JPH07223866A - Silicon nitride-based composite ceramic and production thereof - Google Patents

Silicon nitride-based composite ceramic and production thereof

Info

Publication number
JPH07223866A
JPH07223866A JP6039304A JP3930494A JPH07223866A JP H07223866 A JPH07223866 A JP H07223866A JP 6039304 A JP6039304 A JP 6039304A JP 3930494 A JP3930494 A JP 3930494A JP H07223866 A JPH07223866 A JP H07223866A
Authority
JP
Japan
Prior art keywords
silicon nitride
powder
nitride
based composite
silicide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6039304A
Other languages
Japanese (ja)
Inventor
Yoshiharu Waku
芳春 和久
Michiyuki Suzuki
道之 鈴木
Kazutoshi Shimizu
和敏 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP6039304A priority Critical patent/JPH07223866A/en
Publication of JPH07223866A publication Critical patent/JPH07223866A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a silicon nitride-based composite ceramic having high tenacity by mixing silicon nitride powder and a sintering assistant with a specific metallic powder, making the mixture into specific flat plates, molding the flat plates, and sintering the molded article to react the metallic powder with the silicon nitride. CONSTITUTION:Silicon nitride powder and a sintering assistant are compounded with metallic powder of at least one kind selected from Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, Al and their alloys. These are mixed with a ball mill, etc. This mixture is made into flat plates having d/t>4 where (d) is the minimum diameter of the flat plates and (t) is their thicknesses. These flat plates are molded and sintered at 1500-2000 deg.C. The metallic powder reacts with silicon nitride and is led into its nitride and silicide. This process works to produce a silicon nitride-based composite ceramic having a strengthened phase consisting of the metallic nitride and silicide and having flat shapes in which the minimum diameter (d) and the depth (t) have the relation of d/t>4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高靱性化を目的とした
窒化珪素基複合セラミックス及びその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon nitride-based composite ceramic and a method for producing the same for the purpose of increasing toughness.

【0002】[0002]

【従来技術及びその問題点】窒化珪素は、これまでエン
ジニアリングセラミックスとして実用化が進められてき
ているが、靱性が十分でないことからその高範囲な利用
が阻害されている。このため、靱性の向上を目的とした
複合化が図られてきており、種々の技術が開示されてい
る。例えば、結合相が高温加熱によってメタル相
(W、Mo、Cr、Al、Ta、Ti)が変成した窒化
物及び/又は珪化物である窒化珪素焼結体(特開昭58
−194775号)、Ti、V、Cr等のIVa、V
a、VIa族元素の炭化物、窒化物、珪化物、酸化物、酸
窒化物の粒子で強化された窒化珪素複合体(特開昭60
−180962号、同61−31358号)、珪化物
及び/又は炭化物の特定の形状を有する板状粒子(粒子
の主面の長径をd1、短径をd2としたときにd1/d2
10の関係にあり、その厚さがd2の5分の1以下)で
強化された窒化珪素焼結体(特開昭61−53167
号)、炭化珪素などのウイスカや長繊維で強化された
窒化珪素複合体(特開昭61−291463号、同61
−227969号、同62−12671号)等が開示さ
れている。
2. Description of the Related Art Silicon nitride has been put into practical use as engineering ceramics until now, but its toughness is not sufficient, and its use in a wide range is hindered. Therefore, compounding has been attempted for the purpose of improving toughness, and various techniques have been disclosed. For example, a silicon nitride sintered body in which the binder phase is a nitride and / or a silicide in which a metal phase (W, Mo, Cr, Al, Ta, Ti) is transformed by heating at high temperature (Japanese Patent Laid-Open No. 58-58).
-194775), Ti, V, Cr, etc. IVa, V
Silicon nitride composites reinforced with particles of carbides, nitrides, silicides, oxides, and oxynitrides of the a and VIa group elements (Japanese Patent Laid-Open No. Sho 60-62).
-180962, 61-31358), a plate-like particle having a specific shape of a silicide and / or a carbide (d 1 / d when the major axis of the major surface of the particle is d 1 and the minor axis is d 2 ). 2 <
10 and the thickness thereof is ⅕ or less of d 2 ) reinforced silicon nitride sintered body (JP-A-61-53167).
No.), a silicon nitride composite reinforced with whiskers such as silicon carbide and long fibers (JP-A-61-291463 and 61-61).
No. 227969, No. 62-12671) and the like are disclosed.

【0003】しかしながら、の高温加熱によってメタ
ル相が変成した窒化物及び/又は珪化物を結合相とする
方法では、結合相として公知である酸化物系の助剤を使
用した場合のような高密度の焼結体を得ることは困難で
あり、その結果として十分な特性は得られない。また、
の粒子強化では、十分な靱性改善は達成されておら
ず、の特定の形状を有する板状粒子で強化する方法で
は、の方法よりも靱性が改善されてはいるが、まだ十
分とはいえず、しかも特定の形状の板状粉末を製造する
工程が必要となる。さらに、のウイスカによる強化に
おいては、板状粉末と同程度の靱性向上が達成されてい
るが、ウイスカは高価であり、また、マトリックス中に
均一分散させることが困難であるため、ウイスカが塊状
となりこれが破壊源となって複合体の特性を劣化させ
る。一方、長繊維による強化では繊維配向と直角方向で
は高い靱性が得られている。しかし、長繊維は非常に高
価であり、製造工程も複雑であり、結果としてコストが
非常に高くなる欠点がある。
However, in the method of using a nitride and / or a silicide in which the metal phase is transformed by high temperature heating as a binder phase, a high density as in the case of using an oxide type auxiliary agent known as a binder phase is used. It is difficult to obtain the above sintered body, and as a result, sufficient characteristics cannot be obtained. Also,
In the particle strengthening of, the toughness is not sufficiently improved, and in the method of strengthening with the plate-like particles having the specific shape, the toughness is improved as compared with the method of, but it is not yet sufficient. Moreover, a step of producing a plate-like powder having a specific shape is required. Further, in the strengthening with whiskers, the toughness improvement as much as that of the plate-like powder has been achieved, but the whiskers are expensive and it is difficult to uniformly disperse them in the matrix, so the whiskers become lumpy. This serves as a destruction source and deteriorates the properties of the composite. On the other hand, with the reinforcement by long fibers, high toughness is obtained in the direction perpendicular to the fiber orientation. However, long fibers are very expensive, the manufacturing process is complicated, and as a result, the cost is very high.

【0004】[0004]

【発明の目的】本発明の目的は、前記問題点を解決し、
生産性が良好で靱性が大幅に向上した窒化珪素基複合セ
ラミックス及びその製造方法を提供するものである。
The object of the present invention is to solve the above problems,
Provided are a silicon nitride-based composite ceramic having good productivity and significantly improved toughness, and a method for producing the same.

【0005】[0005]

【問題点を解決するための手段】本発明は、窒化珪素基
複合セラミックスにおいて、Ti、Zr、Hf、V、N
b、Ta、Cr、Mo、Al及びそれらの合金から選ば
れる一種以上の金属の窒化物及び珪化物を強化相とし、
該強化相の形態が扁平状であり、扁平面の最小径dと厚
さtの関係が、d/t>4であることを特徴とする窒化
珪素基複合セラミックス、及び窒化珪素粉末及び焼結助
剤に、Ti、Zr、Hf、V、Nb、Ta、Cr、M
o、Al及びそれらの合金から選ばれる一種以上の金属
粉末を加えて混合することにより、該金属粉末を扁平面
の最小径dと厚さtの関係が、d/t>4を満たすよう
に扁平化させ、次いで、混合粉末を成形後、1500〜
2000℃の温度で焼結し、該金属粉末を窒化珪素と反
応させて窒化物及び珪化物に変成させることを特徴とす
る窒化珪素基複合セラミックスの製造方法に関するもの
である。
SUMMARY OF THE INVENTION The present invention is directed to a silicon nitride-based composite ceramic in which Ti, Zr, Hf, V, N
b, Ta, Cr, Mo, Al and nitrides and silicides of one or more metals selected from their alloys as a strengthening phase,
The reinforced phase has a flat shape, and the relationship between the minimum diameter d of the flat surface and the thickness t is d / t> 4. Ti, Zr, Hf, V, Nb, Ta, Cr, M as auxiliary agents
One or more metal powders selected from o, Al and their alloys are added and mixed so that the relationship between the minimum diameter d of the flat surface and the thickness t satisfies d / t> 4. After flattening and molding the mixed powder,
The present invention relates to a method for producing a silicon nitride-based composite ceramic, which comprises sintering at a temperature of 2000 ° C. and reacting the metal powder with silicon nitride to transform it into a nitride and a silicide.

【0006】本発明の窒化珪素基複合セラミックスは、
Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、Al
及びそれらの合金から選ばれる一種以上の金属の窒化物
及び珪化物を強化相とする。そして、該強化相の形態が
扁平状であり、扁平面の最小径dと厚さtの関係が、d
/t>4とすることにより靱性が大幅に向上することを
見出した。このような窒化珪素基複合セラミックスは、
窒化珪素粉末及び焼結助剤に、Ti、Zr、Hf、V、
Nb、Ta、Cr、Mo、Al及びそれらの合金から選
ばれる一種以上の金属粉末を加えて混合することによ
り、該金属粉末を扁平化させ、次いで、混合粉末を成形
後、1500〜2000℃の温度で焼結し、該金属粉末
を窒化珪素と反応させて窒化物及び珪化物に変成させ、
これらの窒化物及び珪化物を強化相とすることにより製
造できる。これは、強化相の形態が混合時の添加金属粉
末の変形状態に強く依存することを見出したことによ
る。即ち、混合時のボール等の混合媒体による機械的混
合により、添加金属粉末は扁平化するが、焼結時の窒化
珪素との反応により生成する窒化物及び珪化物の形状
は、反応前の扁平化した金属粉末の形状からほとんど変
化しないということをつきとめた。したがって、混合条
件の制御により、添加金属粉末をd/t>4を満足する
ように扁平化を行えば、生成する強化相もd/t>4を
満足する扁平粒子とすることが可能となったのである。
The silicon nitride-based composite ceramic of the present invention is
Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, Al
And nitrides and silicides of one or more metals selected from their alloys as the strengthening phase. The reinforced phase has a flat shape, and the relationship between the minimum diameter d of the flat surface and the thickness t is d
It was found that the toughness was significantly improved by setting / t> 4. Such a silicon nitride based composite ceramic is
For the silicon nitride powder and the sintering aid, Ti, Zr, Hf, V,
The metal powder is flattened by adding and mixing one or more metal powders selected from Nb, Ta, Cr, Mo, Al and alloys thereof. Sintering at a temperature, reacting the metal powder with silicon nitride to convert it to a nitride and a silicide,
It can be produced by using these nitrides and silicides as a strengthening phase. This is because it was found that the morphology of the strengthening phase strongly depends on the deformation state of the added metal powder during mixing. That is, the additive metal powder is flattened by mechanical mixing with a mixing medium such as a ball at the time of mixing, but the shape of the nitride and the silicide formed by the reaction with the silicon nitride at the time of sintering is flat. It was found that the shape of the converted metal powder hardly changed. Therefore, if the additive metal powder is flattened so as to satisfy d / t> 4 by controlling the mixing conditions, it is possible to make the strengthening phase to be flat particles that also satisfy d / t> 4. It was.

【0007】本発明で使用する窒化珪素粉末としては、
特に制限はないが、非晶質窒化珪素粉末及び/又は含窒
素シラン化合物を窒素含有不活性ガス雰囲気下または窒
素含有還元性ガス雰囲気下に焼成して得られる窒化珪素
粉末が好ましく用いられる。焼結助剤としては、Al2
3、Y23等の公知の酸化物系焼結助剤が用いられ
る。焼結助剤を添加しない場合には十分な緻密化を達成
できない。添加する金属粉末としては、焼結温度におけ
る窒化珪素との反応で窒化物及び珪化物の両方を同程度
生成すれば、その金属の一種でもよいが、通常は、窒化
物を主に生成する金属粉末と珪化物を主に生成する金属
粉末を少なくとも一種ずつ添加する。例えば、TiはT
iNを、MoはMoSi2を、TaはTaSi2を主に生
成するので、窒化物及び珪化物の両方を同程度生成する
ように添加金属の種類と割合を選べばよい。窒化物また
は珪化物のいずれかに生成が偏ると、残留N2ガスによ
るガス欠陥や残留Siによる靱性、さらには強度低下の
原因となり、十分な特性が得られない。
The silicon nitride powder used in the present invention is as follows:
Although not particularly limited, a silicon nitride powder obtained by firing an amorphous silicon nitride powder and / or a nitrogen-containing silane compound in a nitrogen-containing inert gas atmosphere or a nitrogen-containing reducing gas atmosphere is preferably used. As a sintering aid, Al 2
Known oxide-based sintering aids such as O 3 and Y 2 O 3 are used. If the sintering aid is not added, sufficient densification cannot be achieved. The metal powder to be added may be one kind of the metal, as long as it produces both nitride and silicide to the same extent by the reaction with silicon nitride at the sintering temperature, but it is usually a metal that mainly produces nitride. At least one kind of powder and a metal powder that mainly forms a silicide are added. For example, Ti is T
Since iN, Mo mainly produce MoSi 2 , and Ta mainly produces TaSi 2 , the kind and proportion of the additive metal may be selected so that both the nitride and the silicide are produced to the same extent. If the production is biased to either the nitride or the silicide, it causes gas defects due to residual N 2 gas, toughness due to residual Si, and further lowers strength, so that sufficient characteristics cannot be obtained.

【0008】窒化珪素粉末及び焼結助剤と金属粉末との
混合方法については、特に制限はなく湿式及び乾式のい
ずれも採用できる。湿式混合の場合の溶媒としてはエタ
ノ−ル、メタノール等が一般に使用される。混合装置に
ついては、ボールミル、振動ミル、アトライター、遊星
型ボールミル等を用いることができる。混合により金属
粉末は、球状から扁平状へと変形が進むが、混合時間、
回転数等の条件により変形量は変わってくるので、扁平
化の形状がd/t>4を満足するように混合条件を制御
すればよい。さらに、この混合過程で、扁平化した金属
粉末の表面に窒化珪素粉末が付着するため、焼結時の金
属粒子の造粒を防止することができ、金属と窒化珪素の
反応が促進される。なお、使用する金属粉末の粒度によ
っては、混合後も未変形の粒子が残るが、扁平化した粒
子が適当量あれば、靱性は向上する。通常は、扁平化を
容易に促進するために1〜100μmの粒度の粉末を使
用することが望ましい。窒化珪素粉末の粒度は、特に制
限はないが、焼結性のよい平均粒径1μm以下のものが
望ましい。
The method for mixing the silicon nitride powder and the sintering aid with the metal powder is not particularly limited, and both wet and dry methods can be adopted. Ethanol, methanol or the like is generally used as a solvent in the case of wet mixing. As the mixing device, a ball mill, a vibration mill, an attritor, a planetary ball mill or the like can be used. By mixing, the metal powder deforms from a spherical shape to a flat shape, but the mixing time,
Since the amount of deformation changes depending on conditions such as the number of revolutions, the mixing conditions may be controlled so that the flattened shape satisfies d / t> 4. Further, in this mixing process, since the silicon nitride powder adheres to the surface of the flattened metal powder, the granulation of the metal particles during sintering can be prevented and the reaction between the metal and silicon nitride is promoted. Although undeformed particles remain after mixing depending on the particle size of the metal powder used, if the amount of flattened particles is appropriate, the toughness is improved. Usually, it is desirable to use a powder having a particle size of 1 to 100 μm in order to easily promote flattening. The particle size of the silicon nitride powder is not particularly limited, but an average particle size of 1 μm or less with good sinterability is desirable.

【0009】得られた混合粉末を所望の形状に成形した
後、窒素、アルゴン等の非酸化性ガス雰囲気下に150
0〜2000℃の温度で焼結する。焼結方法として、C
IP成形した成形体を常圧焼結やさらにHIPで高密度
化するプロセスでは、扁平化した粒子は3次元にランダ
ムに配向するが、ホットプレス等の一軸加圧方法により
成形を行うと、扁平化した粒子はプレス方向と垂直方向
に2次元に配向するので、焼結体の特性に異方性を持た
せることもできる。強化相の体積率は、窒化珪素と添加
金属との配合割合により0.1〜95%の広範囲で選択
できるが、靱性の向上には、d/t>4を満たす粒子の
体積率を10〜60%とすることが好ましい。
After the obtained mixed powder is molded into a desired shape, it is heated to 150 in a non-oxidizing gas atmosphere such as nitrogen or argon.
Sinter at a temperature of 0-2000 ° C. As a sintering method, C
The flattened particles are three-dimensionally randomly oriented in the process of sintering the IP-molded compact under normal pressure and further densifying it by HIP. Since the converted particles are two-dimensionally oriented in the direction perpendicular to the pressing direction, the characteristics of the sintered body can be made anisotropic. The volume ratio of the strengthening phase can be selected in a wide range of 0.1 to 95% depending on the blending ratio of silicon nitride and the added metal, but in order to improve the toughness, the volume ratio of particles satisfying d / t> 4 is set to 10%. It is preferably 60%.

【0010】[0010]

【作用】本発明によれば、強化相が扁平状の形態であ
り、しかも窒化珪素及び互いに機械的性質や熱的性質の
異なる窒化物及び珪化物をそれぞれ少なくとも一種類含
むことで、公知の球状粒子による強化の場合はもちろ
ん、窒化物または珪化物のいずれか一種類で強化した場
合よりも、破壊時のクラックの粒子近傍での偏向が複雑
になり、その結果、破壊に要するエネルギ−が大きく増
加するので、靱性を大幅に向上させることができる。ま
た、窒化物は一般に高硬度であり、珪化物は耐酸化性に
優れているため、硬度、耐酸化性も同時に向上させるこ
とも可能である。さらに、強化相の形態は窒化珪素粉末
と添加金属粉末の混合中の変形を利用して扁平化が達成
できるため、強化相の形状の制御が容易であり、しかも
強化相は焼結中にIn−situで生成するため窒化珪
素との整合性が良好で、界面にポアなどの製造欠陥が導
入されない。また、異形強化粒子の製造プロセスを必要
とせず、窒化珪素単相の製造プロセスと同一であるた
め、複合化によるコスト増を抑えることができる。ま
た、前述したように強化相を2次元に配向させれば、配
向方向と垂直方向の靱性をさらに向上させることができ
る。
According to the present invention, the strengthening phase has a flattened form, and at least one of silicon nitride and at least one nitride and silicide having different mechanical properties and thermal properties from each other are contained. Deflection of cracks in the vicinity of particles becomes more complicated at the time of fracture than in the case of grain strengthening, as well as strengthening with either nitride or silicide, and as a result, the energy required for fracture is large. As a result, the toughness can be significantly improved. Further, since nitrides generally have high hardness and silicides have excellent oxidation resistance, it is possible to improve hardness and oxidation resistance at the same time. Furthermore, since the morphology of the strengthening phase can be flattened by utilizing the deformation during the mixing of the silicon nitride powder and the additive metal powder, it is easy to control the shape of the strengthening phase, and the strengthening phase is Since it is generated in-situ, it has good compatibility with silicon nitride and does not introduce manufacturing defects such as pores at the interface. In addition, the manufacturing process of the irregular-shaped reinforcing particles is not required, and the manufacturing process is the same as that of the silicon nitride single phase, so that the cost increase due to the compounding can be suppressed. Further, as described above, if the reinforcing phase is two-dimensionally oriented, the toughness in the direction perpendicular to the orientation direction can be further improved.

【0011】[0011]

【実施例】以下に実施例及び比較例を示し、本発明をさ
らに具体的に説明する。 実施例1 窒化珪素粉末(E−10、宇部興産(株)製)とチタ
ン、モリブデン粉末を、窒化珪素とチタン、モリブデン
との反応で窒化珪素の体積率が50%、珪化モリブデン
(MoSi2)と窒化チタン(TiN)が体積率でそれ
ぞれ28%と22%になるように、重量比で窒化珪素:
チタン:モリブデン=2.8:1.3:1となるように
秤量し、さらに焼結助剤としてアルミナとイットリアを
窒化珪素に対して重量比で各3%添加した。これらの混
合粉末をエタノ−ル溶媒中、窒化珪素ボールを用いて1
00時間ボールミル混合を行った。図1及び図2にボー
ルミル後の混合粉末の外観の走査型電子顕微鏡像と断面
組織の光学顕微鏡像を示す。これらより、金属粉末がボ
ールミル混合により扁平化し、さらに窒化珪素粉末が表
面に付着していることがわかる。
EXAMPLES The present invention will be described more specifically by showing Examples and Comparative Examples below. Example 1 Silicon nitride powder (E-10, manufactured by Ube Industries, Ltd.), titanium, and molybdenum powder were reacted with silicon nitride, titanium, and molybdenum to obtain a silicon nitride volume ratio of 50%, and molybdenum silicide (MoSi 2 ). And titanium nitride (TiN) have a volume ratio of 28% and 22%, respectively.
Titanium: molybdenum was weighed so as to be 2.8: 1.3: 1, and alumina and yttria were added as a sintering aid in a weight ratio of 3% to silicon nitride. These mixed powders were mixed in ethanol solvent using silicon nitride balls to
Ball mill mixing was performed for 00 hours. 1 and 2 show a scanning electron microscope image and an optical microscope image of a cross-sectional structure of the appearance of the mixed powder after the ball milling. From these, it can be seen that the metal powder is flattened by the ball mill mixing and further the silicon nitride powder is attached to the surface.

【0012】この混合粉末を黒鉛のモールドにいれ、ホ
ットプレスにより、1750℃、200kg/cm2
圧力でアルゴン中、1時間保持して焼結を行った。図3
に得られた焼結体の断面組織の光学顕微鏡像を示す。強
化相は2次元に配向し、d/t>4を満たしていること
がわかる。X線回折の結果、β−窒化珪素、窒化チタン
(TiN)と珪化モリブデン(MoSi2)の強いピー
クが得られ、強化相が主にチタンが窒化チタン(Ti
N)に、モリブデンが珪化モリブデン(MoSi2)に
反応生成した結果であることが確認された。この焼結体
の破壊靱性をSEPB法により測定したところ12MP
a√mという高い値が得られた。
This mixed powder was placed in a graphite mold and hot-pressed at 1750 ° C. under a pressure of 200 kg / cm 2 in argon for 1 hour for sintering. Figure 3
An optical microscope image of a cross-sectional structure of the obtained sintered body is shown. It can be seen that the reinforcing phase is two-dimensionally oriented and satisfies d / t> 4. As a result of X-ray diffraction, strong peaks of β-silicon nitride, titanium nitride (TiN) and molybdenum silicide (MoSi 2 ) were obtained, and the strengthening phase was mainly titanium and titanium nitride (TiN).
It was confirmed that the result is that molybdenum was generated by reaction with molybdenum silicide (MoSi 2 ) in N). The fracture toughness of this sintered body was measured by SEPB method to be 12MP.
A high value of a√m was obtained.

【0013】比較例1 実施例1と同じ組成の混合粉末で、ボールミル時間を1
0時間、24時間とし、実施例1と同じ条件で焼結を行
った。得られた焼結体の強化相の形状は10時間でd/
tが1〜2、24時間でd/tが2〜4であった。この
焼結体の破壊靱性をSEPB法により測定したところ、
それぞれ7.5MPa√m、9MPa√mであり、比較
のために同様の方法で焼結した窒化珪素単相の焼結体で
得られた6MPa√mよりは高い値となった。しかし、
実施例1の12MPa√mよりは低く、強化相の形状を
d/t>4とすることにより靱性が大きく向上すること
が確認された。
Comparative Example 1 A mixed powder having the same composition as in Example 1 was used, and the ball mill time was 1
Sintering was performed under the same conditions as in Example 1 with 0 hours and 24 hours. The shape of the strengthening phase of the obtained sintered body was d /
t was 1-2, and d / t was 2-4 in 24 hours. When the fracture toughness of this sintered body was measured by the SEPB method,
The values were 7.5 MPa√m and 9 MPa√m, respectively, which were higher than 6 MPa√m obtained for the silicon nitride single-phase sintered body sintered by the same method for comparison. But,
It was confirmed that the toughness was significantly improved by setting the shape of the strengthening phase to d / t> 4, which is lower than 12 MPa√m of Example 1.

【0014】実施例2 実施例1と同じ条件で強化相(TiNとMoSi2)の
体積率を変えて焼結体を製造した。得られた焼結体の破
壊靱性をSEPB法により測定した結果を図4に示す。
強化相の体積率が10〜60%では高い靱性値が得られ
たが、10%未満及び60%を越えた場合には靱性が低
下することがわかった。
Example 2 A sintered body was manufactured under the same conditions as in Example 1, except that the volume ratio of the strengthening phase (TiN and MoSi 2 ) was changed. The results of measuring the fracture toughness of the obtained sintered body by the SEPB method are shown in FIG.
It was found that a high toughness value was obtained when the volume ratio of the strengthening phase was 10 to 60%, but the toughness was lowered when it was less than 10% or more than 60%.

【0015】実施例3及び比較例2 実施例1と同じ条件で金属粉末の種類を変えて焼結体を
製造した。得られた焼結体の破壊靱性をSEPB法によ
り測定した結果を表1に示す。窒化物及び珪化物の両方
が同程度生成する場合には、高い靱性を示したが、窒化
物または珪化物単独の場合には、残留N2ガスによるガ
ス欠陥や残留Siのために靱性は低い値となった。
Example 3 and Comparative Example 2 A sintered body was manufactured under the same conditions as in Example 1, except that the kind of metal powder was changed. Table 1 shows the results obtained by measuring the fracture toughness of the obtained sintered body by the SEPB method. High toughness was exhibited when both nitride and silicide were produced to the same extent, but toughness was low when nitride or silicide was used alone due to gas defects due to residual N 2 gas and residual Si. It became a value.

【0016】[0016]

【表1】 [Table 1]

【図面の簡単な説明】[Brief description of drawings]

【図1】 図1は、本発明の実施例1のボールミル後の
混合粉末の粒子構造表す図面に代える走査型電子顕微鏡
写真である。
FIG. 1 is a scanning electron microscope photograph as a substitute for a drawing showing the particle structure of a mixed powder after a ball mill of Example 1 of the present invention.

【図2】 図2は、本発明の実施例1のボールミル後の
混合粉末の粒子構造表す図面に代える光学顕微鏡写真で
ある。
FIG. 2 is an optical micrograph as a substitute for a drawing showing the particle structure of the mixed powder after the ball mill of Example 1 of the present invention.

【図3】 図3は、本発明の実施例1で得られた焼結体
のセラミック材料の組織を表す図面に代える光学顕微鏡
写真である。
FIG. 3 is an optical micrograph, which is a drawing and shows the structure of the ceramic material of the sintered body obtained in Example 1 of the present invention.

【図4】 図4は、本発明の実施例2で得られた焼結体
の強化相の体積率と破壊靱性の関係を示す図である。
FIG. 4 is a diagram showing the relationship between the volume fraction of the strengthening phase and the fracture toughness of the sintered body obtained in Example 2 of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C04B 35/58 102 R 35/80 Z ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location C04B 35/58 102 R 35/80 Z

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 窒化珪素基複合セラミックスにおいて、
Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、Al
及びそれらの合金から選ばれる一種以上の金属の窒化物
及び珪化物を強化相とし、該強化相の形態が扁平状であ
り、扁平面の最小径dと厚さtの関係が、d/t>4で
あることを特徴とする窒化珪素基複合セラミックス。
1. In a silicon nitride-based composite ceramic,
Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, Al
And nitrides and silicides of one or more metals selected from these alloys as a strengthening phase, the form of the strengthening phase is flat, and the relationship between the minimum diameter d of the flat surface and the thickness t is d / t. > 4, a silicon nitride-based composite ceramics.
【請求項2】 窒化珪素粉末及び焼結助剤に、Ti、Z
r、Hf、V、Nb、Ta、Cr、Mo、Al及びそれ
らの合金から選ばれる一種以上の金属粉末を加えて混合
することにより、該金属粉末を扁平面の最小径dと厚さ
tの関係が、d/t>4を満たすように扁平化させ、次
いで、混合粉末を成形後、1500〜2000℃の温度
で焼結し、該金属粉末を窒化珪素と反応させて窒化物及
び珪化物に変成させることを特徴とする請求項1記載の
窒化珪素基複合セラミックスの製造方法。
2. A silicon nitride powder and a sintering aid containing Ti, Z
By adding and mixing one or more metal powders selected from r, Hf, V, Nb, Ta, Cr, Mo, Al and alloys thereof, the metal powders having a flat surface minimum diameter d and thickness t Flattened so that the relationship satisfies d / t> 4, and after molding the mixed powder, sinter at a temperature of 1500 to 2000 ° C. to react the metal powder with silicon nitride to form a nitride and a silicide. The method for producing a silicon nitride based composite ceramic according to claim 1, wherein the method is modified.
JP6039304A 1994-02-15 1994-02-15 Silicon nitride-based composite ceramic and production thereof Pending JPH07223866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6039304A JPH07223866A (en) 1994-02-15 1994-02-15 Silicon nitride-based composite ceramic and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6039304A JPH07223866A (en) 1994-02-15 1994-02-15 Silicon nitride-based composite ceramic and production thereof

Publications (1)

Publication Number Publication Date
JPH07223866A true JPH07223866A (en) 1995-08-22

Family

ID=12549386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6039304A Pending JPH07223866A (en) 1994-02-15 1994-02-15 Silicon nitride-based composite ceramic and production thereof

Country Status (1)

Country Link
JP (1) JPH07223866A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002526374A (en) * 1998-10-02 2002-08-20 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Manufacturing method of composite material and representative material of this composite material
CN109731639A (en) * 2018-12-25 2019-05-10 太原科技大学 A method of piercing plug for seamless steel tubes is manufactured with silicon nitride ceramics

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002526374A (en) * 1998-10-02 2002-08-20 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Manufacturing method of composite material and representative material of this composite material
JP4755342B2 (en) * 1998-10-02 2011-08-24 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Manufacturing method of composite material and representative material of this composite material
CN109731639A (en) * 2018-12-25 2019-05-10 太原科技大学 A method of piercing plug for seamless steel tubes is manufactured with silicon nitride ceramics

Similar Documents

Publication Publication Date Title
US5990025A (en) Ceramic matrix composite and method of manufacturing the same
JPH07223866A (en) Silicon nitride-based composite ceramic and production thereof
JP3995284B2 (en) Silicon nitride-based sintered body and method for producing the same
JPH01298073A (en) Boride-based ceramics
JP3045367B2 (en) High-strength and high-toughness ceramic composite material, ceramic composite powder, and method for producing them
JPH06287070A (en) Composite reinforced ceramics
JP3051603B2 (en) Titanium compound sintered body
JPS6212663A (en) Method of sintering b4c base fine body
JP3044290B2 (en) Method for producing particle-dispersed composite ceramics
JP3223822B2 (en) MgO composite ceramics and method for producing the same
JP2726694B2 (en) Conductive silicon carbide sintered body and method for producing the same
JPH05254945A (en) Production of reaction-sintered ceramic
JPH07115927B2 (en) SiC-based ceramics and method for producing the same
JPH07277843A (en) High toughness ceramic composite material, ceramic composite powder and their production
JP2742621B2 (en) High toughness silicon nitride sintered body
JP2794122B2 (en) Fiber reinforced ceramics
JPH06116045A (en) Silicon nitride sintered compact and its production
JP3045370B2 (en) High-strength and high-toughness ceramic composite material, ceramic composite powder, and method for producing them
JP3241215B2 (en) Method for producing silicon nitride based sintered body
JPH06345535A (en) Production of silicon nitride sintered compact
JP3564164B2 (en) Silicon nitride sintered body and method for producing the same
JPH09100164A (en) Boride ceramic composite material and its production
JPH07101777A (en) Silicon nitride sintered compact and its production
JPS63230570A (en) Sic-tic normal pressure sintered body and manufacture
JPH07267734A (en) Particle dispersed silicon nitride sintered compact and its production