のアスペク
ト比が大きい程靭性値が高くなることを報告している
(Acta,Metall.,31,565−576,577−584,1983)。
In increasing the toughness of a silicon nitride based sintered body, Lange et al.
It has been reported that the more α-Si 3 N 4 in the primary material, the higher the fracture toughness value (Am, Ceram, Soc, Bull., 62, 1369, 1
983). Faber et al. Report that the toughness value increases as the aspect ratio of silicon nitride crystal grains increases (Acta, Metall., 31, 565-576, 577-584, 1983).

また、他の方法として窒化珪素に周期律表第IV a,V
a,VI a族の炭化物、珪化物あるいは硼化物等の硬質粒子
を焼結体中に分散させ、硬質粒子によってクラッチを偏
向させようとする方法が採用されている。
Another method is to add silicon nitride to Periodic Table IVa, V
A method is adopted in which hard particles such as carbides, silicides or borides of Group a and VIa are dispersed in a sintered body, and the clutch is deflected by the hard particles.

(発明が解決しようとする問題点) しかしながら、窒化珪素粒子自体の針状化によって高
靭性化する方法では、靭性の向上効果にも限度があり、
また硬質粒子分散系においてもまったく配合しないもの
に比較して確かに靭性の向上は認められるものの、靭性
値が母材である窒化珪素粒子の粒界相に大きく影響を受
けるため、その製造条件によって靭性値が変動しやすく
硬質粒子の本来の添加効果が充分に発揮されていないと
いう問題があった。
(Problems to be Solved by the Invention) However, in the method of increasing the toughness by making the silicon nitride particles themselves acicular, the effect of improving the toughness is limited,
In addition, although the improvement in toughness is certainly recognized as compared with the hard particle dispersion system not mixed at all, the toughness value is greatly affected by the grain boundary phase of the silicon nitride particles as the base material, so depending on the manufacturing conditions, There is a problem that the toughness value tends to fluctuate and the original effect of adding hard particles is not sufficiently exhibited.

(発明の目的) よって、本発明は上記の問題点を解決することを主た
る目的とするもので、具体的には母材の特性を改善し硬
質粒子分散系本来の靭性向上効果を発揮することのでき
る高靭性の窒化珪素質焼結体を提供するにある。
(Objects of the Invention) Accordingly, the present invention has a main object of solving the above problems, and specifically, to improve the properties of the base material and exhibit the effect of improving the inherent toughness of the hard particle dispersion system. It is an object of the present invention to provide a high toughness silicon nitride sintered body that can be obtained.

(問題点を解決するための手段) 本発明者は上記問題点に対し検討を重ねた結果、焼結
体の靭性値が窒化珪素結晶粒子にかかる圧縮応力によっ
て決定され、且つこの圧縮応力が分散される硬質粒子の
熱膨張率ならびに窒化珪素の粒界の組成によって大きく
左右されることを見出し本発明に至った。
(Means for Solving the Problems) As a result of repeated studies on the above problems, the present inventors have determined that the toughness value of the sintered body is determined by the compressive stress applied to the silicon nitride crystal grains, and the compressive stress is dispersed. The present invention has been found to be greatly affected by the thermal expansion coefficient of the hard particles and the composition of the grain boundaries of silicon nitride.

即ち、本発明は、窒化珪素結晶粒子を主とし、5〜30
体積%の窒化珪素の熱膨張率の2倍以上の熱膨張率を有
する硬質粒子と、珪素−酸素−窒素−希土類元素からな
る粒界相により構成されるとともに、前記窒化珪素結晶
粒子に作用している圧縮応力が40MPa以上であり、且つ
室温における抗折強度が800MPa以上、靭性が8MPa・m
1/2以上であることを特徴とする高靭性窒化珪素質焼結
体を提供するものである。
That is, the present invention mainly comprises silicon nitride crystal particles,
It is composed of hard particles having a coefficient of thermal expansion of at least twice the coefficient of thermal expansion of silicon nitride by volume and a grain boundary phase composed of silicon-oxygen-nitrogen-rare earth element, and acts on the silicon nitride crystal particles. The compressive stress is 40MPa or more, the bending strength at room temperature is 800MPa or more, and the toughness is 8MPa ・ m.
An object of the present invention is to provide a high-toughness silicon nitride-based sintered body characterized by being 1/2 or more.

本発明をさらに詳述する。 The present invention will be described in more detail.

本発明の窒化珪素質焼結体は、基本的に窒化珪素結晶
粒子を主とし、この窒化珪素結晶相と粒界相からなる母
材中に、硬質粒子が分散された構造からなる。
The silicon nitride-based sintered body of the present invention basically has a structure in which hard particles are dispersed in a base material composed mainly of silicon nitride crystal grains and a grain boundary phase.

硬質粒子はそれ自体の熱膨張率が窒化珪素の熱膨張率
の2倍以上のもの、具体的には窒化珪素の熱膨張率を3
×10-6/℃として、6×10-6/℃以上の硬質粒子を用い
る。また、硬質粒子は高温での焼成に際し溶融しないこ
とが必要であり、その融点が焼成温度より高いことが要
求される。このような硬質粒子としてはNbSi2,TaSi2,WS
i2,MoSi2,Nb4Si,Ta5Si3,Ta2Si,Mo3Si2,Cr3C2等が挙げら
れるが、一般的に硬質粒子として知られるSiCは熱膨張
率が小さく本発明では不適当であるが、前記硬質粒子と
併用すればよい。また、ZrSi2等は融点が1500℃程度で
あり、これも本発明には不適当である。
The hard particles have a coefficient of thermal expansion of at least twice the coefficient of thermal expansion of silicon nitride.
× As 10 -6 / ° C., using a 6 × 10 -6 / ° C. or more hard particles. Further, it is necessary that the hard particles do not melt during firing at a high temperature, and their melting points are required to be higher than the firing temperature. Such hard particles include NbSi 2 , TaSi 2 , WS
i 2, MoSi 2, Nb 4 Si, Ta 5 Si 3, Ta 2 Si, but Mo 3 Si 2, Cr 3 C 2 and the like, this is commonly SiC, known as hard particles smaller coefficient of thermal expansion Although unsuitable in the invention, it may be used in combination with the hard particles. Further, ZrSi 2 and the like have a melting point of about 1500 ° C., which is also unsuitable for the present invention.

このように窒化珪素よりも熱膨張率が大きく高融点の
硬質粒子を用い、これを焼成することによって窒化珪素
と硬質粒子との熱膨張差により窒化珪素粒子に対して圧
縮応力が働きこの圧縮応力によって焼結体の靭性値を高
めることができる。硬質粒子の窒化珪素との熱膨張差は
大きいほどその圧縮応力は大きくなるが、その圧縮応力
に対し窒化珪素粒子が充分耐えることが必要であること
から特に、硬質粒子の熱膨張率は窒化珪素の2〜5倍が
望ましい。
As described above, the hard particles having a higher thermal expansion coefficient than silicon nitride and having a high melting point are used, and by firing the particles, a compressive stress acts on the silicon nitride particles due to a difference in thermal expansion between the silicon nitride and the hard particles. Thereby, the toughness value of the sintered body can be increased. The larger the difference between the thermal expansion of the hard particles and silicon nitride, the greater the compressive stress. However, since the silicon nitride particles need to withstand the compressive stress sufficiently, the thermal expansion coefficient of the hard particles is particularly high. Is preferably 2 to 5 times.

また、硬質粒子は焼結体中に占める割合が5〜30体積
%、特に5〜20体積%であることが望ましく、この割合
が5体積%より小さいと窒化珪素に作用する圧縮応力が
小さく靭性の向上が望めず、30体積%を越えると靭性は
向上するが抗折強度が小さくなる傾向にある。
It is desirable that the hard particles occupy 5 to 30% by volume, especially 5 to 20% by volume in the sintered body. If this ratio is less than 5% by volume, the compressive stress acting on silicon nitride is small and the toughness is low. When the content exceeds 30% by volume, the toughness is improved, but the bending strength tends to decrease.

また、本発明によれば、母材における粒界相が珪素−
酸素−窒素−希土類元素からなることも窒化珪素粒子に
対し大きな圧縮応力を作用させる上で重要である。この
ような特定元素からなる粒界相はそれ自体融点が高いこ
とに起因して窒化珪素粒子に高い温度から応力が作用
し、これにより窒化珪素粒子への応力を高めることがで
きる。具体的には粒界相、即ち焼結助剤のSiO2/希土類
元素酸化物のモル比が1以上であることが望ましい。こ
こでのSiO2量は窒化珪素中の不純物酸素量のSiO2換算量
と所望により外添されるSiO2粉末の合量である。
Further, according to the present invention, the grain boundary phase in the base material is silicon-
It is also important to use oxygen-nitrogen-rare earth elements to exert a large compressive stress on silicon nitride particles. Due to the high melting point of the grain boundary phase made of such a specific element, stress acts on the silicon nitride particles from a high temperature, whereby the stress on the silicon nitride particles can be increased. Specifically, it is preferable that the grain boundary phase, that is, the molar ratio of SiO 2 / rare earth element oxide of the sintering aid is 1 or more. Here, the amount of SiO 2 is the total amount of the amount of impurity oxygen in silicon nitride in terms of SiO 2 and the SiO 2 powder externally added as required.

これに対し、従来から用いられているAl2O3,MgO,Y2O3
−Al2O3等を助剤として用いるとこれらが粒界に残存し
粒界自体の融点を大きく低下させるために窒化珪素粒子
に対して大きな圧縮応力を付与することができないた
め、これら酸化物は不純物として不可避的に混入する場
合を除き実質的に存在しないことが望ましく、その量は
合量で0.5%以下であることが望ましい。
On the other hand, conventionally used Al 2 O 3 , MgO, Y 2 O 3
-If Al 2 O 3 or the like is used as an auxiliary, these oxides remain at the grain boundaries and greatly reduce the melting point of the grain boundaries themselves, so that a large compressive stress cannot be applied to the silicon nitride particles. Is desirably substantially absent except when unavoidably mixed as an impurity, and the total amount is desirably 0.5% or less.

なお、本発明で用いられる希土類元素としてはYが一
般的に使用されるが、本発明ではYb,Er,Ho,Dy等の重希
土類が焼結体自体の強度を高める点で最も望ましい。
In addition, Y is generally used as the rare earth element used in the present invention, but in the present invention, heavy rare earth elements such as Yb, Er, Ho, and Dy are most preferable in terms of increasing the strength of the sintered body itself.

このような粒界相は焼結体中1〜30体積%、特に1〜
20体積%の割合で存在することが望ましく、粒界相の割
合が1体積%未満あるいは30体積%を越えても窒化珪素
粒子に作用する応力が小さく靭性の向上は望めなくなる
傾向にある。
Such a grain boundary phase accounts for 1 to 30% by volume, particularly 1 to 30% by volume in the sintered body.
Desirably, it is present at a ratio of 20% by volume, and even if the ratio of the grain boundary phase is less than 1% by volume or exceeds 30% by volume, the stress acting on the silicon nitride particles tends to be small, and improvement in toughness tends not to be expected.

本発明によれば、前述の特定の硬質粒子および特定の
粒界相を選択することによって窒化珪素粒子に対し大き
な圧縮応力を作用させ、具体的にはその圧縮応力を40MP
a以上、特に80Mpa以上にすることによって安定した高い
靭性値を有する窒化珪素質焼結体を得ることができる。
According to the present invention, a large compressive stress is applied to silicon nitride particles by selecting the specific hard particles and the specific grain boundary phase described above.
A silicon nitride-based sintered body having a stable and high toughness value can be obtained by setting it to at least a, particularly at least 80 MPa.

本発明の窒化珪素質焼結体を製造する場合は、母材と
して窒化珪素に対し、助剤成分(粒界相形成成分)とし
て前述した希土類元素酸化物粉末の他、場合によりSiO2
粉末を最終焼結体中において粒界相の割合が前述した割
合になるように調合する。一方、硬質粒子として熱膨張
率が窒化珪素の2倍以上のものを用いて母材成分ととも
に混合する。
When producing the silicon nitride sintered body of the present invention, in addition to the rare earth element oxide powder described above as an auxiliary component (grain boundary phase forming component) and silicon dioxide as an auxiliary component (silicon nitride) as a base material, in some cases, SiO 2 may be used.
The powder is prepared so that the ratio of the grain boundary phase in the final sintered body becomes the above-mentioned ratio. On the other hand, hard particles having a coefficient of thermal expansion of at least twice that of silicon nitride are mixed with the base material component.

この時に用いられる窒化珪素粉末はα型、β型あるい
はこれらの混合物のいずれでも使用でき、またその粒径
は0.2〜1μmであることが焼結性の点で望ましい。
The silicon nitride powder used at this time may be any of α-type, β-type or a mixture thereof, and the particle size is preferably 0.2 to 1 μm from the viewpoint of sinterability.

また、硬質粒子は粒径0.5〜10μmの範囲のものを用
いることが窒化珪素への応力付加並びに強度の点で望ま
しい。
It is desirable to use hard particles having a particle size in the range of 0.5 to 10 μm from the viewpoints of applying stress to silicon nitride and strength.

上記のようにして調製された混合物は所望の成形法、
例えばプレス成形、押し出し成形、射出成形、鋳込み成
形等の手段で成形後、焼成する。
The mixture prepared as described above is a desired molding method,
For example, after molding by means such as press molding, extrusion molding, injection molding, and casting molding, firing is performed.

焼成は、窒素ガスを含む非酸化性雰囲気で1600〜1850
℃の温度が適当であり、1850℃を越えると、強度が低下
し、800MPa以上の強度が得られない。なお、窒素ガスは
その焼成温度における窒化珪素の平衡分解圧以上に設定
される。具体的焼成手段としては、常圧焼成法、ホット
プレス法、ガス圧力焼成法、熱間静水圧焼成法等公知の
方法を採用することができる。
Firing is performed at 1600 to 1850 in a non-oxidizing atmosphere containing nitrogen gas.
C. is appropriate, and if it exceeds 1850.degree. C., the strength decreases, and a strength of 800 MPa or more cannot be obtained. The nitrogen gas is set to a pressure equal to or higher than the equilibrium decomposition pressure of silicon nitride at the firing temperature. As a specific firing method, a known method such as a normal pressure firing method, a hot press method, a gas pressure firing method, and a hot isostatic pressure firing method can be employed.

また、焼成後の焼結体を再度、熱処理して粒界相に珪
素−酸素−窒素−希土類元素からなる結晶相を析出させ
ることによって窒化珪素粒子に対しより大きな応力を付
与することができる。
Further, the sintered body after firing is heat-treated again to precipitate a crystal phase composed of silicon-oxygen-nitrogen-rare earth element in the grain boundary phase, so that a larger stress can be applied to the silicon nitride particles.

以下、本発明を次の例で説明する。 Hereinafter, the present invention will be described with reference to the following examples.

(実施例) 窒化珪素粉末として平均粒径0.6μm、不純物酸素量
1重量%、α率92%の市販品を用い、これに希土類元素
酸化物としていずれも平均粒径が0.4〜0.8μmのYb2O3,
Er2O3,Y2O3,Al2O3を用い、さらに所望によってSiO2粉末
を加え、希土類元素酸化物とSiO2(窒化珪素粉末中の不
純物酸素を含む)とのモル比が2に設定した。
(Example) A commercially available silicon nitride powder having an average particle diameter of 0.6 μm, an impurity oxygen amount of 1% by weight, and an α ratio of 92% was used. Yb having an average particle diameter of 0.4 to 0.8 μm was used as a rare earth element oxide. 2 O 3 ,
Using Er 2 O 3 , Y 2 O 3 , and Al 2 O 3 , and further adding SiO 2 powder as needed, the molar ratio of the rare earth element oxide to SiO 2 (including impurity oxygen in the silicon nitride powder) is 2 Set to.

これに硬質粒子として平均粒径が2.0〜5.0μmのNbSi
2,TaSi2,WSi2,MoSi2,ZrSi2,SiCの各粉末を第1表の割合
で秤量混合した。
NbSi with an average particle size of 2.0 to 5.0 μm as hard particles
2 , TaSi 2 , WSi 2 , MoSi 2 , ZrSi 2 , and SiC powders were weighed and mixed in proportions shown in Table 1.

次にこの混合粉末を黒鉛製の型に入れ、第1表の温度
で30GPaの圧力でホットプレス焼成した。
Next, this mixed powder was placed in a graphite mold and hot-pressed at a temperature of Table 1 at a pressure of 30 GPa.

得られた焼結体を3×4×45mmの形状に研削し、X線
残留応力測定機によって窒化珪素結晶粒子に作用してい
る残留応力の測定を行った。
The obtained sintered body was ground into a shape of 3 × 4 × 45 mm, and the residual stress acting on the silicon nitride crystal particles was measured by an X-ray residual stress measuring device.

また、SEBP法によって破壊靭性値、室温における抗折
強度を測定した。
Further, the fracture toughness value and the bending strength at room temperature were measured by the SEBP method.

さらに、電子顕微鏡写真から窒化珪素結晶粒子の平均
アスペクト比の測定を行った。
Further, the average aspect ratio of the silicon nitride crystal particles was measured from an electron micrograph.

結果は第1表に示した。 The results are shown in Table 1.

第1表によれば、硬質粒子を全く含まない試料No.1は
圧縮応力は10MPa程度で、靭性値は約7MPaと低い。硬質
粒子を配合した試料においてその配合量が少ない試料N
o.2では圧縮応力が小さく靭性の向上効果が見られな
い。逆に配合量が多い試料No.8は靭性の向上は見られる
が、抗折強度の低下が生じた。
According to Table 1, Sample No. 1 containing no hard particles has a compressive stress of about 10 MPa and a low toughness value of about 7 MPa. Sample N containing a small amount of hard particles
In o.2, the compressive stress was small and no effect of improving toughness was seen. Conversely, Sample No. 8, which has a large amount of compounding, showed an improvement in toughness but a decrease in bending strength.

また、焼成温度が低い試料No.9では本発明における硬
質粒子の分散による圧縮応力の発生が小さく靭性、抗折
強度とも低い。逆に焼成温度が高い試料No.12は抗折強
度が低下する。
In sample No. 9 having a low firing temperature, the generation of compressive stress due to the dispersion of the hard particles in the present invention is small, and the toughness and the bending strength are low. Conversely, sample No. 12 having a high firing temperature has a low bending strength.

硬質粒子においてその融点が焼成温度より低い試料N
o.16および熱膨張率が窒化珪素のそれより2倍を下回る
SiCを用いた試料No.17では窒化珪素への圧縮応力が小さ
く、本発明の目的は達成されない。さらに、焼結助剤と
してAl2O3を含む試料No.19でも窒化珪素への圧縮応力が
小さいものであった。
Sample N of hard particles whose melting point is lower than the firing temperature
o.16 and coefficient of thermal expansion less than twice that of silicon nitride
In Sample No. 17 using SiC, the compressive stress on silicon nitride was small, and the object of the present invention was not achieved. Further, even in Sample No. 19 containing Al 2 O 3 as a sintering aid, the compressive stress on silicon nitride was small.

これに対し、本発明の試料はいずれも優れた靭性なら
びに強度を有するものであり、靭性値(K1c)が8MPa・
1/2以上、室温抗折強度が800MPa以上が達成された。
In contrast, the samples of the present invention all have excellent toughness and strength, and have a toughness value (K 1c ) of 8 MPa ·
m 1/2 or more and room temperature flexural strength of 800 MPa or more were achieved.

(発明の効果) 以上詳述した通り、本発明の窒化珪素質焼結体は、特
定の硬質粒子を分散させるとともに粒界相を特定の組成
から構成して窒化珪素結晶粒子に圧縮応力を作用させ、
その応力を40MPa以上に設定することによって、靭性、
抗折強度ともに優れた特性を有する焼結体を得ることが
できる。
(Effects of the Invention) As described in detail above, the silicon nitride-based sintered body of the present invention disperses specific hard particles and configures a grain boundary phase from a specific composition to apply compressive stress to silicon nitride crystal particles. Let
By setting the stress to 40MPa or more, toughness,
A sintered body having excellent properties in both bending strength can be obtained.

これにより、窒化珪素質焼結体の機械部品等の利用分
野をさらに拡げることができる。
As a result, it is possible to further expand the field of use such as mechanical parts of the silicon nitride sintered body.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】窒化珪素結晶粒子を主とし、5〜30体積%
の窒化珪素の熱膨張率の2倍以上の熱膨張率を有する硬
質粒子と、珪素−酸素−窒素−希土類元素からなる粒界
相により構成されるとともに、前記窒化珪素結晶粒子に
作用している圧縮応力が40MPa以上であり、且つ室温に
おける抗折強度が800MPa以上、靭性が8MPa・m1/2以上
であることを特徴とする高靭性窒化珪素質焼結体。
(1) Mainly silicon nitride crystal particles, 5 to 30% by volume
Hard particles having a coefficient of thermal expansion of at least twice the coefficient of thermal expansion of silicon nitride and a grain boundary phase composed of silicon-oxygen-nitrogen-rare earth element, and acting on the silicon nitride crystal particles. A high-toughness silicon nitride-based sintered body having a compressive stress of 40 MPa or more, a bending strength at room temperature of 800 MPa or more, and a toughness of 8 MPa · m 1/2 or more.
JP1333798A 1989-12-22 1989-12-22 High toughness silicon nitride sintered body Expired - Fee Related JP2742621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1333798A JP2742621B2 (en) 1989-12-22 1989-12-22 High toughness silicon nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1333798A JP2742621B2 (en) 1989-12-22 1989-12-22 High toughness silicon nitride sintered body

Publications (2)

Publication Number Publication Date
JPH03193667A JPH03193667A (en) 1991-08-23
JP2742621B2 true JP2742621B2 (en) 1998-04-22

Family

ID=18270075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1333798A Expired - Fee Related JP2742621B2 (en) 1989-12-22 1989-12-22 High toughness silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JP2742621B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5751174A (en) * 1980-09-11 1982-03-25 Sumitomo Electric Industries Sintered body for si3n4 cutting tool
JPS5841770A (en) * 1981-09-01 1983-03-11 株式会社東芝 Ceramic sintered body and manufacture
JPS5864269A (en) * 1981-10-12 1983-04-16 住友電気工業株式会社 Silicon nitride sintered body and manufacture
JPS60215575A (en) * 1984-04-10 1985-10-28 宇部興産株式会社 Manufacture of silicon nitride sintered body

Also Published As

Publication number Publication date
JPH03193667A (en) 1991-08-23

Similar Documents

Publication Publication Date Title
JP2842723B2 (en) Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same
US4963516A (en) SiC complex sintered bodies and production thereof
JP2742621B2 (en) High toughness silicon nitride sintered body
JP3208181B2 (en) Silicon nitride based sintered body
JP2736386B2 (en) Silicon nitride sintered body
JP2649220B2 (en) Silicon nitride / silicon carbide composite powder, composite compact, method for producing them, and method for producing silicon nitride / silicon carbide composite sintered body
JP3290685B2 (en) Silicon nitride based sintered body
JP3426823B2 (en) Silicon nitride sintered body and method for producing the same
JP3995284B2 (en) Silicon nitride-based sintered body and method for producing the same
JP3034100B2 (en) Silicon nitride sintered body and method for producing the same
JP2980342B2 (en) Ceramic sintered body
JP3241215B2 (en) Method for producing silicon nitride based sintered body
JPS62875B2 (en)
JP3051603B2 (en) Titanium compound sintered body
JPS63218584A (en) Ceramic sintered body
JP2892186B2 (en) Method for producing silicon nitride-silicon carbide composite sintered body
JP2665755B2 (en) Method for producing β-sialon composite ceramics
JP3318466B2 (en) Silicon nitride sintered body and method for producing the same
JP2820846B2 (en) High toughness sialon sintered body and method of manufacturing the same
US5173459A (en) Si3 N4 -A12 O3 composite sintered bodies and method of producing the same
JP2985512B2 (en) Particle-dispersed ZrO2-based ceramic material and method for producing the same
JP3207065B2 (en) Silicon nitride sintered body
JPH07223866A (en) Silicon nitride-based composite ceramic and production thereof
JP2746760B2 (en) Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same
JP2947718B2 (en) Method for producing silicon nitride based sintered body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees