JP2976534B2 - Silicon nitride sintered body and method for producing the same - Google Patents

Silicon nitride sintered body and method for producing the same

Info

Publication number
JP2976534B2
JP2976534B2 JP3012037A JP1203791A JP2976534B2 JP 2976534 B2 JP2976534 B2 JP 2976534B2 JP 3012037 A JP3012037 A JP 3012037A JP 1203791 A JP1203791 A JP 1203791A JP 2976534 B2 JP2976534 B2 JP 2976534B2
Authority
JP
Japan
Prior art keywords
temperature
sintered body
silicon nitride
sintering
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3012037A
Other languages
Japanese (ja)
Other versions
JPH04254472A (en
Inventor
克敏 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP3012037A priority Critical patent/JP2976534B2/en
Publication of JPH04254472A publication Critical patent/JPH04254472A/en
Application granted granted Critical
Publication of JP2976534B2 publication Critical patent/JP2976534B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は窒化珪素焼結体及びその
製造方法に係り、特に破壊靱性値に優れた窒化珪素焼結
体及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon nitride sintered body and a method for producing the same, and more particularly, to a silicon nitride sintered body excellent in fracture toughness and a method for producing the same.

【0002】[0002]

【従来の技術】窒化珪素は耐熱性構造材料として最も広
く実用され、また研究開発が進められている材料であ
る。窒化珪素は難焼結性であるので、一般にY2O3, Al2O
3, MgOなどの焼結助剤を添加し、1700〜1800℃で焼結さ
れる。特に、窒化珪素焼結体の靱性を向上させる手法と
しては、炭化珪素ウィスカーを添加する方法が知られて
いる。
2. Description of the Related Art Silicon nitride is the most widely used heat-resistant structural material, and is a material which is being researched and developed. Since silicon nitride is difficult to sinter, it is generally Y 2 O 3 , Al 2 O
3. Add sintering aid such as MgO and sinter at 1700-1800 ℃. In particular, as a method for improving the toughness of a silicon nitride sintered body, a method of adding a silicon carbide whisker is known.

【0003】そして、本発明と目的は異なるが、関連す
る技術として、窒化珪素に周期律表第 IIIa族、L1
Ca ,Mg からなる群から選ばれた元素の酸化物を添加
した原料粉末を成形し、この成形体を低圧の窒素雰囲気
中で予備焼結した後高圧の窒素雰囲気中で本焼結して高
密度、高温高強度の窒化珪素を製造する方法が特開昭62
−207769号公報に開示されている。
[0003] Although the purpose is different from that of the present invention, as a related technique, silicon nitride, group IIIa of the periodic table, L 1 ,
A raw material powder to which an oxide of an element selected from the group consisting of Ca and Mg is added is molded, and the molded body is pre-sintered in a low-pressure nitrogen atmosphere, and then main-sintered in a high-pressure nitrogen atmosphere. Japanese Patent Laid-open No. Sho 62
No. -207769.

【0004】[0004]

【発明が解決しようとする課題】炭化珪素ウィスカーを
添加した窒化珪素焼結体は破壊靱性は改良されるが、ウ
ィスカーをマトリックス中に均一に分散させることが容
易でないほか、ウィスカーとマトリックスの熱膨張係数
の違いにより内部欠陥が生じ易い等の欠点がある。
The silicon nitride sintered body to which silicon carbide whiskers are added has improved fracture toughness, but it is not easy to uniformly disperse the whiskers in the matrix, and the thermal expansion of the whiskers and the matrix is also difficult. There are drawbacks such as internal defects easily occurring due to differences in coefficients.

【0005】そこで、本発明はこのような問題なしで窒
化珪素焼結体の破壊靱性値を向上することを目的とす
る。
Therefore, an object of the present invention is to improve the fracture toughness of a silicon nitride sintered body without such a problem.

【0006】[0006]

【課題を解決するための手段】本発明は、上記目的を達
成するために、平均粒径1μm以下の粒状晶に観察され
るβ−Si3N4 マトリックスが平均直径1〜3μm、平均
長さ10〜30μmのβ−Si3N4 の異方性自生粒子により強
化された組織を特徴とする窒化珪素焼結体を提供する。
また、同様にして、焼結助剤としてSc2O3 2〜6重量%
とY2O3, Yb2O3,Al2O3, MgAl2O4 のうちの1種以上をSc2
O3 と合計で3〜8重量%含み、残部Si 3N4 とした混合
粉末を成形し、該成形体を1530〜1650℃の範囲内の温度
まで加熱して予備焼結し、次いで該温度範囲内の温度で
圧力を1500気圧以上まで昇圧して本焼結し、さらに該温
度範囲から1900℃未満の温度で熱処理することを特徴と
する窒化珪素焼結体の製造方法を提供する。
The present invention achieves the above object.
To form granular crystals having an average particle size of 1 μm or less.
Β-SiThreeNFourThe matrix has an average diameter of 1-3 μm, average
Β-Si with a length of 10-30 μmThreeNFourStrong by anisotropic spontaneous particles
Provided is a silicon nitride sintered body characterized by a modified structure.
Similarly, Sc was added as a sintering aid.TwoOThree2-6% by weight
And YTwoOThree, YbTwoOThree, AlTwoOThree, MgAlTwoOFourOne or more of ScTwo
OThreeAnd 3 to 8% by weight in total, with the balance being Si ThreeNFourAnd mixed
The powder is molded and the molded body is heated to a temperature in the range of 1530 to 1650 ° C.
And pre-sintered, then at a temperature within the temperature range
The pressure is increased to 1500 atmospheres or more, and the main sintering is performed.
It is characterized by heat treatment at a temperature below 1900 ° C from the temperature range
To provide a method for producing a silicon nitride sintered body.

【0007】本発明の窒化珪素焼結体は、平均粒径1μ
m以下の粒状晶に観察されるβ−Si 3N4 マトリックス中
に平均直径1〜3μm、平均長さ10〜30μmのβ−Si3N
4 の異方性粒子が自生し、あたかも平均直径1〜3μ
m、平均長さ10〜30μmのウィスカーを添加したような
組織になり、破壊靱性値が改善される。しかも、強化材
の働きをする異方性粒子もマトリックスもβ−Si3N4
あり熱膨脹係数の差がなく、かつ異方性粒子は焼結の過
程で自生するものであるので組織はきわめて均一であ
る。
The silicon nitride sintered body of the present invention has an average particle size of 1 μm.
β-Si observed in granular crystals below m ThreeNFourIn the matrix
Β-Si with an average diameter of 1-3 μm and an average length of 10-30 μmThreeN
FourAnisotropic particles grow naturally, as if the average diameter is 1-3 μm
m, like adding whiskers with an average length of 10-30 μm
Microstructure and improved fracture toughness values. Moreover, reinforcement
Both the anisotropic particles and the matrix that act as β-SiThreeNFourso
There is no difference in thermal expansion coefficient, and anisotropic particles
The organization is extremely uniform
You.

【0008】マトリックスβ−Si3N4 は平均粒径が1μ
m以下より好ましくは 0.6μm以下である。これが1μ
mより大きいと破壊靱性値及び曲げ強度が低下する。一
方、異方性粒子のβ−Si3N4 は平均直径1〜3μm、好
ましくは2μm、平均長さ10〜30μm、好ましくは20〜
30μmである。また、焼結体の密度は好ましくは理論密
度の99%以上、より好ましくは99.5%以上である。本発
明の様な組織においてこのような高密度は本発明の製造
方法により可能にされた。
The matrix β-Si 3 N 4 has an average particle size of 1 μm.
m or less, more preferably 0.6 μm or less. This is 1μ
If it is larger than m, the fracture toughness value and the bending strength decrease. On the other hand, β-Si 3 N 4 of anisotropic particles has an average diameter of 1 to 3 μm, preferably 2 μm, and an average length of 10 to 30 μm, preferably 20 to
30 μm. The density of the sintered body is preferably at least 99% of the theoretical density, more preferably at least 99.5%. Such a high density in a tissue like the present invention was made possible by the manufacturing method of the present invention.

【0009】このような窒化珪素焼結体の製造は次の如
くである。出発原料としてのSi3N4 及び焼結助剤は粒径
0.6μm以下、より好ましくは0.1〜0.4μmのものを
使用する。出発Si3N4 の粒径が大きいとマトリックスβ
−Si3N4 の粒径が不所望に大きくなる。出発焼結助剤の
粒径が大きいと均一混合が難しく、緻密な焼結が困難に
なるので好ましくない。また、純度はSi3N4 で金属不純
物総量100ppm以下、焼結助剤99.9%以上のものを使用す
る。不純物がこれより多くなると粒界ガラス相の軟化温
度が低下し、高温における強度が低下する。
The production of such a silicon nitride sintered body is as follows. Si 3 N 4 as starting material and sintering aid have particle size
It is 0.6 μm or less, more preferably 0.1 to 0.4 μm. If the particle size of the starting Si 3 N 4 is large, the matrix β
Particle size of -Si 3 N 4 increases undesirably. If the particle size of the starting sintering aid is large, uniform mixing is difficult and dense sintering is difficult, which is not preferable. In addition, the purity is Si 3 N 4 having a total amount of metal impurities of 100 ppm or less and a sintering aid of 99.9% or more. If the amount of impurities is more than this, the softening temperature of the grain boundary glass phase decreases, and the strength at high temperatures decreases.

【0010】Si3N4 に対する焼結助剤の添加量は、粉末
混合物の内割りで、Sc2O3 を2〜6重量%、より好まし
くは 2.5〜5重量%とし、Y2O3, Yb2O3, Al2O3, MgAl2O
4 のうち1種以上とSc2O3 との合計量を3〜8重量%と
する。Sc2O3 は異方性粒子の自生を促進するために必須
である。Sc2O3 添加量が少ないと自生異方性β−Si3N 4
の成長が不充分になる。Sc2O3 の添加量が多すぎると緻
密な焼結が困難である。Y2O3, Yb2O3, Al2O3, MgAl2O4
のうち1種以上はSi3N4 を緻密に焼結させかつマトリッ
クス粒子を成長させないために必要である。しかし、こ
れらが多すぎるとマトリックス粒子が大きく成長する。
[0010] SiThreeNFourThe amount of sintering aid added to
Sc of the mixtureTwoOThree2-6% by weight, more preferred
Or 2.5-5% by weight, YTwoOThree, YbTwoOThree, AlTwoOThree, MgAlTwoO
FourOne or more of ScTwoOThreeAnd 3 to 8% by weight
I do. ScTwoOThreeIs essential to promote self-generation of anisotropic particles
It is. ScTwoOThreeIf the added amount is small, the spontaneous anisotropic β-SiThreeN Four
Becomes insufficiently grown. ScTwoOThreeIf too much is added,
Dense sintering is difficult. YTwoOThree, YbTwoOThree, AlTwoOThree, MgAlTwoOFour
At least one of them is SiThreeNFourIs sintered densely and
It is necessary to prevent the growth of particles. But this
If these are too large, the matrix particles will grow large.

【0011】出発粉末の混合、成形は常法により行なう
ことができる。焼結は、成形体を1530〜1650℃の範囲内
の温度まで加熱して予備焼結し、次いでその温度範囲内
の温度で圧力を1500気圧以上まで昇圧して本焼結して行
なう。焼結雰囲気は窒素雰囲気である。すなわち、本発
明では、焼結温度は1530〜1650℃の範囲内の温度であ
る。これは、従来の常圧焼結温度1700〜1800℃、あるい
は特公昭62-13310号公報の1700〜1900℃、特開昭62-207
7769号公報の1900℃のHIP温度より低い焼結温度であ
る。従来は、1700〜1800℃では焼結体が充分に緻密化せ
ず、高密度の焼結体を得ることはできないので、高温で
充分に焼結させるために、Si3N4の熱分解を抑制すべく
高圧をかけて焼成する方法(HIP)が利用されている。こ
れに対して、本発明は、1530〜1650℃の低い温度でも、
1500気圧以上の高圧を利用して焼結を進行させることが
できるとの発見にもとづいている。この低温下での焼結
によってマトリックスのβ−Si3N4 粒子の粒成長を抑制
しながら緻密な焼結体を得ることができる。焼結温度が
1650℃を越えると、マトリックス粒子の粒径が粗くな
り、室温強度、1400℃強度が低下する。一方、1530℃未
満では緻密に焼結しない。従来より、窒化珪素の一般的
焼結温度として“1600℃以上”である旨が言及されるこ
とはあったが、実際に1600℃でSi3N4 焼結体を作製した
例はなく、上記特開昭62−207769号公報では1900℃、特
公昭62-13310号公報では1700〜1900℃が実際には採用さ
れている。また、本発明のHIP圧力としては1500気圧
以上が必要である。これより低い圧力では焼結体密度が
低下する。圧力の上限はとくになく、設備上の制約に従
って採用される。典型的には1500〜2500気圧である。
The mixing and molding of the starting powder can be carried out by a conventional method. The sintering is performed by heating the molded body to a temperature in the range of 1530 to 1650 ° C. to perform preliminary sintering, and then performing main sintering by increasing the pressure to 1500 atm or more at a temperature in the temperature range. The sintering atmosphere is a nitrogen atmosphere. That is, in the present invention, the sintering temperature is a temperature in the range of 1530 to 1650 ° C. This is the conventional normal-pressure sintering temperature of 1700 to 1800 ° C., or 1700 to 1900 ° C. of JP-B-62-13310, and JP-A-62-207.
The sintering temperature is lower than the HIP temperature of 1900 ° C. in the 7769 publication. Conventionally, at 1700 to 1800 ° C. sintered body is not sufficiently densified, it is not possible to obtain a dense sintered body, in order to sufficiently sintered at high temperatures, the thermal decomposition the Si 3 N 4 A method of firing under high pressure (HIP) is used to suppress this. On the other hand, the present invention, even at a low temperature of 1530-1650 ℃,
It is based on the discovery that sintering can proceed using high pressures of 1500 atmospheres or more. By this sintering at a low temperature, a dense sintered body can be obtained while suppressing the grain growth of the β-Si 3 N 4 particles of the matrix. Sintering temperature
If it exceeds 1650 ° C., the particle size of the matrix particles becomes coarse, and the room temperature strength and the 1400 ° C. strength decrease. On the other hand, if it is lower than 1530 ° C., it does not sinter densely. Conventionally, there were able to effect a "1600 ° C. or higher" as a general sintering temperature of silicon nitride is mentioned, not actually example of manufacturing the Si 3 N 4 sintered body at 1600 ° C., the In JP-A-62-207769, 1900 ° C. is used, and in JP-B-62-13310, 1700-1900 ° C. is actually used. Further, the HIP pressure of the present invention needs to be 1500 atm or more. At a pressure lower than this, the sintered body density decreases. There is no particular upper limit on the pressure, and it is adopted according to facility restrictions. Typically between 1500 and 2500 atmospheres.

【0012】予備焼結の目的はHIP処理の効果を得る
ために閉気孔化が進行するまで低圧下で焼結させること
である。圧力は常圧でよいが、次の昇圧可能な炉(HIP
炉)内で行なう関係上多少(数10気圧位)昇圧するが、
要するに1500気圧に対して実質的に低圧、特に常圧付近
であればよい。閉気孔化の一応のメドとしては理論密度
の90%程度の密度である。次に、昇圧して本焼結する
が、この本焼結は少なくとも密度が理論密度の95%以
上、より好ましくは98%以上になるまで行なう。この段
階で充分に緻密化させないと、次に高温で熱処理すると
きにマトリックス粒子が粗くなるからである。
The purpose of pre-sintering is to sinter under low pressure until closed porosity progresses in order to obtain the effect of the HIP treatment. The pressure may be normal pressure, but the next pressurizable furnace (HIP
The pressure rises somewhat (several tens of atmospheres) due to the
In short, the pressure may be substantially lower than 1500 atm, especially around normal pressure. As a tentative method for closed pore formation, the density is about 90% of the theoretical density. Next, main sintering is performed at a high pressure. This main sintering is performed at least until the density becomes 95% or more of the theoretical density, more preferably 98% or more. If densification is not sufficiently performed at this stage, matrix particles become coarse when heat treatment is performed at a high temperature next time.

【0013】典型的には、予備焼結は、1気圧付近のN
2 雰囲気下、0.5〜10℃/分程度の昇温速度で1530〜16
50℃の範囲内の温度まで昇温して行なう。昇温プロフィ
ルは所望に変更できる。1530〜1650℃の範囲内の温度に
到達したら、次に圧力を5〜20気圧/分程度の昇圧速度
で1500気圧以上まで昇圧し、その圧力に保持して本焼結
を行なう。本焼結の圧力は前記の如く1500気圧以上、典
型的には1500〜2500気圧である。
[0013] Typically, the pre-sintering is performed at about 1 atm N 2
2 Under an atmosphere, at a heating rate of about 0.5 to 10 ° C / min, 1530 to 16
The temperature is raised to a temperature in the range of 50 ° C. The heating profile can be changed as desired. When the temperature reaches 1530 to 1650 ° C., the pressure is increased to 1500 atm or more at a rate of 5 to 20 atm / min, and main sintering is performed while maintaining the pressure. The pressure for the main sintering is at least 1500 atm as described above, typically from 1500 to 2500 atm.

【0014】次に、焼結温度から1900℃未満の温度で熱
処理する。この熱処理によって1μm以下のマトリック
ス粒子中に細長い異方性粒子が成長する。この熱処理が
ないと、細かいマトリックス中に小さい柱状晶が存在す
る組織しか得られない。一方、1900℃以上で熱処理する
とマトリックス粒子まで大きく柱状晶に成長した組織に
なる。この熱処理は窒素雰囲気中1500気圧以上の圧力下
で行なう。圧力が1500気圧より低いと緻密な焼結体が得
られない。
Next, heat treatment is performed at a temperature lower than 1900 ° C. from the sintering temperature. By this heat treatment, elongated anisotropic particles grow in matrix particles of 1 μm or less. Without this heat treatment, only a structure in which small columnar crystals exist in a fine matrix can be obtained. On the other hand, when heat treatment is performed at 1900 ° C. or more, the structure becomes a columnar crystal that has grown to the size of matrix particles. This heat treatment is performed in a nitrogen atmosphere under a pressure of 1500 atm or more. If the pressure is lower than 1500 atm, a dense sintered body cannot be obtained.

【0015】こうして得られる窒化珪素焼結体の組織を
模式的に図示すると図1の如くである。すなわち、微細
なβ−Si3N4 マトリックス中に自生したβ−Si3N4 の細
長い異方性粒子が分散し、あたかもウィスカーで強化し
たような組織である。
The structure of the silicon nitride sintered body thus obtained is schematically shown in FIG. In other words, it is a structure in which elongated anisotropic particles of β-Si 3 N 4 naturally grown in a fine β-Si 3 N 4 matrix are dispersed and reinforced by whiskers.

【0016】[0016]

【作用】微細なβ−Si3N4 マトリックス粒子中に、直径
1〜3μm、長さ10〜30μmの異方性粒子のβ−Si3N4
が3次元的にからみ合って自生するので、あたかもウィ
スカーを添加して強化した様な組織となり、破壊靱性値
が改良される。しかも、高密度かつマトリックス粒子が
微細であるため、また強化材の働きをする異方性粒子が
マトリックスと同じβ−Si3N4 であるため、室温強度、
靱性強度ともに高い。
[Action] into fine β-Si 3 N 4 matrix particle diameter 1~3μm, β-Si 3 N 4 of anisotropic particles of length 10~30μm
Are naturally entangled with each other three-dimensionally, so that the structure becomes as if strengthened by adding whiskers, and the fracture toughness value is improved. In addition, since the matrix particles are dense and the anisotropic particles acting as a reinforcing material are the same β-Si 3 N 4 as the matrix, the room temperature strength,
Both toughness and strength are high.

【0017】[0017]

【実施例】Si3N4 粉末(平均粒径0.2μm、金属不純物
総量30ppm 、a化率ほぼ 100%)に焼結助剤の第1成分
としてSc2O3 粉末(平均粒径0.6μm、純度99.9%)
を、第2成分としてY2O3粉末(平均粒径0.3μm、純度
99.9%)、Yb2O3 粉末(平均粒径0.1μm、純度99.9
%)、Al2O3 粉末(平均粒径0.1μm、純度99.9%)又
はMgAl2O4 粉末(平均粒径0.3μm、純度99.9%)の内
から1種選び、添加量を表1に示すような組成で混合
(Si3N4 製ボールミル)した各種粉末を 200気圧の圧力
で加圧成形し、その成形体を薄ゴムにつめ真空封入後C
IP(静水圧成形)にて3000気圧の圧力で加圧した。
EXAMPLES Si 3 N 4 powder (average particle size 0.2 [mu] m, the metal impurities total 30 ppm, a rate approximately 100%) Sc 2 O 3 powder as a first component of the sintering agent (average particle diameter 0. 6μm, purity 99.9%)
With Y 2 O 3 powder (average particle size 0.3 μm, purity as a second component)
99.9%), Yb 2 O 3 powder (average particle size 0.1 μm, purity 99.9)
%), Al 2 O 3 powder (average particle size 0.1 μm, purity 99.9%) or MgAl 2 O 4 powder (average particle size 0.3 μm, purity 99.9%). Various powders mixed (ball mill made of Si 3 N 4 ) with the composition as shown in the table are pressed and molded at a pressure of 200 atm.
Pressure was applied at a pressure of 3000 atm by IP (hydrostatic pressing).

【0018】その後、この成形体を表1に示す条件でN
2 雰囲気中の炉内で焼結させた。昇温速度は5℃/min
、最高温度に到達するまでは1気圧のN2 雰囲気下
で、最高温度到達後に第1表に示す条件まで毎分15kgf/
cm2 の昇圧速度で加圧した。また、最高温度での保持時
間は4時間とした。その後さらに、同一炉内で加圧した
まま表1に示すような条件で熱処理を実施した。
Thereafter, the molded body was subjected to N 2 under the conditions shown in Table 1.
It was sintered in a furnace in two atmospheres. Heating rate is 5 ℃ / min
Under an atmosphere of N 2 at 1 atm until the maximum temperature is reached, and after reaching the maximum temperature, up to the conditions shown in Table 1 at 15 kgf / min.
Pressurization was performed at a pressure rise rate of cm 2 . The holding time at the highest temperature was 4 hours. Thereafter, heat treatment was further performed under the conditions shown in Table 1 while pressurizing in the same furnace.

【0019】以上の焼成温度及び圧力プロファイルを図
2に示す。これらの焼結体の破壊靱性値(JIS R 1607、
SEPB法)、室温4点曲げ強度(JIS R 1601)及び高温4
点曲げ強度(JIS R 1604、大気中)を測定して第2表に
示す結果を得た。焼結体の相対密度はn−ブタノール置
換法で求めた嵩密度を理論密度で除して得た値である。
残部は気孔率であるが、光学顕微鏡による鏡面研磨面の
観察結果からも裏付けられた。
FIG. 2 shows the above firing temperature and pressure profiles. The fracture toughness values of these sintered bodies (JIS R 1607,
SEPB method), room temperature 4-point bending strength (JIS R 1601) and high temperature 4
The point bending strength (JIS R 1604, in air) was measured, and the results shown in Table 2 were obtained. The relative density of the sintered body is a value obtained by dividing the bulk density obtained by the n-butanol substitution method by the theoretical density.
The remainder is the porosity, which was supported by the observation result of the mirror-polished surface with an optical microscope.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】比較例 実施例と同様な方法で成形した後、この成形体を表3に
示す条件でN2 雰囲気の炉内で焼結させ、表4の結果を
得た。
Comparative Example After molding in the same manner as in the example, this molded body was sintered in a furnace in an N 2 atmosphere under the conditions shown in Table 3 to obtain the results shown in Table 4.

【0023】[0023]

【表3】 [Table 3]

【0024】[0024]

【表4】 [Table 4]

【0025】実施例中のすべての窒化珪素焼結体は、1
μm以下のβ−Si3N4 マトリックス中に、直径1〜3μ
m、長さ10〜30μmのβ−Si3N4 の異方性粒子が自生
し、あたかも直径1〜3μm、長さ10〜30μmウィスカ
ーを添加したような組織になっていた。その結果、室温
曲げ強度及び高温曲げ強度を著しく低下させずに、破壊
靱性値が改善されたものと考えられる。
All of the silicon nitride sintered bodies in the examples
μm or less β-Si 3 N 4 matrix, diameter 1-3μ
m, anisotropic particles of β-Si 3 N 4 having a length of 10 to 30 μm grew naturally, and had a structure as if a whisker having a diameter of 1 to 3 μm and a length of 10 to 30 μm was added. As a result, it is considered that the fracture toughness value was improved without significantly lowering the room temperature bending strength and the high temperature bending strength.

【0026】それに反して、比較例中のNo.52, 53, 54,
55の窒化珪素焼結体は、非常に細かいマトリックス中
に小さな柱状晶が存在する組織であった。又、NO.56, 5
7, 60, 61 の窒化珪素焼結体はマトリックス粒子も大き
く柱状晶に成長した組織であった。焼結時の最高温度を
1650℃以上の温度にするとマトリックス粒子の粒径が粗
くなり、比較例試料No.60, 61 に示されるように破壊靱
性値、室温強度及び1400℃強度が低下し、1530℃以下の
温度では比較例試料NO.58, 59 に示されるように緻密に
焼結しなかった。
On the contrary, Nos. 52, 53, 54,
The 55 silicon nitride sintered body had a structure in which small columnar crystals were present in a very fine matrix. NO.56, 5
The 7, 60, and 61 silicon nitride sintered bodies had a structure in which the matrix particles also grew into large columnar crystals. Maximum temperature during sintering
At a temperature of 1650 ° C or higher, the particle size of the matrix particles becomes coarse, and the fracture toughness, room temperature strength and 1400 ° C strength decrease as shown in Comparative Sample Nos. 60 and 61. As shown in the sample Nos. 58 and 59, it was not densely sintered.

【0027】圧力を1500気圧以下にすると比較例試料N
O.62, 63 に示されるように異方性組織の焼結体になる
ものの、焼結体密度が低下して破壊靱性値、室温強度及
び1400℃強度が低下した。Sc2O3 の添加は異方性組織化
に必須で、Sc2O3 を添加しなかった比較試料NO.52, 53
では細かいマトリックスが均等に成長した。
When the pressure is set to 1500 atm or less, the comparative sample N
As shown in O.62 and 63, although the sintered body had an anisotropic structure, the density of the sintered body was reduced and the fracture toughness, room temperature strength and 1400 ° C strength were reduced. The addition of Sc 2 O 3 is essential for anisotropic organization, and Comparative Samples No. 52 and 53 without addition of Sc 2 O 3
Now the fine matrix grew evenly.

【0028】熱処理を実施しないときは比較試料NO.54,
55 のように細かいマトリックス中に小さな柱状晶が存
在する組織であった。熱処理温度が1900℃を超えると比
較試料NO.56, 57 のようにマトリックス粒子も大きく柱
状晶に成長した組織であった。
When the heat treatment was not performed, the comparison sample No. 54,
As shown in Fig. 55, the structure was such that small columnar crystals existed in a fine matrix. When the heat treatment temperature was higher than 1900 ° C, the matrix particles had a structure in which the matrix particles grew into large columnar crystals as in Comparative Sample Nos. 56 and 57.

【0029】[0029]

【発明の効果】本発明によれば、微細かつ緻密に焼成し
たβ−Si3N4 のマトリックス粒子中に、平均直径1〜3
μm、平均長さ10〜30μmの異方性粒子のβ−Si3N4
自生して、その異方性粒子がウィスカー補強セラミック
スのウィスカーの働き、つまりディボンディング・ディ
フレクションの作用により高靱性が発現する。
According to the present invention, the fine and densely fired β-Si 3 N 4 matrix particles have an average diameter of 1 to 3
μm, β-Si 3 N 4 of anisotropic particles with an average length of 10 to 30 μm grow naturally, and the anisotropic particles function as whiskers of whisker reinforced ceramics, that is, high toughness due to the action of debonding and deflection Is expressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の高靱性窒化珪素焼結体の組織を示す模
式図である。
FIG. 1 is a schematic view showing the structure of a high toughness silicon nitride sintered body of the present invention.

【図2】実施例の温度、圧力プロファイルを示す図であ
る。
FIG. 2 is a diagram showing a temperature and pressure profile of an example.

【符号の説明】[Explanation of symbols]

1…マトリックス粒子 2…自生異方性粒子 1: Matrix particles 2: Self-generated anisotropic particles

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 平均粒径1μm以下の粒状晶に観察され
るβ−Si3N4 マトリックスが平均直径1〜3μm、平均
長さ10〜30μmのβ−Si3N4 の異方性自生粒子により強
化された組織からなることを特徴とする窒化珪素焼結
体。
1. Anisotropic spontaneous β-Si 3 N 4 particles having an average diameter of 1 to 3 μm and an average length of 10 to 30 μm in a β-Si 3 N 4 matrix observed in granular crystals having an average particle diameter of 1 μm or less. A silicon nitride sintered body characterized by having a structure strengthened by:
【請求項2】 焼結助剤としてSc2O3 2〜6重量%とY2
O3, Yb2O3, Al2O3,MgAl2O4 のうちの1種以上をSc2O3
と合計で3〜8重量%含み、残部Si3N4 とした混合粉末
を成形し、該成形体を1530〜1650℃の範囲内の温度まで
加熱して予備焼結し、次いで該温度範囲内の温度で圧力
を1500気圧以上まで昇圧して本焼結し、さらに該温度範
囲から1900℃未満の温度で熱処理することを特徴とする
窒化珪素焼結体の製造方法。
2. A sintering aid comprising 2 to 6% by weight of Sc 2 O 3 and Y 2
O 3, Yb 2 O 3, Al 2 O 3, MgAl 2 O 1 or more of Sc 2 O 3 of 4
And a mixed powder containing 3 to 8% by weight in total and Si 3 N 4 as the balance, and presintering the molded body by heating to a temperature in the range of 1530 to 1650 ° C., and then in the temperature range. The method for producing a silicon nitride sintered body, wherein the pressure is raised to 1500 atm or more at the temperature of the above, the main sintering is performed, and the heat treatment is performed at a temperature lower than 1900 ° C. from the temperature range.
JP3012037A 1991-02-01 1991-02-01 Silicon nitride sintered body and method for producing the same Expired - Fee Related JP2976534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3012037A JP2976534B2 (en) 1991-02-01 1991-02-01 Silicon nitride sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3012037A JP2976534B2 (en) 1991-02-01 1991-02-01 Silicon nitride sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH04254472A JPH04254472A (en) 1992-09-09
JP2976534B2 true JP2976534B2 (en) 1999-11-10

Family

ID=11794410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3012037A Expired - Fee Related JP2976534B2 (en) 1991-02-01 1991-02-01 Silicon nitride sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP2976534B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2605583B2 (en) * 1993-05-27 1997-04-30 日本電気株式会社 Magnetic head positioning mechanism for magnetic disk drive
JP2570103B2 (en) * 1993-06-22 1997-01-08 日本電気株式会社 Carriage structure of magnetic disk drive

Also Published As

Publication number Publication date
JPH04254472A (en) 1992-09-09

Similar Documents

Publication Publication Date Title
US5656218A (en) Method for making high performance self-reinforced silicon carbide using a pressureless sintering process
JP2507479B2 (en) SiC-Al Lower 2 O Lower 3 Composite Sintered Body and Manufacturing Method Thereof
US5449649A (en) Monolithic silicon nitride having high fracture toughness
JP2507480B2 (en) SiC-Al Lower 2 O Lower 3 Composite Sintered Body and Manufacturing Method Thereof
JP2976534B2 (en) Silicon nitride sintered body and method for producing the same
JP2773439B2 (en) Method for producing silicon carbide-containing silicon nitride composite
JP3036207B2 (en) Method for producing silicon nitride sintered body
JP2692377B2 (en) Silicon nitride sintered body and method for producing the same
WO1990008113A1 (en) Super tough monolithic silicon nitride
JP3287202B2 (en) Silicon nitride ceramic composite and method for producing the same
JP3328280B2 (en) Sintered silicon nitride with high toughness, strength and reliability
JP3502890B2 (en) High-strength and high-reliability silicon nitride sintered body and method for producing the same
JP3139646B2 (en) Method for producing silicon nitride sintered body
JPH01145380A (en) Production of silicon nitride sintered form
JPH05117032A (en) Production of silicon nitride sintered compact
JPH07115927B2 (en) SiC-based ceramics and method for producing the same
JP3144178B2 (en) Silicon nitride sintered body and method for producing the same
JPH11130543A (en) Beta-type silicon nitride crystal and its production and production of silicon nitride-based sintered compact
JP3114302B2 (en) Silicon nitride sintered body and method for producing the same
JP2534214B2 (en) Silicon nitride sintered body and method for manufacturing the same
JPH05319910A (en) Ceramic composite material and its production
JP2890849B2 (en) Method for producing silicon nitride sintered body
Gazza et al. Densification of ceramics by gas overpressure sintering
JPH06305840A (en) Sintered silicon nitride and its production
JP3479656B2 (en) Highly reliable silicon nitride sintered body and method for producing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees