JP2773439B2 - Method for producing silicon carbide-containing silicon nitride composite - Google Patents

Method for producing silicon carbide-containing silicon nitride composite

Info

Publication number
JP2773439B2
JP2773439B2 JP3022227A JP2222791A JP2773439B2 JP 2773439 B2 JP2773439 B2 JP 2773439B2 JP 3022227 A JP3022227 A JP 3022227A JP 2222791 A JP2222791 A JP 2222791A JP 2773439 B2 JP2773439 B2 JP 2773439B2
Authority
JP
Japan
Prior art keywords
sintering
mgal
temperature
silicon nitride
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3022227A
Other languages
Japanese (ja)
Other versions
JPH04260669A (en
Inventor
克敏 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP3022227A priority Critical patent/JP2773439B2/en
Publication of JPH04260669A publication Critical patent/JPH04260669A/en
Application granted granted Critical
Publication of JP2773439B2 publication Critical patent/JP2773439B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は炭化珪素含有窒化珪素複
合体の製造方法に係る。
The present invention relates to a method for producing a silicon carbide-containing silicon nitride composite.

【0002】[0002]

【従来の技術】窒化珪素と炭化珪素との両方の優れた性
質を具備した耐熱性構造材料を得ることを目的として、
窒化珪素と炭化珪素の複合体の開発が試みられている。
一般的には、 Si3N4粉末と SiC粉末の混合粉末をホット
プレスされる。また、特開平1−298069号公報では、珪
素アルコキシドを加水分解して得られる炭化珪素40wt%
以下の Si3N4−SiC 混合粉末を1550〜1730℃の温度で加
圧焼結する方法が開示されている。
2. Description of the Related Art In order to obtain a heat-resistant structural material having excellent properties of both silicon nitride and silicon carbide,
Development of a composite of silicon nitride and silicon carbide has been attempted.
Generally, a mixed powder of Si 3 N 4 powder and SiC powder is hot pressed. Japanese Patent Application Laid-Open No. 1-298069 discloses that silicon carbide obtained by hydrolyzing silicon alkoxide is 40 wt%.
A method of pressure sintering the following Si 3 N 4 —SiC mixed powder at a temperature of 1550 to 1730 ° C. is disclosed.

【0003】[0003]

【発明が解決しようとする課題】一般に、 Si3N4−SiC
(超微粉)複合材は難焼結性であるので、特殊な原料を
用いたり、ホットプレスで強引に焼結させている。特開
平1−298069号公報でもアルコキシド加水分解して得ら
れる原料を用い、しかも実施例ではやはりホットプレス
を採用している。特殊な原料を使用しなければならない
ことは不都合であり、またホットプレスを採用する場合
には製品形状に制約がある。そこで、本発明は、このよ
うに特殊な出発原料を用いたり、ホットプレスなしで S
i3N4−SiC 複合材を緻密に焼結する方法を提供すること
を目的とする。
SUMMARY OF THE INVENTION Generally, Si 3 N 4 —SiC
(Ultra fine powder) Since the composite material is difficult to sinter, special materials are used or it is forcibly sintered by hot pressing. Japanese Unexamined Patent Publication (Kokai) No. 1-298069 also uses a raw material obtained by hydrolyzing an alkoxide, and also employs a hot press in Examples. It is inconvenient to use special raw materials, and when hot pressing is used, there are restrictions on the product shape. Therefore, the present invention uses such a special starting material,
An object is to provide a method for densely sintering an i 3 N 4 —SiC composite material.

【0004】[0004]

【課題を解決するための手段】本発明は、上記目的を達
成するために、 Si3N4と、焼結助剤として重量比で4:
1から1:1の範囲のY2O3とMgAl2O4 をY2O3+MgAl2O4
+Si3N4 の総重量を 100wt%として4〜8wt%と、Y2O3
+MgAl2O4 +Si3N4 の総重量を100wt%としてSiCを10〜
20wt%とを含む混合粉末を成形し、該成形体を1700〜18
00℃の範囲の温度まで加熱して予備焼結し、次いで同温
度範囲で雰囲気圧力を1000気圧以上に昇圧し、本焼結す
ることを特徴とする炭化珪素含有窒化珪素複合体の製造
方法を提供する。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a sintering aid containing Si 3 N 4 in a weight ratio of 4:
Y 2 O 3 and MgAl 2 O 4 in the range of 1 to 1: 1 are converted to Y 2 O 3 + MgAl 2 O 4
And 4~8Wt% of the total weight the Si 3 N 4 as 100wt% +, Y 2 O 3
+ MgAl 2 O 4 + Si 3 N 4 with total weight of 100 wt%,
And 20 wt% of the mixed powder, and the molded body is
Pre-sintering by heating to a temperature in the range of 00 ° C., and then increasing the atmospheric pressure to 1000 atm or more in the same temperature range, and performing a method for producing a silicon carbide-containing silicon nitride composite, which is characterized by performing main sintering. provide.

【0005】本発明の方法の第1の特徴は、焼結助剤と
してY2O3とMgAl2O4 を用いる点にある。これにより Si3
N4−SiC 複合体の焼結性が向上する。MgAl2O4 は MgOと
Al2O 3 の混合粉ではなくMgAl2O4 粉でなければならな
い。Y2O3とMgAl2O4 は重量比で4:1〜1:1の範囲と
し、その合計量は Si3N4+Y2O3+MgAl2O4 の総重量 100
wt%に対し4〜8wt%とする。焼結助剤の量が少ないと
緻密に焼結せず、また多すぎると1000℃強度低下の原因
になるからである。Y2O3とMgAl2O4 の重量比が4:1よ
りY2O3が増加すると緻密に焼結せず、1:1よりもY2O3
が減少すると緻密には焼結するがスピネル量が多くなり
すぎて1000℃強度が低下する。
The first feature of the method of the present invention is that a sintering aid and
Then YTwoOThreeAnd MgAlTwoOFourThe point is to use. This allows SiThree
NFour-Sinterability of the SiC composite is improved. MgAlTwoOFourIs MgO
AlTwoO ThreeMgAl instead of mixed powderTwoOFourMust be powder
No. YTwoOThreeAnd MgAlTwoOFourIs in the range of 4: 1 to 1: 1 by weight.
And the total amount is SiThreeNFour+ YTwoOThree+ MgAlTwoOFourTotal weight of 100
4 to 8 wt% with respect to wt%. If the amount of sintering aid is small
Not densely sintered, and too much causes a decrease in strength at 1000 ° C
Because it becomes. YTwoOThreeAnd MgAlTwoOFourWeight ratio of 4: 1
YTwoOThreeDoes not densely sinter when the value ofTwoOThree
When the amount decreases, sintering becomes denser, but the amount of spinel increases.
Too high, the strength at 1000 ℃ decreases.

【0006】また、Si3N4, Y2O3, MgAl2O4の出発原料は
できるだけ微細、高純度であることが望ましい。限定す
るわけではないが、 Si3N4は粒径0.6μm以下、より好
ましくは0.1〜0.4μm、純度は金属不純物総量で100p
pm以下、Y2O3, MgAl2O4 は粒径0.6μm以下、より好ま
しくは0.1〜0.4μm、純度は99.9%以上である。
It is desirable that the starting materials of Si 3 N 4 , Y 2 O 3 , and MgAl 2 O 4 have as fine and high purity as possible. Although not limited, Si 3 N 4 has a particle size of 0.6 μm or less, more preferably 0.1 to 0.4 μm, and a purity of 100 p in total metal impurities.
pm or less, Y 2 O 3 and MgAl 2 O 4 have a particle size of 0.6 μm or less, more preferably 0.1 to 0.4 μm, and a purity of 99.9% or more.

【0007】また、添加する SiC粉末は、 Si3N4+Y2O3
+MgAl2O4 の総重量 100wt%に対し、10〜20wt%の範囲
である。 Si3N4に対し SiCを適当量添加することによ
り、高温強度(例えば1000℃強度)と破壊靱性値が向上
するが、添加量が多すぎると緻密に焼結しなくなり、強
度、破壊靱性値とも低下する。Y2O3−MgAl2O4 は Si3N4
の焼結性を良くするが、反面高温強度が低下する欠点が
ある。しかし、 SiCを添加すると、高温強度が改善され
る。 SiCの添加量が少ないとこの効果が十分でない。 S
iCは好ましくは0.1μm以下、より好ましくは0.05μm
以下の粒径で、99.9%以上の純度を有することが望まし
い。
The SiC powder to be added is Si 3 N 4 + Y 2 O 3
+ Relative to the total weight 100 wt% of MgAl 2 O 4, is in the range of 10-20 wt%. By adding an appropriate amount of SiC to Si 3 N 4 , high-temperature strength (for example, 1000 ° C. strength) and fracture toughness can be improved. Together with it. Y 2 O 3 -MgAl 2 O 4 is Si 3 N 4
Although the sinterability is improved, there is a disadvantage that the high-temperature strength is reduced. However, the addition of SiC improves high temperature strength. If the added amount of SiC is small, this effect is not sufficient. S
iC is preferably 0.1 μm or less, more preferably 0.05 μm
It is desirable to have a purity of 99.9% or more with the following particle size.

【0008】Si3N4, SiC、焼結助剤の混合、成形は慣用
の方法でよく、典型的には300MPa程度の圧力で圧縮成形
する。
Mixing and molding of Si 3 N 4 , SiC and a sintering aid may be carried out by a conventional method, and typically, compression molding is performed under a pressure of about 300 MPa.

【0009】本発明の第2の特徴は、焼結方法としてホ
ットプレスではなく、ガス圧焼結、より詳しくは、先ず
1700〜1800℃の範囲で予備焼結した後、同温度でガス圧
を1000気圧以上に昇圧し、本焼結することにある。この
ホットプレスによらない焼結は、焼結助剤としてY2O3
MgAl2O4 を用いたことにより可能にされた。
The second feature of the present invention is that the sintering method is not hot pressing but gas pressure sintering.
After presintering in the range of 1700 to 1800 ° C., the gas pressure is increased to 1000 atm or more at the same temperature, and the main sintering is performed. This sintering without hot pressing is performed with Y 2 O 3 as a sintering aid.
Enabled by using MgAl 2 O 4 .

【0010】焼結温度は1700〜1800℃の範囲である。温
度があまり低いと十分に焼結せず、一方温度が高すぎる
と粒成長して室温及び1000℃強度が低下するからであ
る。焼成雰囲気は窒素雰囲気であるが、窒素と不活性雰
囲気との混合雰囲気でもよい。本焼結前に、ガス圧焼結
を効果的にするため常圧付近で予備焼結して被焼結体を
閉気孔化する。閉気孔化の一応の目途として理論密度の
90%程度である。予備焼結後、雰囲気圧力を1000気圧以
上、通常1000〜2000気圧に昇圧し、同じ温度で本焼結す
る。本発明では、この本焼結により理論密度の98〜99%
以上まで緻密化することが可能である。1000気圧未満で
は緻密に焼結しない。そして、本発明はガス圧焼結であ
るので、ホットプレスのように製品形状に制約がない。
[0010] The sintering temperature ranges from 1700 to 1800 ° C. If the temperature is too low, sintering will not be sufficient, whereas if the temperature is too high, grain growth will occur and the room temperature and 1000 ° C. strength will decrease. The firing atmosphere is a nitrogen atmosphere, but may be a mixed atmosphere of nitrogen and an inert atmosphere. Before the main sintering, in order to make gas pressure sintering effective, preliminary sintering is performed near normal pressure to make the sintered body closed pores. As a temporary measure of closed pore formation, the theoretical density
About 90%. After the preliminary sintering, the atmospheric pressure is increased to 1000 atm or more, usually 1000 to 2000 atm, and the main sintering is performed at the same temperature. In the present invention, 98-99% of the theoretical density
It is possible to achieve the above densification. If it is less than 1000 atm, it does not sinter densely. And since this invention is gas pressure sintering, there is no restriction in a product shape like a hot press.

【0011】本発明の方法によれば、室温から1000℃ま
での4点曲げ強度が 900〜1100MPa の範囲で、特に1000
℃の平均強度が900MPaを下まわらない高温高強度の Si3
N4−SiC 複合体が得られる。
According to the method of the present invention, the four-point bending strength from room temperature to 1000 ° C. is in the range of 900 to 1100 MPa, particularly 1000
High-temperature high-strength Si 3 whose average strength at ℃ is less than 900MPa
N 4 -SiC composite is obtained.

【0012】[0012]

【作用】Y2O3, MgAl2O4を焼結助剤としたことにより Si
3N4−SiC の難焼結材料をホットプレスによらずに高圧
力ガス圧焼結で緻密化することが可能になり、かつ Y2O
3, MgAl2O4では高温強度が低下する欠点を耐酸化性に優
れるSiC を添加したことにより、特に SiCが Si3N4焼結
体の粒界3重点に入ることにより Si3N4焼結体の耐酸化
性が向上し、1000℃強度が室温強度に比較して低下しな
くなる。
[Action] YTwoOThree, MgAlTwoOFourSi as a sintering aid
ThreeNFour−High pressure of SiC hard-to-sinter materials without hot pressing
Densification by force gas pressure sintering and YTwoO
Three, MgAlTwoOFourHas the disadvantage that the high temperature strength is reduced.
In particular, the addition of SiCThreeNFourSintering
Si enters the grain boundary triple pointThreeNFourOxidation resistance of sintered body
The strength at 1000 ° C does not decrease compared to the strength at room temperature.
It becomes.

【0013】[0013]

【実施例】Si3N4粉末(平均粒径0.2μm、金属不純物
総量30ppm 、α化率ほぼ 100%)に第2相粒子として炭
化珪素(製法;プラズマCVD法、比表面積47m2
g、平均粒径0.03μm、純度99.9%、β相ほぼ 100
%)、焼結助剤としてY2O3粉末(平均粒径0.3μm、純
度99.9%)、 MgAl2O4粉末(平均粒径0.3μm、純度9
9.9%)の添加量を表1に示すような組成で混合(Si3N4
製ボールミル)した各種粉末を200kgf/cm2 の圧力で加
圧成形し、その成形体を薄ゴムにつめ真空封入後CIP
(静水圧成形)にて 3000kgf/cm2 の圧力で加圧した。
その後、この成形体を表1に示す条件でN2 雰囲気中の
炉内で焼結させた。昇温速度は5℃/min 、最高温度に
到達後4時間までは0kgf/cm2(1気圧)のN 2 雰囲気
下で、その後表1に示す最高圧力まで毎分 15kgf/cm2
の昇圧速度で加圧し、最高温度での総保持時間が8時間
になるまで加熱・加圧した。この昇温・昇圧スケジュー
ルを図1に示す。これらの焼結体の室温4点曲げ強度
(JIS R 1601) 、高温4点曲げ強度(JIS R 1604、大気
中)及び破壊靱性値(JIS R 1607、SEPB法)を測定して
表1に示す結果を得た。焼結体の相対密度はn−ブタノ
ール置換法で求めた嵩密度を理論密度で除して得た値で
ある。残部は気孔率であるが、光学顕微鏡による鏡面研
磨面の観察結果からも裏付けられた。曲げ試験のn数は
15、破壊靱性値のn数は5で、値はその平均値である。
曲げ強度の標準偏差値はいずれの試料も室温で 80MPa以
下、1000℃で 50MPa以下であった。実施例の試料 NO.2
の焼結体組織をTEMにて詳細に観察した結果、本発明
の製造法により炭化珪素粉末は均質に分散しており、炭
化珪素は焼結体の窒化珪素の粒界また粒界3重点に存在
していることが観察できた。また一部の SiCは Si3N4
内にも存在していた。
[Example] SiThreeNFourPowder (average particle size 0.2μm, metal impurities
(Total amount 30ppm, alpha conversion rate almost 100%)
Silicon chloride (Production method: Plasma CVD method, specific surface area 47mTwo/
g, average particle size 0.03μm, purity 99.9%, β phase almost 100
%), Y as a sintering aidTwoOThreePowder (average particle size 0.3μm, pure
99.9%), MgAlTwoOFourPowder (average particle size 0.3μm, purity 9
9.9%) with the composition shown in Table 1 (SiThreeNFour
200kgf / cmTwoPressure
Press molding, packing the molded product in thin rubber, vacuum sealing and CIP
3000kgf / cm with (hydrostatic molding)TwoPressure.
Then, the molded body was N 2 under the conditions shown in Table 1.TwoIn the atmosphere
Sintered in a furnace. Heating rate is 5 ℃ / min, maximum temperature
0kgf / cm for up to 4 hours after arrivalTwo(1 atm) N Twoatmosphere
Below, then 15kgf / cm per minute to the maximum pressure shown in Table 1.Two
Pressurized at the pressure rising speed, and the total holding time at the highest temperature is 8 hours
Heating and pressurizing until This heating / boosting schedule
FIG. Room temperature 4-point bending strength of these sintered bodies
(JIS R 1601), high temperature four-point bending strength (JIS R 1604, air
Medium) and fracture toughness (JIS R 1607, SEPB method)
The results shown in Table 1 were obtained. The relative density of the sintered body is n-butano
The value obtained by dividing the bulk density obtained by the
is there. The balance is porosity, but the surface is
This was supported by the observation of the polished surface. N number of bending test is
15. The n number of the fracture toughness value is 5, and the value is the average value.
The standard deviation of flexural strength was 80MPa or less at room temperature for all samples.
Below, it was 50 MPa or less at 1000 ° C. Sample No. 2 of Example
As a result of observing the structure of the sintered body of
The silicon carbide powder is homogeneously dispersed by the
Silicon nitride exists at the grain boundary of silicon nitride in the sintered body or at the triple point of the grain boundary
I could observe it. Some SiC is SiThreeNFourgrain
Also existed within.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【発明の効果】Si3N4−SiC 複合体において高温強度が
向上し、かつ製品形状の自由度が拡大する。
As described above, the high-temperature strength of the Si 3 N 4 —SiC composite is improved, and the degree of freedom of the product shape is increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例の焼結の昇温・昇圧スケジュールを示す
図である。
FIG. 1 is a diagram showing a schedule for raising and lowering the temperature of sintering in an example.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Si3N4と、焼結助剤として重量比で4:
1から1:1の範囲のY2O3とMgAl2O4 をY2O3+MgAl2O4
+Si3N4 の総重量を 100wt%として4〜8wt%と、Y2O3
+MgAl2O4 +Si3N4 の総重量を 100wt%として SiCを10
〜20wt%とを含む混合粉末を成形し、該成形体を1700〜
1800℃の範囲の温度まで加熱して予備焼結し、次いで同
温度範囲で雰囲気圧力を1000気圧以上に昇圧し、本焼結
することを特徴とする炭化珪素含有窒化珪素複合体の製
造方法。
1. A weight ratio of Si 3 N 4 to sintering aid of 4:
Y 2 O 3 and MgAl 2 O 4 in the range of 1 to 1: 1 are converted to Y 2 O 3 + MgAl 2 O 4
And 4~8Wt% of the total weight the Si 3 N 4 as 100wt% +, Y 2 O 3
+ MgAl 2 O 4 + Si 3 N 4 10%
And a mixed powder containing 1700 to 20 wt%.
A method for producing a silicon carbide-containing silicon nitride composite, comprising: pre-sintering by heating to a temperature in the range of 1800 ° C .;
JP3022227A 1991-02-15 1991-02-15 Method for producing silicon carbide-containing silicon nitride composite Expired - Fee Related JP2773439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3022227A JP2773439B2 (en) 1991-02-15 1991-02-15 Method for producing silicon carbide-containing silicon nitride composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3022227A JP2773439B2 (en) 1991-02-15 1991-02-15 Method for producing silicon carbide-containing silicon nitride composite

Publications (2)

Publication Number Publication Date
JPH04260669A JPH04260669A (en) 1992-09-16
JP2773439B2 true JP2773439B2 (en) 1998-07-09

Family

ID=12076918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3022227A Expired - Fee Related JP2773439B2 (en) 1991-02-15 1991-02-15 Method for producing silicon carbide-containing silicon nitride composite

Country Status (1)

Country Link
JP (1) JP2773439B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003034581A (en) 2001-07-24 2003-02-07 Toshiba Corp Silicon nitride abrasion resistant member and method for producing the same
CN102951905B (en) * 2003-09-25 2016-02-17 株式会社东芝 Wear resistant member comprised of silicon nitride and manufacture method thereof
DE10353973B4 (en) * 2003-11-19 2006-08-17 Beru Ag Method for producing a ceramic glow plug for a ceramic glow plug
CN107879753B (en) * 2017-11-24 2020-10-23 中钢集团洛阳耐火材料研究院有限公司 Silicon carbide-magnesium aluminate spinel composite refractory material
CN115677357B (en) * 2022-11-10 2023-07-11 中国科学院上海硅酸盐研究所 High-wear-resistance silicon nitride ceramic and preparation method thereof

Also Published As

Publication number Publication date
JPH04260669A (en) 1992-09-16

Similar Documents

Publication Publication Date Title
US5470806A (en) Making of sintered silicon carbide bodies
JPS6256107B2 (en)
JPS61111970A (en) Silicon nitride sintered body and manufacture
JP2507479B2 (en) SiC-Al Lower 2 O Lower 3 Composite Sintered Body and Manufacturing Method Thereof
JP2773439B2 (en) Method for producing silicon carbide-containing silicon nitride composite
JP2507480B2 (en) SiC-Al Lower 2 O Lower 3 Composite Sintered Body and Manufacturing Method Thereof
US4806510A (en) Silicon nitride sintered body and method for producing same
JP3036207B2 (en) Method for producing silicon nitride sintered body
JP2976534B2 (en) Silicon nitride sintered body and method for producing the same
JP2970131B2 (en) Method for producing silicon nitride sintered body
JP2692377B2 (en) Silicon nitride sintered body and method for producing the same
JP2925089B2 (en) Ceramic composite sintered body and method of manufacturing the same
JP3114302B2 (en) Silicon nitride sintered body and method for producing the same
JP3144178B2 (en) Silicon nitride sintered body and method for producing the same
JPH07115927B2 (en) SiC-based ceramics and method for producing the same
JP2581128B2 (en) Alumina-sialon composite sintered body
JP3126059B2 (en) Alumina-based composite sintered body
JP2949936B2 (en) Method for producing silicon nitride sintered body
JP2910359B2 (en) Method for producing silicon nitride based sintered body
JP3007370B2 (en) Silicon oxynitride based sintered body
JP2890849B2 (en) Method for producing silicon nitride sintered body
JPH05294735A (en) Production of silicon nitride sintered compact
JPH05330916A (en) Heat-resistant mechanical part for gas turbine
EP0317147B1 (en) Si3n4-al2o3 composite sintered bodies and method of producing the same
JPH07138064A (en) Production of high-strength alumina sintered compact

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees