JPH07115927B2 - SiC-based ceramics and method for producing the same - Google Patents

SiC-based ceramics and method for producing the same

Info

Publication number
JPH07115927B2
JPH07115927B2 JP62090757A JP9075787A JPH07115927B2 JP H07115927 B2 JPH07115927 B2 JP H07115927B2 JP 62090757 A JP62090757 A JP 62090757A JP 9075787 A JP9075787 A JP 9075787A JP H07115927 B2 JPH07115927 B2 JP H07115927B2
Authority
JP
Japan
Prior art keywords
sic
sintered body
weight
powder
based ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62090757A
Other languages
Japanese (ja)
Other versions
JPS63256572A (en
Inventor
幸男 竹田
貴枝 中村
孝明 鈴木
邦裕 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62090757A priority Critical patent/JPH07115927B2/en
Publication of JPS63256572A publication Critical patent/JPS63256572A/en
Publication of JPH07115927B2 publication Critical patent/JPH07115927B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はSiC基セラミツクス及びその製造方法に係り、
特に高温まで高強度、高じん性なSiC基セラミツクス及
びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of use] The present invention relates to a SiC-based ceramics and a method for producing the same,
In particular, the present invention relates to a SiC-based ceramic having high strength and high toughness up to high temperatures and a method for producing the same.

〔従来の技術〕[Conventional technology]

セラミツクスは耐熱性,耐酸化性,高強度,高硬度など
の特徴を生かし、各種の構造部品や機械部品として使用
しようとする試みが活発に行われている。このような目
的の候補材料にはSi3N4やサイアロン,SiC,ZrO2などがあ
る。中でも、SiCは他の材料に比べ、高温まで強度が大
きいという極めて優れた特徴がある材料である。しかし
ながら、これらのセラミツクスにはもろいという欠点が
あり、このためにセラミツクスが構造部品や機械部品と
して用いられない大きな理由になつている。このため、
セラミツクスのもろさを改善する検討が種々なされてい
る。例えばプロシーデイング・オブ・ナインス・アニユ
アル・コンフアレンス・オン・コンポジツテス・アンド
・アドバンスド・セラミツク・マテリアルズ,フロリダ
(1985年)〔proc.of 9th,Annual Conference on Compo
sites and Advanced Ceramic Materials,Florida(198
5)〕において、デイー・ケー・シエテイ(D.K.Shett
y)他が発表しているようにセラミツクス中に高強度の
繊維を分散させて、繊維強化する方法がある。しかし、
この方法においては母材のセラミツクスと繊維の界面の
性質が適切とは言えず、十分に大きな破壊じん性値を持
つ材料にはなつていない。また、ブレテイン・オブ・ア
メリカン・セラミツク・ソサイアテイ,第65巻,2号,第
351〜56頁(1986年)〔Am.Ceram.Soc.Bull.,62(2)35
1−56(1986)〕においてはSiCウイスカをSi3N4に複合
したセラミツクスが述べられている。この系では最も大
きな破壊じん性値12.5MPa・m1/2が得られている。この
論文にはこの材料の耐熱性については記載がないので詳
細については不明であるが、母材がSi3N4であるので、1
300℃以上の高温での使用には問題があるものと推定さ
れる。また、ブレテイン・オブ・アメリカン・セラミツ
ク・ソサイアテイ第65巻、2号、第336−38頁(1986
年)にはSiCフアイバとSiCより成るセラミツクスが述べ
られている。このセラミツクスは破壊じん性値が約25MP
a・m1/2で約1500℃の高温までこの値が保たれるなどの
点で従来のセラミツクスにはない特性が述べられてい
る。しかしこのセラミツクスはマトリツクスをCVD浸透
法で形成している。このため、構造部品や機械部品のよ
うな部材を作る方法としては量産性の点などに問題があ
る。
Ceramics have been actively used in various structural parts and mechanical parts by taking advantage of heat resistance, oxidation resistance, high strength, and high hardness. Candidate materials for such purpose include Si 3 N 4 , sialon, SiC, ZrO 2 . Among them, SiC is a material having extremely excellent characteristics that it has high strength up to high temperatures as compared with other materials. However, these ceramics have the drawback of being brittle, which is a major reason why ceramics are not used as structural or mechanical parts. For this reason,
Various studies have been made to improve the brittleness of ceramics. Proceeding of 9th Anniversary Conference on Compositates and Advanced Ceramic Materials, Florida (1985) [proc.of 9th, Annual Conference on Compo
sites and Advanced Ceramic Materials, Florida (198
5)] in DKShett
y) As announced by others, there is a method of reinforcing fibers by dispersing high-strength fibers in ceramics. But,
In this method, the properties of the interface between the ceramic of the base material and the fiber cannot be said to be appropriate, and the material does not have a sufficiently large fracture toughness value. Also, Bretain of American Ceramic Society, Volume 65, No. 2, No.
351-56 (1986) [Am. Ceram. Soc. Bull., 62 (2) 35
1-56 (1986)] describes a ceramic compound in which SiC whiskers are compounded with Si 3 N 4 . The maximum fracture toughness value of 12.5 MPa · m 1/2 was obtained in this system. Since the heat resistance of this material is not described in this paper, details are unknown, but since the base material is Si 3 N 4 ,
It is estimated that there is a problem in using at high temperature of 300 ° C or higher. Also, the Bretain of American Ceramic Society Vol. 65, No. 2, 336-38 (1986
) Describes a ceramic composed of SiC fiber and SiC. This ceramic has a fracture toughness value of about 25MP.
It is described that the ceramics does not have such a characteristic that the value can be maintained up to a high temperature of about 1500 ° C at a · m 1/2 . However, in this ceramic, the matrix is formed by the CVD infiltration method. Therefore, there is a problem in terms of mass productivity as a method for producing members such as structural parts and mechanical parts.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記した通り、従来技術にはそれぞれ高温強度やじん
性,量産性等の問題点があつた。
As described above, each of the conventional techniques has problems such as high temperature strength, toughness, mass productivity, and the like.

本発明は強度及び破壊じん性値が室温から1500℃の高温
まで大きく、しかも構造部品や機械部品を製造するのに
適したセラミツクス及びその製造方法を提供することを
目的とする。
It is an object of the present invention to provide a ceramics which has a large strength and fracture toughness value from room temperature to a high temperature of 1500 ° C. and is suitable for manufacturing structural parts and mechanical parts, and a manufacturing method thereof.

〔問題点を解決するための手段〕[Means for solving problems]

本発明を概説すれば、本発明の第1の発明はSiC基セラ
ミツクスに関する発明であつて、SiとCの化学量論比が
0.98〜1.02でX線回折では非晶質な平均粒径が0.7μm
以下である粉末組成物,焼結助剤としてのB又はB化合
物が上記粉末組成物に対してBとして0.1〜5重量%、
及び直径が0.2μm以上で長さが5μm以上のSiCウイス
カが上記粉末組成物に対して5〜40重量%の3成分を必
須成分として含有する均質な混合粉末を加熱,加圧して
なる、高密度,高強度及び高じん性の焼結体であること
を特徴とする。
Briefly describing the present invention, the first invention of the present invention relates to SiC-based ceramics, in which the stoichiometric ratio of Si and C is
0.98 to 1.02, the average particle size of amorphous is 0.7 μm by X-ray diffraction
The following powder composition, B or B compound as a sintering aid is 0.1 to 5% by weight as B with respect to the above powder composition,
And a SiC whisker having a diameter of 0.2 μm or more and a length of 5 μm or more is obtained by heating and pressing a homogeneous mixed powder containing 5 to 40% by weight of the above powder composition as an essential component. It is characterized by being a sintered body of high density, high strength and high toughness.

また、本発明の第2の発明は、上記第1の発明のSi基セ
ラミツクスを製造する方法に関する発明であつて、上記
第1の発明で記載した均質な混合粉末を、型中におい
て、非酸化性雰囲気中、10MPa以下の加圧下、1600〜200
0℃の温度で加熱及び加圧を同時に行い、高密度,高強
度及び高じん性の焼結体を生成させることを特徴とす
る。
The second invention of the present invention is an invention relating to the method for producing the Si-based ceramics of the first invention, wherein the homogeneous mixed powder described in the first invention is not oxidized in a mold. 1600 to 200 under a pressure of 10 MPa or less in a neutral atmosphere
It is characterized in that heating and pressurization are simultaneously performed at a temperature of 0 ° C. to produce a high density, high strength and high toughness sintered body.

前記した目的を達成するため、本発明においてはマトリ
ツクスとなるSiCは出発原料として易焼結性の極めて細
かい粉末を用い、2000℃以下の温度で焼結を行い、マト
リツクスの結晶粒を小さくする。更に焼結体の破壊じん
性値を大きくするために、SiCのウイスカを添加する。
更に好ましくはSiCウイスカに加え、粒径の大きいSiC粉
末を添加する。
In order to achieve the above-mentioned object, in the present invention, as the matrix, SiC is used as a starting material, which is a powder having an extremely fine sinterability and is sintered at a temperature of 2000 ° C. or less to reduce the crystal grains of the matrix. Furthermore, SiC whiskers are added to increase the fracture toughness value of the sintered body.
More preferably, in addition to SiC whiskers, SiC powder having a large particle size is added.

焼結体はSiCウイスカを添加してあるためにち密化が困
難であることから、加熱と加圧を同時に行うことによつ
てち密化する。具体的にはホツトプレス法又はホツトア
イソスタテイツクプレス(HIP)法によつて焼結する。
Since it is difficult to densify the sintered body because SiC whiskers are added, it is densified by simultaneously heating and pressing. Specifically, it is sintered by a hot press method or a hot isostatic press (HIP) method.

前記目的を達成するために本発明においては材料として
SiCウイスカとSiCをマトリツクスとする系から構成す
る。本発明においてはマトリツクスを形成するSiCは平
均粒径が0.7μm以下のSiC粉末又はSiとCの化学量論比
が0.98〜1.02の範囲にある粉末組成物を使用する。好ま
しくは粒径が0.1〜0.3μmでSiとCの量論比が0.98〜1.
02の範囲にあるX線回折によれば明りようなSiCの回折
ピークを持たない非晶質の粉末を用いる。これに焼結を
促進させるための添加剤としてB又はB化合物を0.1〜
5重量%添加する。B化合物としてはB単体,B2O3,BN,B
4C,Bp,H3BO3が好適である。B又はB化合物が添加剤と
して選ばれる理由はこれを添加することにより約1400〜
1700℃でち密化が急速に進むためで、通常SiCの焼結助
剤として良く知られているAlやBeの単体又はこれらの化
合物を添加した場合には約1400〜1700℃での急激なち密
化は起らず、このためにち密な焼結体を得ようとすると
2000℃以上の高温下で焼結することが必要である。B単
体又はB化合物を焼結助剤として添加した場合、約1400
〜1700℃の低温で急激なち密化が起る原因については明
らかでない。B単体又はB化合物の添加量がBとして0.
1〜5重量%である理由はこの量が0.1重量未満であれば
約1400〜1700℃の低温での急激なち密化が起らないため
である。また、5重量%超とあまりに多くなると焼結体
の耐酸化性や耐食性が悪くなるためである。焼結体は高
じん性化を達成するためにSiCウイスカを上記粉末組成
物に対して5〜40重量%添加する、SiCウイスカの添加
量が5重量%未満ではSiCウイスカ量が少ないために十
分な高じん性化が達成されず、逆に40重量%を越えた場
合にはSiCウイスカ量が多すぎるためにち密化が極めて
難しくなり2000℃以下の温度で3.0g/cm3以上の密度を有
する焼結体にならず、このために、得られた焼結体は強
度,破壊じん性値とも小さく、しかも、気孔が多いため
に耐酸化性も良くない。SiCウイスカは直径が0.2μm以
上で長さが5μm以上のウイスカを用いる。SiCウイス
カの直径が0.2μm未満の場合にはウイスカ自体の強度
が小さく、このために得られる焼結体の破壊じん性値は
大きくない。また、SiCウイスカは長さが5μm以上で
あることが必要である。SiCウイスカの長さが短い場合
には焼結体中を進行するクラツクがSiCウイスカの長さ
が短いために十分に止められず、したがつて焼結体の破
壊じん性値は大きくならないためである。
In order to achieve the above object, as a material in the present invention
It consists of SiC whiskers and a system that uses SiC as a matrix. In the present invention, the SiC forming the matrix is a SiC powder having an average particle size of 0.7 μm or less, or a powder composition having a stoichiometric ratio of Si and C in the range of 0.98 to 1.02. Preferably, the grain size is 0.1 to 0.3 μm and the stoichiometric ratio of Si and C is 0.98 to 1.
An amorphous powder having no SiC diffraction peak which is clear according to X-ray diffraction in the range of 02 is used. B or B compound as an additive for promoting sintering is added in an amount of 0.1 to
Add 5% by weight. As the B compound, B alone, B 2 O 3 , BN, B
4 C, Bp, H 3 BO 3 are preferred. The reason why B or B compound is selected as an additive is that by adding this, the addition of about 1400-
Since densification progresses rapidly at 1700 ° C, when Al or Be simple substance or these compounds, which are well known as sintering aids for SiC, are added, the rapid densification at about 1400 to 1700 ° C. Does not occur, so when trying to obtain a dense sintered body,
It is necessary to sinter under a high temperature of 2000 ° C or higher. When B alone or B compound is added as a sintering aid, approximately 1400
It is not clear what causes the rapid densification at temperatures as low as ~ 1700 ℃. The amount of B alone or B compound added as B is 0.
The reason why it is 1 to 5% by weight is that if this amount is less than 0.1% by weight, rapid densification does not occur at low temperatures of about 1400 to 1700 ° C. Further, if it exceeds 5% by weight, too much, the oxidation resistance and corrosion resistance of the sintered body deteriorate. For the sintered body, 5-40% by weight of SiC whiskers is added to the above powder composition in order to achieve high toughness. If the amount of SiC whiskers added is less than 5% by weight, the amount of SiC whiskers is small enough. If it does not achieve high toughness, on the other hand, if it exceeds 40% by weight, it will be extremely difficult to densify it because the amount of SiC whiskers is too large, and a density of 3.0 g / cm 3 or more will be obtained at a temperature of 2000 ° C or less. Therefore, the obtained sintered body is low in both strength and fracture toughness, and has a large number of pores, so that the oxidation resistance is not good. For the SiC whiskers, use whiskers with a diameter of 0.2 μm or more and a length of 5 μm or more. If the diameter of the SiC whisker is less than 0.2 μm, the strength of the whisker itself is low, and the fracture toughness value of the resulting sintered body is not large. Moreover, the length of the SiC whiskers must be 5 μm or more. When the length of the SiC whisker is short, the crack that progresses in the sintered body cannot be sufficiently stopped due to the short length of the SiC whisker, and therefore the fracture toughness value of the sintered body does not increase. is there.

また、焼結体の破壊じん性値をより大きくするために、
大きなSiC結晶粒、具体的には粒径が5〜80μmの粒子
を上記の粉末組成物に対して30重量%未満添加すること
が効果的である。この大きなSiC結晶粒はマトリツクス
中の小さい結晶粒の中を進行してきたクラツクを止めた
り、大きく折れ曲がらせる効果があり、このために破壊
じん性値が大きくなる。粒径が5μmより小さい結晶粒
であると破壊じん性値の向上に大きな効果がないためで
ある。また、粒径が80μmより大きい場合にはこのSiC
粒子自身が大きすぎるため、焼結体中ではこの大きすぎ
るSiC結晶粒が破壊発生源となつて強度が小さくなつて
しまう。また、大きなSiC結晶粒の添加量が5重量%以
下の場合には破壊じん性の向上に対する効果がほとんど
なく、30重量%以上添加する場合には添加量が多過ぎる
ために2000℃以上の高温で焼結しないとち密化した焼結
体にならない。このため、得られる焼結体の強度,破壊
じん性値とも小さく、しかも耐酸化性も劣る。
In order to increase the fracture toughness value of the sintered body,
It is effective to add large SiC crystal grains, specifically particles having a grain size of 5 to 80 μm, in an amount of less than 30% by weight with respect to the above powder composition. This large SiC crystal grain has the effect of stopping cracks that have progressed through the small crystal grain in the matrix and causing it to bend significantly, which increases the fracture toughness value. This is because if the grain size is smaller than 5 μm, there is no great effect in improving the fracture toughness value. If the particle size is larger than 80 μm, the SiC
Since the particles themselves are too large, the SiC crystal grains that are too large serve as a fracture generation source in the sintered body, resulting in low strength. Also, if the addition amount of large SiC crystal grains is 5% by weight or less, there is almost no effect on the improvement of fracture toughness, and if the addition amount is 30% by weight or more, the addition amount is too high and the temperature is higher than 2000 ° C. If it is not sintered, it will not become a dense sintered body. Therefore, the strength and fracture toughness of the obtained sintered body are small, and the oxidation resistance is poor.

本発明の焼結体は非酸化性の雰囲気中、具体的には真空
中、アルゴン,窒素,水素,ヘリウムガスのいずれか中
で製造できる。これらガスは混合して使用してもよい。
また、焼結体はホツトプレス法又はHIP法のいずれかで
製造することができる。このとき、焼結温度は1600〜20
00℃の温度範囲が選ばれる。この理由は温度が1600℃よ
り低い場合には十分にち密化した焼結体を得ることがで
きないためで、得られた焼結体は強度,破壊じん性値と
も小さく、耐酸化性も劣る。温度が2000℃を越えると焼
結体のち密化は十分に進行するが、同時にSiCマトリツ
クスの粒成長も起る。また、SiCウイスカとSiCマトリツ
クスの結晶粒間の化学的結合も極めて強くなり、焼結体
中をクラツクが進行するとき、破壊のモードは粒内破壊
が多くなり、マトリツクス中からのSiCウイスカの引き
抜けも起り難くなつて大きな破壊じん性値が得られなく
なる。焼結時には圧力を加えてち密化を促進する。加え
る圧力はSiCウイスカの量や5〜80μmの大きなSiC結晶
粒の添加量によつてもち密化し易さが異なるが、ホツト
プレス法の場合、少なくとも10MPa以上の圧力を加えな
いとち密な焼結体を得ることができない。HIP法の場
合、通常ホツトプレス法より大きい圧力を加えることが
できるため、ち密化はより容易に行うことができ、更に
複雑な形状の部品の焼結を行うことができる。
The sintered body of the present invention can be manufactured in a non-oxidizing atmosphere, specifically in vacuum, in any of argon, nitrogen, hydrogen and helium gas. These gases may be mixed and used.
The sintered body can be manufactured by either the hot press method or the HIP method. At this time, the sintering temperature is 1600 ~ 20
A temperature range of 00 ° C is chosen. The reason for this is that if the temperature is lower than 1600 ° C, it is not possible to obtain a sufficiently compacted sintered body, and the obtained sintered body has low strength and fracture toughness values and poor oxidation resistance. When the temperature exceeds 2000 ° C, the densification of the sintered body proceeds sufficiently, but at the same time, grain growth of the SiC matrix also occurs. In addition, the chemical bond between the crystal grains of the SiC whiskers and the SiC matrix becomes extremely strong, and when cracks progress in the sintered body, the mode of failure is intragranular fracture, and the SiC whiskers are pulled from the matrix. It is also difficult for slip-out to occur and a large fracture toughness value cannot be obtained. Pressure is applied during sintering to promote densification. The pressure applied depends on the amount of SiC whiskers and the amount of large SiC crystal grains of 5 to 80 μm, and the degree of densification varies, but in the case of the hot press method, a dense sintered body must be applied if pressure of at least 10 MPa is not applied. Can't get In the case of the HIP method, a pressure higher than that of the hot press method can be applied, so that the densification can be performed more easily, and the parts having a more complicated shape can be sintered.

〔実施例〕〔Example〕

以下、本発明を実施例により更に具体的に説明するが、
本発明はこれら実施例に限定されない。
Hereinafter, the present invention will be described in more detail with reference to Examples.
The present invention is not limited to these examples.

実施例1 Siの粉末とエタンガスを、水素を含むアルゴンガス雰囲
気中、1300℃で反応させて、SiとCの化学量論比が0.99
で粒径が0.1〜0.3μmの微粉末を得た。この粉末はX線
回折すると非晶質(以下、非晶質SiC粉末と称する)で
あつた。この粉末に平均粒径1.0μmのB4C粉末を1重量
%と直径が0.5μm前後で長さが10〜100μm前後のSiC
ウイスカを20重量%添加し、更にアセトンを加えて懸濁
液とし、超音波を加えながらかくはん機でかきまぜ、全
体が均質な混合物になるようにした。更に、かきまぜを
続けながらアセトンを揮散させ、均質な粉末混合物を得
た。該粉末混合物は黒鉛型の中に入れ、真空中で30MPa
の圧力を加えながら、室温から1800℃まで約1.5時間で
昇温し、この温度と圧力で0.5時間ホツトプレスして焼
結体を得た。該焼結体はX線回折の結果、主成分はβ型
のSiCより成ることが判明した。また、焼結体はほとん
どが粒径1μm以下の微細な等軸の結晶粒から成り、こ
の中にSiCウイスカが分散した微構造になつている。更
に、上記と同様にしてSiCウイスカの量を、2〜50重量
%の範囲で変えて焼結体を製作した。
Example 1 Si powder and ethane gas were reacted at 1300 ° C. in an argon gas atmosphere containing hydrogen, and the stoichiometric ratio of Si and C was 0.99.
As a result, a fine powder having a particle size of 0.1 to 0.3 μm was obtained. This powder was amorphous by X-ray diffraction (hereinafter referred to as amorphous SiC powder). 1% by weight of B 4 C powder having an average particle size of 1.0 μm, SiC having a diameter of about 0.5 μm and a length of about 10 to 100 μm were added to this powder.
Whiskers were added in an amount of 20% by weight, and acetone was further added to obtain a suspension, which was stirred with an agitator while applying ultrasonic waves so that the whole mixture became a homogeneous mixture. Further, acetone was volatilized while continuing stirring to obtain a homogeneous powder mixture. The powder mixture was placed in a graphite mold and placed under vacuum at 30 MPa.
While increasing the pressure, the temperature was raised from room temperature to 1800 ° C. in about 1.5 hours, and hot-pressed at this temperature and pressure for 0.5 hour to obtain a sintered body. As a result of X-ray diffraction, the sintered body was found to be composed mainly of β-type SiC. Further, most of the sintered bodies are composed of fine equiaxed crystal grains having a grain size of 1 μm or less, and have a fine structure in which SiC whiskers are dispersed. Further, in the same manner as above, the amount of SiC whiskers was changed within the range of 2 to 50% by weight to manufacture sintered bodies.

第1表に得られたSiC焼結体の特性である。添加するSiC
ウイスカの量が5〜40重量%のとき、高強度で破壊じん
性値の大きい焼結体が得られる。
Table 1 shows the characteristics of the obtained SiC sintered body. SiC to add
When the amount of whiskers is 5 to 40% by weight, a sintered body having high strength and high fracture toughness value can be obtained.

実施例2 実施例1において用いた非晶質SiC粉末に平均粒径が1.0
μmのB4C粉末を0.05〜10重量%の範囲で変えて添加
し、更に実施例1で用いたものと同じSiCウイスカを20
重量%添加し、以下実施例1と同様にしてホツトプレス
して焼結体を得た。該焼結体はX線回折の結果、主成分
はβ−SiCより成ることがわかつた。また、焼結体の微
構造は実施例1とほぼ同様であつた。
Example 2 The amorphous SiC powder used in Example 1 has an average particle size of 1.0.
20 μm of B 4 C powder of 0.05 μm to 10% by weight was added, and the same SiC whiskers as those used in Example 1 were added.
% By weight, and hot pressed in the same manner as in Example 1 to obtain a sintered body. As a result of X-ray diffraction, it was found that the sintered body was composed mainly of β-SiC. The microstructure of the sintered body was almost the same as in Example 1.

第2表は得られたSiC焼結体の特性である。添加するB4C
の量が0.13〜6.4wt%(Bとして0.1〜5重量%)のと
き、高強度で破壊じん性値が大きく、しかも耐酸化性の
大きい焼結体が得られる。
Table 2 shows the characteristics of the obtained SiC sintered body. Add B 4 C
When the amount is 0.13 to 6.4 wt% (0.1 to 5 wt% as B), a sintered body having high strength, high fracture toughness value, and high oxidation resistance can be obtained.

注1)酸化膜厚さは試料を大気中、1500℃で100h酸化し
た後の厚さ 実施例3 実施例1において用いた非晶質SiC粉末に平均粒径が1.0
μmのB4C粉末を1重量%と実施例1で用いたものと同
じSiCウイスカを20重量%を添加し、更に平均粒径が20
μmのα型のSiC粉末を2〜40重量%の範囲で変えて、
以下の操作は実施例1に記載したものと同様の要領でホ
ツトプレスして焼結体を得た。本実施例ではホツトプレ
スの温度を1900℃とし、圧力を50MPaと大きくした。焼
結体はX線回折の結果、主成分はβ−SiCとα−SiCであ
ることが判明した。また、焼結体の微構造は粒径が1μ
m以下の微細な等軸の結晶粒の中にSiCウイスカと平均
粒径20μmの粗大なα型のSiC結晶粒が分散したものに
なつている。
Note 1) The oxide film thickness is the thickness after 100 hours of oxidation of the sample in the air at 1500 ° C. Example 3 The amorphous SiC powder used in Example 1 has an average particle size of 1.0.
1% by weight of B 4 C powder of μm and 20% by weight of the same SiC whiskers used in Example 1 were added, and the average particle size was 20
By changing the α-type SiC powder of μm in the range of 2 to 40% by weight,
The following operation was hot pressed in the same manner as described in Example 1 to obtain a sintered body. In this example, the temperature of the hot press was set to 1900 ° C. and the pressure was increased to 50 MPa. As a result of X-ray diffraction, the sintered body was found to have β-SiC and α-SiC as the main components. The microstructure of the sintered body has a grain size of 1μ.
SiC whiskers and coarse α-type SiC crystal grains with an average grain size of 20 μm are dispersed in fine equiaxed crystal grains of m or less.

第3表は得られた焼結体の特性である。添加するα型の
SiC粉末の量が30重量%未満のとき、高強度で破壊じん
性値の大きい焼結体が得られる。
Table 3 shows the characteristics of the obtained sintered body. Α type to be added
When the amount of SiC powder is less than 30% by weight, a sintered body having high strength and high fracture toughness value can be obtained.

更に、上記と同様にしてα型のSiC粉末の添加量を20重
量%とし、平均粒径の異なる粉末を添加して焼結体を得
た。この場合の焼結体はβ−SiCを主成分とするものか
ら成り、微構造もほぼ上記と同様であつた。
Further, similarly to the above, the addition amount of α-type SiC powder was set to 20% by weight, and powders having different average particle diameters were added to obtain a sintered body. The sintered body in this case was composed mainly of β-SiC, and the microstructure was almost the same as above.

第4表は得られた焼結体の特性である。添加するα型の
SiC粉末の粒径が5〜80μmのとき、高強度で破壊じん
性値の大きい焼結体が得られる。
Table 4 shows the characteristics of the obtained sintered body. Α type to be added
When the grain size of the SiC powder is 5 to 80 μm, a sintered body having high strength and high fracture toughness value can be obtained.

実施例4 非晶質SiC粉末は実施例1と同様の方法で得たが、本実
施例においては非晶質SiC粉末の粒径が異なる。該非晶
質SiC粉末に平均粒径が1.0μmのB4C粉末を1重量%と
直径が0.5μm前後で長さが10〜100μm前後のSiCウイ
スカを20重量%と平均粒径が20μmのα型SiC粉末を20
重量%を添加し、以下の操作は実施例1と同様にしてホ
ツトプレスして焼結体を得た。本実施例におけるホツト
プレスの条件は温度を1800℃,圧力を50MPaとした。得
られた焼結体はX線回折の結果,主成分はβ−SiCとα
−SiCになつていた。
Example 4 Amorphous SiC powder was obtained in the same manner as in Example 1, but the grain size of the amorphous SiC powder was different in this example. 1% by weight of B 4 C powder having an average particle size of 1.0 μm, 20% by weight of SiC whiskers having a diameter of around 0.5 μm and a length of around 10 to 100 μm, and α having an average particle size of 20 μm in the amorphous SiC powder. 20 type SiC powder
% Was added, and the following operations were hot pressed in the same manner as in Example 1 to obtain a sintered body. The hot press conditions in this example were a temperature of 1800 ° C. and a pressure of 50 MPa. As a result of X-ray diffraction, the main components of the obtained sintered body were β-SiC and α.
-It had become SiC.

第5表は得られた焼結体の特性である。非晶質SiCの粒
径が0.7μm以下であればち密化することができ、高強
度で破壊じん性値の大きな焼結体を得ることができる。
Table 5 shows the characteristics of the obtained sintered body. If the grain size of the amorphous SiC is 0.7 μm or less, it can be densified, and a sintered body with high strength and large fracture toughness value can be obtained.

実施例5 非晶質SiC粉末は実施例1に記載したものと同一の粉末
を用い、これに平均粒径が1.0μmのB4C粉末を1重量%
とアスペクト比が約25で直径の異なるSiCウイスカを20
重量%添加し、以下の操作は実施例1に記載したものと
同様にしてホツトプレスして焼結体を得た。ホツトプレ
ス条件は温度を1800℃,圧力を30MPaとした。
Example 5 As the amorphous SiC powder, the same powder as that described in Example 1 was used, and 1% by weight of B 4 C powder having an average particle size of 1.0 μm was used.
And 20 SiC whiskers with different aspect ratios and different diameters
% By weight, and the following operation was hot pressed in the same manner as described in Example 1 to obtain a sintered body. The hot press conditions were a temperature of 1800 ° C and a pressure of 30 MPa.

第6表は得られた焼結体の特性である。SiCウイスカは
直径が0.2μm以上のとき、高強度で破壊じん性値の大
きな焼結体になる。
Table 6 shows the characteristics of the obtained sintered body. When the SiC whiskers have a diameter of 0.2 μm or more, they become a sintered body with high strength and high fracture toughness.

実施例6 実施例1に記載したものと同様にして焼結体を製作し
た。本実施例においてはSiCウイスカの量は20重量%と
一定にし、ホツトプレスの条件を変えた。
Example 6 A sintered body was manufactured in the same manner as that described in Example 1. In this example, the amount of SiC whiskers was kept constant at 20% by weight, and the hot press conditions were changed.

第7表は得られた焼結体の特性である。焼結体はホツト
プレス温度が1600〜2000℃で圧力が10MPa以上のとき、
高強度で破壊じん性値が大きい。
Table 7 shows the characteristics of the obtained sintered body. When the hot press temperature is 1600 to 2000 ° C and the pressure is 10 MPa or more,
High strength and high fracture toughness value.

実施例7 実施例1に記載したものと同一の方法により粉末混合物
を得た。該粉末混合物はゴム型の中に入れ、200MPaの圧
力を加えてコールド・アイソスタテイツク・プレス法に
より成形した。その後所望形状に機械加工した。該加工
物はパイレツクスグラス中に真空封入した。次いでガラ
ス封入した成形体はアルゴン雰囲気中でHIP法により焼
結した。HIPの条件は温度を1800℃,圧力を200MPaと
し、0.5h保持した。得られた焼結体はX線回折の結果、
主成分はβ型のSiCであることが判明した。また、焼結
体の微細構造は実施例1と同様であつた。
Example 7 A powder mixture was obtained by the same method as described in Example 1. The powder mixture was placed in a rubber mold, and a pressure of 200 MPa was applied to the powder mixture to mold it by a cold isostatic pressing method. It was then machined to the desired shape. The processed product was vacuum-sealed in a Pyrex glass. Next, the glass-encapsulated compact was sintered by the HIP method in an argon atmosphere. The HIP conditions were a temperature of 1800 ° C, a pressure of 200 MPa, and a holding time of 0.5 h. As a result of X-ray diffraction, the obtained sintered body was
It was found that the main component was β-type SiC. The fine structure of the sintered body was the same as in Example 1.

第8表は得られた焼結体の特性である。SiCウイスカの
添加量が5〜40重量%のとき、高強度で破壊じん性値の
大きな結晶体を得ることができる。
Table 8 shows the characteristics of the obtained sintered body. When the amount of SiC whiskers added is 5 to 40% by weight, it is possible to obtain a crystal having high strength and a large fracture toughness value.

更に、実施例3と同様にして得た粒径の大きいα−SiC
粉末を添加した粉末組成物を上記と同様にしてHIP処理
して焼結体を得た。得られた焼結体はX線回折の結果、
β−SiCとα−SiCが主成分であることが判明した。ま
た、焼結体の微構造は実施例3の場合と同様であつた。
また、得られた焼結体の特性は第3表及び第4表に示し
たホツトプレスの場合とほぼ同様であつた。
Furthermore, α-SiC having a large particle size obtained in the same manner as in Example 3
The powder composition to which the powder was added was HIP-treated in the same manner as above to obtain a sintered body. As a result of X-ray diffraction, the obtained sintered body was
It was found that β-SiC and α-SiC are the main components. The microstructure of the sintered body was the same as in Example 3.
The characteristics of the obtained sintered body were almost the same as those of the hot press shown in Tables 3 and 4.

実施例9 実施例1においてSiCウイスカの添加量を20重量%一定
とし、焼結助剤をB4CからB単体、B2O3,BN,BP,H3BO3
変えて焼結体を得た。この場合、得られた焼結体の特性
はいずれもB4Cを焼結助剤とした場合と同様であつた。
Example 9 In Example 1, the amount of SiC whiskers added was kept constant at 20% by weight, and the sintering aid was changed from B 4 C to B alone, B 2 O 3 , BN, BP, H 3 BO 3 to obtain a sintered body. Got In this case, the properties of the obtained sintered bodies were all the same as those when B 4 C was used as the sintering aid.

実施例10 実施例1においてSiCウイスカの添加量を20重量%一定
とし、ホツトプレス時の雰囲気を変えて焼結体を得た。
ホツトプレスの雰囲気はアルゴンガス,窒素ガス,水素
ガス,ヘリウムガスの雰囲気とした。得られた焼結体の
特性はいずれも真空中の場合と同様であつた。
Example 10 A sintered body was obtained in the same manner as in Example 1, except that the amount of SiC whiskers added was kept constant at 20% by weight and the atmosphere during hot pressing was changed.
The atmosphere of the hot press was an atmosphere of argon gas, nitrogen gas, hydrogen gas, and helium gas. The properties of the obtained sintered bodies were all the same as those in vacuum.

比較例1 平均粒径0.3μmのβ型の結晶形を持つSiC粉末に焼結助
剤として平均粒径が1μmのB4Cを添加して混合,成形
したのち、黒鉛型の中で温度2100℃,圧力30MPaで0.5h
ホツトプレスして焼結体を得た。焼結体は室温曲げ強さ
560MPa,1500℃での曲げ強さ577MPaで破壊じん性値は室
温から1500℃まで3.8〜4.1の範囲にあつた。
Comparative Example 1 B 4 C having an average particle size of 1 μm was added as a sintering aid to SiC powder having a β-type crystal form having an average particle size of 0.3 μm, and the mixture was mixed and molded. 0.5h at ℃ and pressure of 30MPa
Hot-pressed to obtain a sintered body. Room temperature bending strength
The fracture toughness value was in the range of 3.8 to 4.1 from room temperature to 1500 ℃ at a bending strength of 577MPa at 560MPa and 1500 ℃.

実施例11 本発明によつて得た焼結体は焼結温度が1600〜2000℃と
従来公知であるち密質なSiC焼結体に比べ数百℃低い。
このため、焼結体中の結晶粒同志の結合力が従来法のSi
C焼結体に比べ弱い。このために、本発明のSiC焼結体は
複合したSiCウイスカがクラツクの伝播時に焼結体中よ
り引き抜け易く、このために、本発明の焼結体の破壊じ
ん性値が大きくなつた。本発明の焼結体の結晶粒同志の
結合力が従来法のSiC焼結体に比べ弱いことの利点は本
発明のSiC焼結体の機械加工性に優れるところにある。
すなわち、本発明の第1表のNO.3の焼結体、第3表のN
o.13の焼結体、従来法のSiC焼結体をダイヤモンド砥石
で研削したときの研削抵抗を比較した。従来法のSiC焼
結体を研削するときの加工抵抗を1としたときNO.3の焼
結体は0.7,NO.13の焼結体は0.8倍の加工抵抗であつた。
Example 11 The sintered body obtained according to the present invention has a sintering temperature of 1600 to 2000 ° C., which is lower than that of a conventionally known dense SiC sintered body by several hundred degrees Celsius.
Therefore, the bonding force between the crystal grains in the sintered body is
Weaker than C sintered body. Therefore, in the SiC sintered body of the present invention, the composite SiC whiskers are more easily pulled out from the sintered body during the propagation of cracks, and the fracture toughness value of the sintered body of the present invention is increased. The advantage of the bonding strength between the crystal grains of the sintered body of the present invention being weaker than that of the conventional SiC sintered body lies in the excellent machinability of the SiC sintered body of the present invention.
That is, the sintered body of No. 3 in Table 1 and the N in Table 3 of the present invention
The grinding resistances of the o.13 sintered body and the conventional SiC sintered body when ground with a diamond grindstone were compared. When the working resistance when grinding the SiC sintered body of the conventional method was set to 1, the sintered body of NO.3 had a working resistance of 0.7, and the sintered body of NO.13 had a working resistance of 0.8 times.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明によれば2000℃以下の温度
においてち密化したSiCウイスカを複合したSiC焼結体が
得られるので、極めて経済的である。特に、焼結体を18
00℃でホツトプレスして製作する場合、通常のSiCのホ
ツトプレス焼結体を製造する場合に比べ、温度が300℃
低温にでき、電力が約20%節約できるという顕著な効果
が奏せられる。
As described above, according to the present invention, a SiC sintered body that is a composite of SiC whiskers densified at a temperature of 2000 ° C. or less can be obtained, which is extremely economical. In particular, 18
In case of hot pressing at 00 ℃, the temperature is 300 ℃, compared with the case of manufacturing hot-press sintered SiC.
It has the remarkable effect of being able to lower the temperature and save about 20% of electricity.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】SiとCの化学量論比が0.98〜1.02でX線回
折では非晶質な平均粒径が0.7μm以下である粉末組成
物,焼結助剤としてのB又はB化合物が上記粉末組成物
に対してBとして0.1〜5重量%、及び直径が0.2μm以
上で長さが5μm以上のSiCウイスカが上記粉末組成物
に対して5〜40重量%の3成分を必須成分として含有す
る均質な混合粉末を加熱,加圧してなる、高密度、高強
度及び高じん性の焼結体であることを特徴とするSiC基
セラミツクス。
1. A powder composition having a stoichiometric ratio of Si and C of 0.98 to 1.02 and an amorphous average particle size of 0.7 μm or less in X-ray diffraction, and B or a B compound as a sintering aid. 0.1 to 5% by weight of B for the above powder composition, and 5 to 40% by weight of SiC whiskers having a diameter of 0.2 μm or more and a length of 5 μm or more as essential components for the above powder composition. A SiC-based ceramics characterized by being a high-density, high-strength and high-toughness sintered body obtained by heating and pressurizing the contained homogeneous mixed powder.
【請求項2】該混合粉末が、粒径が5〜80μmのSiC粉
末を、該粉末組成物に対して30重量%未満含有している
特許請求の範囲第1項記載のSiC基セラミツクス。
2. The SiC-based ceramics according to claim 1, wherein the mixed powder contains less than 30% by weight of SiC powder having a particle diameter of 5 to 80 μm with respect to the powder composition.
【請求項3】該焼結体が、3.0g/cm3以上の密度、400MPa
以上の室温から1500℃までの3点曲げ強さ、及び10MPa
・m1/2以上の破壊じん性値を有する特許請求の範囲第
1項又は第2項記載のSiC基セラミツクス。
3. The sintered body has a density of 3.0 g / cm 3 or more and 400 MPa.
Three-point bending strength from room temperature to 1500 ℃ above, and 10 MPa
The SiC-based ceramics according to claim 1 or 2, which has a fracture toughness value of m 1/2 or more.
【請求項4】該焼結助剤が、B単体,B2O3,BN,B4C,BP、
又はH3BO3である特許請求の範囲第1項〜第3項のいず
れか1項に記載のSiC基セラミツクス。
4. The sintering aid is B simple substance, B 2 O 3 , BN, B 4 C, BP,
Alternatively, the SiC-based ceramics according to any one of claims 1 to 3, which is H 3 BO 3 .
【請求項5】SiとCの化学量論比が0.98〜1.02でX線回
折では非晶質な平均粒径が0.7μm以下である粉末組成
物,焼結助剤としてのB又はB化合物が上記粉末組成物
に対してBとして0.1〜5重量%、及び直径が0.2μm以
上で長さが5μm以上のSiCウイスカが上記粉末組成物
に対して5〜40重量%の3成分を必須成分として含有す
る均質な混合粉末を、型中において、非酸化性雰囲気
中、10MPa以下の加圧下、1600〜2000℃の温度で加熱及
び加圧を同時に行い、高密度,高強度及び高じん性の焼
結体を生成させることを特徴とするSiC基セラミツクス
の製造方法。
5. A powder composition having a stoichiometric ratio of Si to C of 0.98 to 1.02 and an amorphous average particle size of 0.7 μm or less in X-ray diffraction, and B or a B compound as a sintering aid. 0.1 to 5% by weight of B for the above powder composition, and 5 to 40% by weight of SiC whiskers having a diameter of 0.2 μm or more and a length of 5 μm or more as essential components for the above powder composition. The homogeneous mixed powder contained in the mold is heated in a non-oxidizing atmosphere under a pressure of 10 MPa or less at a temperature of 1600 to 2000 ° C at the same time and pressed to obtain a high density, high strength and high toughness baking. A method for producing a SiC-based ceramics, which comprises forming a bond.
【請求項6】該混合粉末が、粒径が5〜80μmのSiC粉
末を、該粉末組成物に対して30重量%未満含有している
特許請求の範囲第5項記載のSiC基セラミツクスの製造
法方。
6. The production of SiC-based ceramics according to claim 5, wherein the mixed powder contains less than 30% by weight of SiC powder having a particle size of 5 to 80 μm with respect to the powder composition. Happo.
【請求項7】該焼結を、ホツトプレス法又はホツトアイ
ソスタテイツクプレス法で行う特許請求の範囲第5項又
は第6項記載のSiC基セラミツクスの製造方法。
7. The method for producing a SiC-based ceramic according to claim 5 or 6, wherein the sintering is carried out by a hot press method or a hot isostatic press method.
【請求項8】該非酸化性雰囲気が、真空,アルゴンガ
ス,窒素ガス,水素ガス,ヘリウムガスである特許請求
の範囲第5項〜第7項のいずれか1項に記載のSiC基セ
ラミツクスの製造方法。
8. The production of SiC-based ceramics according to any one of claims 5 to 7, wherein the non-oxidizing atmosphere is vacuum, argon gas, nitrogen gas, hydrogen gas, or helium gas. Method.
JP62090757A 1987-04-15 1987-04-15 SiC-based ceramics and method for producing the same Expired - Lifetime JPH07115927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62090757A JPH07115927B2 (en) 1987-04-15 1987-04-15 SiC-based ceramics and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62090757A JPH07115927B2 (en) 1987-04-15 1987-04-15 SiC-based ceramics and method for producing the same

Publications (2)

Publication Number Publication Date
JPS63256572A JPS63256572A (en) 1988-10-24
JPH07115927B2 true JPH07115927B2 (en) 1995-12-13

Family

ID=14007477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62090757A Expired - Lifetime JPH07115927B2 (en) 1987-04-15 1987-04-15 SiC-based ceramics and method for producing the same

Country Status (1)

Country Link
JP (1) JPH07115927B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01230475A (en) * 1987-11-05 1989-09-13 Ube Ind Ltd High-strength ceramic composite material and production thereof
JP4913468B2 (en) * 2006-04-17 2012-04-11 コバレントマテリアル株式会社 Silicon carbide polishing plate and method for polishing semiconductor wafer
US20230130335A1 (en) * 2020-04-06 2023-04-27 Japan Fine Ceramics Co., Ltd. Silicon carbide matrix composite material

Also Published As

Publication number Publication date
JPS63256572A (en) 1988-10-24

Similar Documents

Publication Publication Date Title
US5656218A (en) Method for making high performance self-reinforced silicon carbide using a pressureless sintering process
JP3142560B2 (en) Reaction-sintered mullite-containing ceramic compact, method for producing the compact and use of the compact
JP2507479B2 (en) SiC-Al Lower 2 O Lower 3 Composite Sintered Body and Manufacturing Method Thereof
JP2002003276A (en) Reaction synthesis of silicon carbide-boron nitride composite material
JPH01188454A (en) High strength composite ceramic sintered body
JPH0733530A (en) Ceramic-based composite material and its production
JP2507480B2 (en) SiC-Al Lower 2 O Lower 3 Composite Sintered Body and Manufacturing Method Thereof
JPH07115927B2 (en) SiC-based ceramics and method for producing the same
JPH06287070A (en) Composite reinforced ceramics
JPH0259471A (en) Silicon nitride-based sintered body having high strength at high temperature and production thereof
JPH0632658A (en) Silicon nitride-based sintered compact
JP2976534B2 (en) Silicon nitride sintered body and method for producing the same
JPH04260669A (en) Production of silicon nitride composite material containing silicon carbide
JP3036207B2 (en) Method for producing silicon nitride sintered body
JPH03109269A (en) Sialon-based ceramics composite material reinforced with carbon fiber
JPS6241773A (en) Manufacture of composite ceramics
JP2742620B2 (en) Boride-aluminum oxide sintered body and method for producing the same
JP2581128B2 (en) Alumina-sialon composite sintered body
JP3126059B2 (en) Alumina-based composite sintered body
JPS60239360A (en) Silicon carbide ceramic sintered body
JPH07126070A (en) Production of silicon carbide sintered material
JPS63252966A (en) Manufacture of silicon nitride base ceramic composite body
JPH07223866A (en) Silicon nitride-based composite ceramic and production thereof
JPH06279125A (en) Production of silicon nitride-based composite
JPH01122969A (en) Sintered si3n4-al2o3 complex ceramic and its production