JPH01230475A - High-strength ceramic composite material and production thereof - Google Patents

High-strength ceramic composite material and production thereof

Info

Publication number
JPH01230475A
JPH01230475A JP63026200A JP2620088A JPH01230475A JP H01230475 A JPH01230475 A JP H01230475A JP 63026200 A JP63026200 A JP 63026200A JP 2620088 A JP2620088 A JP 2620088A JP H01230475 A JPH01230475 A JP H01230475A
Authority
JP
Japan
Prior art keywords
ceramic composite
composite material
sic
fibers
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63026200A
Other languages
Japanese (ja)
Inventor
Taketami Yamamura
武民 山村
Toshihiro Ishikawa
敏弘 石川
Masaki Shibuya
昌樹 渋谷
Kiyoto Okamura
清人 岡村
Mitsuhiko Sato
光彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP63026200A priority Critical patent/JPH01230475A/en
Priority to US07/265,254 priority patent/US4990470A/en
Priority to CA000582211A priority patent/CA1319713C/en
Publication of JPH01230475A publication Critical patent/JPH01230475A/en
Priority to US07/606,762 priority patent/US5207861A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain the subject article having improved strength at normal temperature and reduced lowering of the strength at high temperature, by mixing or laminating inorganic fiber composed of a specific amorphous substance, a solid solution, etc., with powder produced by pulverizing said fiber and sintering the mixture or laminate under specific condition. CONSTITUTION:An inorganic fiber composed of an amorphous substance consisting of Si, C and O, agglomerate of crystalline fine particles of beta-SiC having particle diameter of <=500Angstrom and amorphous SiO2 or a mixture of said amorphous substance and agglomerate is prepared beforehand. The fiber and powder of the fiber are mixed or laminated with each other and the mixture, etc., is formed. The formed article is sintered at 1700-2200 deg.C in an atmosphere of e.g., an inert gas. The composite ceramic material produced by this process has high strength and is composed of uniformly dispersed flaky, granular or acicular SiC crystals and agglomerate of ultrafine SiC crystal particles.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高強度セラミック複合材料およびその製造方
法に関するもので、本発明のセラミ・ンク複合材料は、
主として、内燃機関の部材、例えば、ピストンリング、
副燃焼室や、ロケ・ントエンジンの部材、例えば、ノー
ズコーン、ノズルなどの用途に用いられる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a high-strength ceramic composite material and a method for producing the same.
Mainly used for internal combustion engine parts, such as piston rings,
It is used for sub-combustion chambers and parts of rocket engines, such as nose cones and nozzles.

〔従来の技術および発明が解決しようとする課題]従来
、耐熱性に優れたセラミックスとしては、例えばAl2
O3、B4C、MgO,、ZrO2、SiO□などの酸
化物系、SiC,TiC,WC。
[Prior art and problems to be solved by the invention] Conventionally, ceramics with excellent heat resistance include, for example, Al2
Oxide systems such as O3, B4C, MgO, ZrO2, SiO□, SiC, TiC, WC.

B、Cなどの炭化物系、S L 3 N4、B N−A
 INなどの窒化物系、TiBz 、ZrBzなどの硼
化物系、MoSi2、WSiz、CrSi2などのケイ
化物系のセラミックスが知られている。これらのセラミ
ックス成形体の製造は極めて高温で行なわれてきたが、
最近これらの焼結温度の低下および焼結圧の減少を狙っ
て焼結助剤の検討が盛んに行なわれている。焼結助剤は
、セラミ・ンクスの焼結性を向上させると同時に焼結体
の粒成長を抑制して、粒間に空孔が残存することを防ぐ
上、 ゛粒界を高密度に充填する役割をも有している。
Carbide type such as B, C, S L 3 N4, B N-A
Nitride ceramics such as IN, boride ceramics such as TiBz and ZrBz, and silicide ceramics such as MoSi2, WSiz and CrSi2 are known. These ceramic molded bodies have been manufactured at extremely high temperatures;
Recently, sintering aids have been actively investigated with the aim of lowering the sintering temperature and sintering pressure. The sintering aid improves the sinterability of the ceramic inx, suppresses grain growth in the sintered body, prevents pores from remaining between the grains, and fills the grain boundaries with high density. It also has the role of

従来から焼結助剤として使用されている添加剤としては
、例えば、MgO,Nip、Cab、TiO□、AI!
、20. 、Y2O3、B4C,B、Cなどで、これら
の添加剤が選定される理由は、自己焼結性の乏しいセラ
ミックスの焼結を助成するように、基材セラミックスと
添加剤との間の相反力を生起させるため、もしくは添加
剤が高温において塑性化した液相となったりするため焼
結が進行し易くなるからである。また、BやCはSiC
粒子の表面エネルギーを低下させ焼結性を向上させる役
割を有している。
Examples of additives conventionally used as sintering aids include MgO, Nip, Cab, TiO□, and AI!
, 20. , Y2O3, B4C, B, C, etc., the reason why these additives are selected is because of the reciprocal force between the base ceramic and the additive so as to assist in the sintering of ceramics with poor self-sintering properties. This is because sintering progresses more easily because the additive becomes plasticized and becomes a liquid phase at high temperatures. Also, B and C are SiC
It has the role of lowering the surface energy of particles and improving sinterability.

しかしながら、上記のように焼結助剤が存在する場合、
基材セラミックスと助剤の反応による第2相、第3相の
出現が考えられ、これらは、主として結晶粒界に存在し
ており、高温になるとこれらの粒界構成物から塑性変形
し易く、高温強度の得られない場合が多い。例えば、S
i3N4にMgoを添加した場合は、第2相として51
MgO3のガラス質相ができ、これが粒界を埋めること
により高密度化は達成されるが、高温におけるこの焼結
体の機械的強度は、上記ガラス質相の軟化により1 、
000“C程度で象、激に低下する。このような、高温
強度の低下を来さないためには、ガラス質化しない助剤
を選べば良いが、このような助剤は一般的に焼結性が低
く、満足な成形体を得ることができない。
However, when a sintering aid is present as mentioned above,
It is thought that the second and third phases appear due to the reaction between the base ceramic and the auxiliary agent, and these exist mainly at the grain boundaries, and when the temperature rises, they are likely to be plastically deformed from these grain boundary constituents. In many cases, high-temperature strength cannot be obtained. For example, S
When Mgo is added to i3N4, 51
High density is achieved by forming a glassy phase of MgO3 that fills the grain boundaries, but the mechanical strength of this sintered body at high temperatures decreases by 1, due to the softening of the glassy phase.
At around 0.000"C, the strength deteriorates dramatically. In order to prevent this kind of decline in high-temperature strength, it is best to choose an auxiliary agent that does not become vitrified, but such auxiliary agents are generally The solidity is low and it is not possible to obtain a satisfactory molded product.

上記のような不都合を解消する方法として、セラミック
ス粉末の結合剤として珪素と炭素とを主な骨格成分とす
る有機珪素重合体を使用し、両者の混合物を加熱焼結さ
せて、高温での強度低下の少ないセラミックス焼結体を
製造する方法が提案されている。
As a method to eliminate the above-mentioned disadvantages, an organic silicon polymer whose main skeleton components are silicon and carbon is used as a binder for ceramic powder, and a mixture of the two is heated and sintered to increase its strength at high temperatures. A method of manufacturing a ceramic sintered body with less deterioration has been proposed.

例えば、特公昭5B−44630号公報には、炭化珪素
粉末と上記有機珪素重合体との混合物を加熱焼結し、得
られる焼結体にさらに有機珪素重合体を含浸させて加熱
処理して、炭化珪素焼結成形体を製造する方法が記載さ
れている。また、特公開60−54906号公報には、
ポリシランをポリポロシロキサンの存在下に加熱重合さ
せて得られるところのシロキサン結合を一部含むポリカ
ルボシランをセラミックス粉末と混合し、混合物を成形
の後または成形と同時に加熱焼結することによって、焼
結体を製造する方法が開示されている。
For example, Japanese Patent Publication No. 5B-44630 discloses that a mixture of silicon carbide powder and the above organosilicon polymer is heated and sintered, and the resulting sintered body is further impregnated with an organosilicon polymer and heat treated. A method of manufacturing sintered silicon carbide compacts is described. Also, in Japanese Patent Publication No. 60-54906,
Polycarbosilane containing some siloxane bonds obtained by heating and polymerizing polysilane in the presence of polyporosiloxane is mixed with ceramic powder, and the mixture is heated and sintered after or at the same time as molding. A method of making a body is disclosed.

上記公報に記載の方法においてセラミックス粉末の結合
剤として使用される有機珪素重合体は、混合物を加熱焼
結する際に無機物に転換され、この無機物は高融点を有
する物質であるので、得られる焼結体は高温においても
比較的高い強度を有している。その理由は、上記の方法
で得られる焼結体が、例えば特公昭58−44630号
公報第11欄第20〜42行に記載のように、炭化珪素
粒子と、有機珪素重合体の加熱分解によって生成するS
tCから主として構成される粒界相とからなっているか
らである。
The organosilicon polymer used as a binder for ceramic powder in the method described in the above publication is converted into an inorganic substance when the mixture is heated and sintered, and since this inorganic substance has a high melting point, the resulting sintered material is The compact has relatively high strength even at high temperatures. The reason for this is that the sintered body obtained by the above method is produced by thermal decomposition of silicon carbide particles and an organosilicon polymer, as described in Japanese Patent Publication No. 58-44630, column 11, lines 20 to 42. S to generate
This is because it consists of a grain boundary phase mainly composed of tC.

これら公報に記載の方法で得られる焼結体の強度につい
てみると、例えば特公昭5B−44630号公報の実施
例1では、最終的に得られる焼結成形体の曲げ強度は1
900kg10ff (19kg/肛2)であり、また
特公昭60−54906号公報の実施例1では抗折強度
(曲げ強度) 12.1kg/CI(12,1kg /
 mm2の誤記と思われる)の焼結成形体を得ている。
Looking at the strength of the sintered bodies obtained by the methods described in these publications, for example, in Example 1 of Japanese Patent Publication No. 5B-44630, the bending strength of the sintered bodies finally obtained is 1.
900kg10ff (19kg/anal 2), and in Example 1 of Japanese Patent Publication No. 60-54906, the bending strength (bending strength) is 12.1kg/CI (12.1kg/CI).
A sintered molded body was obtained (which seems to be a misprint of mm2).

近年、エンジニアリングセラミックスにはより高い機能
が要求されるようになり、例えば強度自体が高く、さら
に高温での強度低下がきわめて小さい焼結体の出現が要
望されている。
In recent years, engineering ceramics have come to be required to have higher functionality, and for example, there is a demand for sintered bodies that have high strength and have extremely low strength loss at high temperatures.

従って、本発明の目的は、常温での機械的強度が高く、
且つ高温においても強度低下が極めて小さいセラミンク
複合材料およびその製造方法を提供することにある。
Therefore, the object of the present invention is to have high mechanical strength at room temperature,
Another object of the present invention is to provide a ceramic composite material whose strength decreases extremely little even at high temperatures, and a method for producing the same.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、フレーク状、塊状または針状のSiC結晶と
、超微粒子のSiC結晶集合体とが均一に分散した、高
強度セラミック複合材料を提供することにより、前記目
的を達成したものである。
The present invention achieves the above object by providing a high-strength ceramic composite material in which flaky, lump-like, or needle-like SiC crystals and ultrafine SiC crystal aggregates are uniformly dispersed.

また、本発明は、上記の本発明の高強度セラミック複合
材料の好ましい製造方法として下記の製造方法を提供す
るものである。
Furthermore, the present invention provides the following manufacturing method as a preferred method for manufacturing the high-strength ceramic composite material of the present invention.

下記(i)、(ii)または(iii )の何れかの無
機質物質からなる無機質繊維と、該無機質繊維を粉砕し
た粉末または該無機質繊維と同一組成を有する焼結体を
粉砕した粉末とを混合または積層し、この混合物または
積層物を、所定の形状に成形し、この成形と同時にまた
は成形後に真空中、不活性ガス、還元性ガスおよび炭化
水素ガスからなる群から選ばれる少なくとも1種からな
る雰囲気中で、1.700〜2,200 ”Cの温度範
囲で加熱焼結することを特徴とする、フレーク状、塊状
または針状のSiC結晶と超微粒子のSiC結晶集合体
とが均一に分散したセラミック複合材料の製造方法。
Mixing an inorganic fiber made of any of the inorganic substances listed in (i), (ii) or (iii) below and a powder obtained by pulverizing the inorganic fiber or a powder obtained by pulverizing a sintered body having the same composition as the inorganic fiber. or laminated, and this mixture or laminate is molded into a predetermined shape, and at the same time or after the molding, in a vacuum, at least one gas selected from the group consisting of an inert gas, a reducing gas, and a hydrocarbon gas is used. Uniformly dispersed flake-like, lump-like, or needle-like SiC crystals and ultrafine particle SiC crystal aggregates are characterized by heating and sintering in an atmosphere at a temperature range of 1.700 to 2,200"C. A method for manufacturing ceramic composite materials.

(i)Si、Cおよび0から実質的になる非結晶質 (ii )粒径が500Å以下の実質的にβ−SiCか
らなる結晶質超微粒子と非晶質のSin、とからなる集
合体 (iii )上記(i)の非晶質物質と上記(ii)の
集合体との混合系 以下、まず本発明のセラミック複合材料について説明す
る。
(i) Amorphous consisting essentially of Si, C and 0 (ii) Aggregate consisting of crystalline ultrafine particles consisting essentially of β-SiC with a grain size of 500 Å or less and amorphous Sin ( iii) Mixed system of the amorphous material (i) above and the aggregate (ii) above First, the ceramic composite material of the present invention will be explained.

本発明のセラミック複合材料は、フレーク状、塊状また
は針状のSiC結晶と超微粒子のSiC結晶集合体とか
らなっている。ここで、フレーク状とは好ましくは長さ
1〜20μmの鱗形状を意味し、塊状とは好ましくは粒
が三次元方向に成長した1辺の長さが1〜20μmの塊
を意味し、さらに針状とは好ましくは長さ1〜20μm
で、太さに対する長さの比が1.5〜20である形状を
意味する。超微粒子集合体を構成するSiC粒子の大き
さは通常500Å以下である。
The ceramic composite material of the present invention is composed of flaky, lump-like or needle-like SiC crystals and ultrafine SiC crystal aggregates. Here, flake-like preferably means a scale-like shape with a length of 1 to 20 μm, and lump-like preferably means a lump of grains grown in a three-dimensional direction with a side length of 1 to 20 μm; Acicular shape preferably has a length of 1 to 20 μm
This means a shape with a length to thickness ratio of 1.5 to 20. The size of the SiC particles constituting the ultrafine particle aggregate is usually 500 Å or less.

本発明のセラミック複合材料は、フレーク状、塊状また
は針状のSiC結晶が40重量%以上存在していること
が好ましい。上記SiC結晶が過少であると、複合材料
の強度が低下する。また、上記SiC結晶の上限につい
ては特に制限はないが、通常95重量%である。
The ceramic composite material of the present invention preferably contains 40% by weight or more of flake-like, lump-like, or needle-like SiC crystals. If the SiC crystals are too small, the strength of the composite material will decrease. Further, there is no particular restriction on the upper limit of the SiC crystal, but it is usually 95% by weight.

次に、本発明のセラミック複合材料の製造方法について
説明する。
Next, a method for manufacturing the ceramic composite material of the present invention will be explained.

本発明のセラミック複合材料の製造方法において原料と
して用いられる、前記(i)、(ii)または(iii
 )の何れかの無機質物質からなるケイ素、炭素および
酸素を含有する無機質繊維は、自己結晶性が太き(、焼
結助剤を添加することなく 1.700〜2,200 
’Cの温度で処理することにより、良好な焼結体を得る
ことができる。尚、前記(ii)の無機質物質の構成成
分である結晶質超微粒子として、粒径が500Å超のも
のを用いると、得られる複合材料の強度が低下する。
The above (i), (ii) or (iii) used as a raw material in the method for producing a ceramic composite material of the present invention.
) The inorganic fiber containing silicon, carbon and oxygen made of any of the inorganic substances has a thick self-crystallinity (1.700 to 2,200 without adding a sintering aid).
A good sintered body can be obtained by processing at a temperature of 'C. Note that if crystalline ultrafine particles that are a constituent of the inorganic substance (ii) have a particle size of more than 500 Å, the strength of the resulting composite material will decrease.

無機質繊維は、例えば特開昭51−126300号公報
、特開昭51−139929号公報などに記載された方
法により生成されたポリカルボシランを溶融紡糸し、空
気中加熱処理により不融化させ、不活性ガス中800〜
1 、500“Cで焼成することにより得られる。
Inorganic fibers are made by melt-spinning polycarbosilane produced by the method described in, for example, JP-A-51-126300, JP-A-51-139929, etc., and making it infusible by heat treatment in air. 800~ in active gas
1, obtained by firing at 500"C.

無機質繊維の使用形態については特別の制限はなく、連
続繊維または連続繊維を切断したチョップ状短繊維とし
て使用してもよく、連続繊維から編織された平織物、三
次元織物、不織布として使用してもよく、さらに一方向
に引き揃えたシート状物として使用してもよい。
There are no particular restrictions on the form in which inorganic fibers are used, and they may be used as continuous fibers or chopped short fibers obtained by cutting continuous fibers, or as plain woven fabrics, three-dimensional woven fabrics, or non-woven fabrics woven from continuous fibers. It may also be used as a sheet-like material drawn in one direction.

本発明の製造方法において無機質繊維と混合または積層
される粉末としては、この無機質繊維を粉砕した粉末ま
たは無機質繊維と同一組成を有する焼結体を粉砕した粉
末が使用される。粉末の粒径は一般に1〜50umであ
る。
As the powder to be mixed or laminated with the inorganic fiber in the production method of the present invention, a powder obtained by pulverizing the inorganic fiber or a powder obtained by pulverizing a sintered body having the same composition as the inorganic fiber is used. The particle size of the powder is generally between 1 and 50 um.

無機質繊維と粉末との使用割合についても特別の制限は
なく、通常、両者の合計に対して10〜70重量%の無
機質繊維が使用される。
There is no particular restriction on the ratio of the inorganic fibers to the powder, and the inorganic fibers are usually used in an amount of 10 to 70% by weight based on the total amount of the inorganic fibers and powder.

無機質繊維と粉末とは均一に配合することが好ましい。It is preferable that the inorganic fiber and powder are mixed uniformly.

無機質繊維がチョップ状物である場合は、チョップ状物
と粉末とをそれ自体公知の混合機を用いて混合すること
ができ、また、無機質繊維が長繊維、織物、不織布また
はシート状物である場合は、無機質繊維層と粉末層とを
交互に積層した積層物とすることができる。
When the inorganic fiber is a chopped material, the chopped material and the powder can be mixed using a mixer known per se, and the inorganic fiber is a long fiber, a woven fabric, a nonwoven fabric, or a sheet-like material. In this case, a laminate in which inorganic fiber layers and powder layers are alternately laminated can be used.

ついで、」二記の混合物または積層物を、所望の形状に
成形した後、または成形と同時に加熱焼結することによ
って、本発明のセラミック複合材料を得ることができる
Next, the ceramic composite material of the present invention can be obtained by heating and sintering the mixture or laminate described in "2" after molding it into a desired shape or simultaneously with the molding.

焼結を行なう方法としては、混合物または積層物を一次
成形した後加圧下、常圧下または減圧下で焼結する方法
、あるいは成形と焼結を同時に行なうホットプレス法を
使用することができる。
As the sintering method, a method in which the mixture or laminate is primarily formed and then sintered under pressure, normal pressure, or reduced pressure, or a hot press method in which forming and sintering are performed simultaneously can be used.

前記−次成形と焼結を別々に行なう方法において、−次
成形するには、金型プレス法、ラバープレス法、押出し
法、シート法を用いて100〜5,000kg/c+f
lの圧力で加圧し所定の形状(例えば、シート状、棒状
、球状等)のものを得ることが出来る。なお、上記成形
には、必要に応じて無機質繊維の原料であるポリカルボ
シランあるいは市販の有機ポリマーをバインダーとして
用いてもよい。
In the above-mentioned method in which the next forming and sintering are performed separately, the second forming is performed using a mold press method, a rubber press method, an extrusion method, or a sheet method at a rate of 100 to 5,000 kg/c+f.
It is possible to obtain a product in a predetermined shape (for example, sheet-like, rod-like, spherical, etc.) by applying a pressure of 1 liter. In the above molding, polycarbosilane, which is a raw material for inorganic fibers, or a commercially available organic polymer may be used as a binder, if necessary.

次に前記成形体を焼結することによって本発明のセラミ
ック複合材料を得ることが出来る。
Next, the ceramic composite material of the present invention can be obtained by sintering the molded body.

また、ホットプレス法で焼結を行なう場合は、黒鉛から
なる押型に、離型剤としてのBNをスプレーしたものを
用い、2〜2,000 kg/cJの圧力で混合物また
は積層物を加圧しながら、同時に加熱し焼結体とするこ
とができる。
In addition, when sintering is performed by the hot press method, a press mold made of graphite is sprayed with BN as a mold release agent, and the mixture or laminate is pressed at a pressure of 2 to 2,000 kg/cJ. However, at the same time, it can be heated to form a sintered body.

加熱焼結温度は1 、700〜2,200℃1好ましく
は1 、900〜2,100℃である。この温度に加熱
することによってフレーク状、塊状または針状のSiC
結晶が生成し、このSiC結晶がマトリックスとなるS
iCの超微粒子集合体中に均一に分散した高強度のセラ
ミック複合材料が得られる。加熱焼結温度が1 、70
0より低いとフレーク状、塊状または針状のSiC結晶
が生成せず、高い強度の複合材料が得られない。また、
加熱焼結温度が2.200℃より高いと、生成したSi
C結晶またはマトリックスの分解が起こるようになる。
The heating sintering temperature is 1,700 to 2,200°C, preferably 1,900 to 2,100°C. By heating to this temperature, SiC can be formed into flakes, lumps or needles.
A crystal is generated, and this SiC crystal becomes a matrix of S.
A high-strength ceramic composite material uniformly dispersed in the iC ultrafine particle aggregate is obtained. The heating sintering temperature is 1.70
If it is lower than 0, flake-like, lump-like, or needle-like SiC crystals will not be generated, and a high-strength composite material will not be obtained. Also,
When the heating sintering temperature is higher than 2.200℃, the generated Si
Decomposition of the C crystal or matrix begins to occur.

加熱焼結は、真空中、不活性ガス、還元性ガスおよび炭
化水素ガスからなる群から選ばれる少なくとも1種から
なる雰囲気中で行なわれる。不活性ガスの例としては、
窒素ガス、炭酸ガスなどが挙げられ、還元性ガスの例と
しては、水素ガス、−酸化炭素ガスなどが挙げられ、炭
化水素ガスの例としては、メタンガス、エタンガス、プ
ロパンガス、ブタンガスなどが挙げられる。
The heating and sintering is performed in a vacuum and in an atmosphere consisting of at least one selected from the group consisting of an inert gas, a reducing gas, and a hydrocarbon gas. Examples of inert gases include:
Examples of reducing gas include hydrogen gas, -carbon oxide gas, etc. Examples of hydrocarbon gas include methane gas, ethane gas, propane gas, butane gas, etc. .

本発明のセラミック複合材料は、公知のセラミック複合
材料に比較して、きわめて高い常温強度を示し、さらに
高温においても強度の低下がほとんどなく、さらに1.
2〜1.5倍程度の破壊靭性値を有している。なお、無
機質繊維に含有されている酸素および非化学量論量の炭
素は、上記焼結時に、2C+Si○→S i O+C○
、3C−1−3i02→SiC+2COの反応により離
脱し、焼結体中には残存していない。これによりSiC
粒子の表面エネルギーが低下し焼結性の向上をもたらし
ている。また、ガラス質のSiO2を完全に除去するた
めに、前記の成形時に少量の炭素を配合することもでき
る。
The ceramic composite material of the present invention exhibits extremely high strength at room temperature compared to known ceramic composite materials, and has almost no decrease in strength even at high temperatures;
It has a fracture toughness value of about 2 to 1.5 times. Note that the oxygen and non-stoichiometric amount of carbon contained in the inorganic fibers are changed from 2C+Si○→S i O+C○ during the above sintering.
, 3C-1-3i02→SiC+2CO, and does not remain in the sintered body. This allows SiC
The surface energy of the particles is reduced, resulting in improved sinterability. Furthermore, in order to completely remove the glassy SiO2, a small amount of carbon may be added during the above molding.

さらに、必要に応じて前記焼結体に無機質繊維の原料で
あるポリカルボシランを含浸させた後、真空中、不活性
ガス、還元性ガスおよび炭化水素ガスからなる群から選
ばれる少なくとも1種からなる雰囲気中で800〜1 
、500℃で予備加熱した後、1.700〜2.200
℃で焼結を行なってもよい。
Further, if necessary, after impregnating the sintered body with polycarbosilane, which is a raw material for inorganic fibers, in a vacuum, at least one gas selected from the group consisting of an inert gas, a reducing gas, and a hydrocarbon gas is used. 800-1 in an atmosphere
, 1.700-2.200 after preheating at 500℃
Sintering may be carried out at °C.

〔実施例〕〔Example〕

以下実施例によって本発明を説明する。 The present invention will be explained below with reference to Examples.

(参考例1) 5!の三ロフラスコに無水キシレン2.51とすトリウ
ム400gとを入れ、窒素ガス気流下でキシレンの沸点
まで加熱し、ジメチルジクロロシラン11を1時間で滴
下した。滴下終了後、10時間加熱還流し沈澱物を生成
させた。この沈澱物を濾過し、まずメタノールで洗浄し
た後、水で洗浄して白色粉末のポリジメチルシラン42
0gを得た。
(Reference example 1) 5! 2.51 g of anhydrous xylene and 400 g of thorium were placed in a three-ring flask, heated under a nitrogen gas stream to the boiling point of xylene, and dimethyldichlorosilane 11 was added dropwise over 1 hour. After the dropwise addition was completed, the mixture was heated under reflux for 10 hours to form a precipitate. This precipitate was filtered and washed first with methanol and then with water to obtain a white powder of polydimethylsilane 42.
Obtained 0g.

他方、ジフェニルジクロロシラン759gとホウ酸12
4gを窒素ガス雰囲気下、n−ブチルエーテル中、10
0〜120℃の温度で加熱し、生成した白色樹脂状物を
、さらに真空中400℃で1時間加熱することによって
530gのポリポロジフェニルシロキサンを得た。
On the other hand, 759 g of diphenyldichlorosilane and 12 g of boric acid
4 g in n-butyl ether under nitrogen gas atmosphere, 10
The resulting white resinous material was heated at a temperature of 0 to 120° C. and further heated in vacuum at 400° C. for 1 hour to obtain 530 g of polyporodiphenylsiloxane.

次に、上記のポリジメチルシラン250gに上記のポリ
ボロジフェニルシロキサン8.27 gを添加混合し、
還流管を備えた2!の石英管中で窒素気流下で350℃
まで加熱し6時間重合した。室温で放冷後キシレンを加
えて溶液として取り出し、キシレンを蒸発させ、320
℃1時間窒素気流下で濃縮して、本発明で用いられる無
機質連続繊維の原料であるポリカルボシランを得た。
Next, 8.27 g of the above polyborodiphenylsiloxane was added and mixed to 250 g of the above polydimethylsilane,
2 with reflux tube! in a quartz tube at 350°C under nitrogen flow.
and polymerized for 6 hours. After cooling at room temperature, add xylene and take out as a solution, evaporate xylene,
C. for 1 hour under a nitrogen stream to obtain polycarbosilane, which is a raw material for the inorganic continuous fiber used in the present invention.

(実施例1) 参考例1で得られたポリカルボシランを溶融紡糸した後
、空気中20℃/hrの昇温速度で170 ”Cまで加
熱し不融化させた後、窒素雰囲気下で200℃/hrの
昇温速度で1,000℃まで加熱し、1時間保持した後
冷却して無機質連続繊維を得た。
(Example 1) After melt-spinning the polycarbosilane obtained in Reference Example 1, it was heated in air at a heating rate of 20°C/hr to 170"C to make it infusible, and then heated to 200°C in a nitrogen atmosphere. The mixture was heated to 1,000° C. at a heating rate of /hr, held for 1 hour, and then cooled to obtain inorganic continuous fibers.

この無機質連続繊維を、窒化ケイ素製のスリ鉢で粉砕し
た200メツシユ以下の粉末と、上記無機質連続繊維か
らなる平織物を交互に積層し、積層物をカーボンダイス
(3朧X 10mmX 10mmのシート状)中にセッ
トして、アルゴン気流下700 kg/cM、 2,0
00℃で0.5時間ホットプレスし、本発明のセラミッ
ク複合材料を得た。
The inorganic continuous fibers are alternately layered with powder of 200 mesh or less crushed in a mortar made of silicon nitride and plain woven fabrics made of the above-mentioned inorganic continuous fibers. ) under argon flow at 700 kg/cM, 2,0
The ceramic composite material of the present invention was obtained by hot pressing at 00°C for 0.5 hours.

上記平織物と上記粉末との割合は1:3であった。The ratio of the plain woven fabric to the powder was 1:3.

得られた本発明のセラミンク複合材料は、曲げ強度が7
6kg/mm2(常温) 、73kg/mm2(L、4
QQ℃)、密度が3.0 g /c+flであった。ま
た、平織物を用いずに粉末のみから得られたセラミック
焼結体に比して、1.4倍の破壊靭性値を示した。
The obtained ceramic composite material of the present invention has a bending strength of 7
6kg/mm2 (normal temperature), 73kg/mm2 (L, 4
QQ°C), and the density was 3.0 g/c+fl. Furthermore, the fracture toughness value was 1.4 times higher than that of a ceramic sintered body obtained only from powder without using plain weave.

(実施例2) 参考例1で得られたポリカルボソランを溶融紡糸した後
、空気中20℃/hrの昇温速度で170℃まで加熱し
不融化させた後、窒素雰囲気下で200℃/hrの昇温
速度で1 、200℃まで加熱し、1時間保持した後冷
却して無機質連続繊維を得た。
(Example 2) After melt-spinning the polycarbosolane obtained in Reference Example 1, it was heated to 170°C at a heating rate of 20°C/hr in air to make it infusible, and then spun at 200°C/hr in a nitrogen atmosphere. The mixture was heated to 1,200°C at a heating rate of 1.2 hours, held for 1 hour, and then cooled to obtain inorganic continuous fibers.

この無機質連続繊維を、窒化ケイ素製のスリ鉢で粉砕し
た200メツシユ以下の粉末と、上記無機質連続繊維か
らなる平織物を交互に積層し、積層物をカーボンダイス
(3mmX 10mmX 10柵のシート状)中にセッ
トして、アルゴン気流下600 kg/c+fl、 2
,000℃で0.5時間ホットプレスし、本発明のセラ
ミック複合材料を得た。
This inorganic continuous fiber was ground in a mortar made of silicon nitride, powder of 200 mesh or less, and a plain fabric made of the above-mentioned inorganic continuous fiber were alternately laminated, and the laminate was cut into a carbon die (sheet shape of 3 mm x 10 mm x 10 bars). Set inside, under argon flow 600 kg/c+fl, 2
The ceramic composite material of the present invention was obtained by hot pressing at ,000°C for 0.5 hours.

上記手工織物と上記粉末との割合は1:3であった。The ratio of the handmade fabric to the powder was 1:3.

得られた本発明のセラミック複合材料は、曲げ強度が6
8kg/mm2(室温) 、63kg/mm2(];4
00℃)、密度が3.1g/allであった。また、平
織物を用いずに粉末のみから得られたセラミック焼結体
に比して、1.3倍の破壊靭性値を示した。
The obtained ceramic composite material of the present invention has a bending strength of 6
8kg/mm2 (room temperature), 63kg/mm2 (]; 4
00°C), and the density was 3.1 g/all. Furthermore, the fracture toughness value was 1.3 times higher than that of a ceramic sintered body obtained only from powder without using plain weave.

(発明の効果〕 本発明のセラミック複合材料は、常温での機械的強度が
高(、且つ高温においても強度低下が極めて小さいもの
で、本発明の製造方法によれば、上記のセラミック複合
材料を工業的に製造できる。
(Effects of the Invention) The ceramic composite material of the present invention has high mechanical strength at room temperature (and exhibits very little decrease in strength even at high temperatures. According to the manufacturing method of the present invention, the ceramic composite material described above Can be manufactured industrially.

特許出願人   宇部興産株式会社Patent applicant: Ube Industries Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] (1)フレーク状、塊状または針状のSiC結晶と、超
微粒子のSiC結晶集合体とが均一に分散した、高強度
セラミック複合材料。
(1) A high-strength ceramic composite material in which flaky, lumpy, or acicular SiC crystals and ultrafine SiC crystal aggregates are uniformly dispersed.
(2)ケイ素原子に対する非化学量論量の遊離炭素、お
よび/または非結晶質SiO_2を含有しないことを特
徴とする特許請求の範囲第(1)項記載のセラミック複
合材料。
(2) The ceramic composite material according to claim (1), which does not contain a non-stoichiometric amount of free carbon and/or amorphous SiO_2 relative to silicon atoms.
(3)下記(i)、(ii)または(iii)の何れか
の無機質物質からなる無機質繊維と、該無機質繊維を粉
砕した粉末または該無機質繊維と同一組成を有する焼結
体を粉砕した粉末とを混合または積層し、この混合物ま
たは積層物を、所定の形状に成形し、この成形と同時に
または成形後に真空中、不活性ガス、還元性ガスおよび
炭化水素ガスからなる群から選ばれる少なくとも1種か
らなる雰囲気中で、1,700〜2,200℃の温度範
囲で加熱焼結することを特徴とする、フレーク状、塊状
または針状のSiC結晶と超微粒子のSiC結晶集合体
とが均一に分散したセラミック複合材料の製造方法。 (i)Si、CおよびOから実質的になる非結晶質 (ii)粒径が500Å以下の実質的にβ−SiCから
なる結晶質超微粒子と非晶質のSiO_2とからなる集
合体 (iii)上記(i)の非晶質物質と上記(ii)の集
合体との混合系
(3) Inorganic fibers made of the inorganic substance of any of the following (i), (ii), or (iii) and powder obtained by pulverizing the inorganic fibers or powder obtained by pulverizing a sintered body having the same composition as the inorganic fibers. This mixture or laminate is molded into a predetermined shape, and at least one gas selected from the group consisting of an inert gas, a reducing gas, and a hydrocarbon gas is mixed or laminated in a vacuum at the same time or after the molding. Uniform flake-like, lump-like, or needle-like SiC crystals and ultrafine particle SiC crystal aggregates are produced by heating and sintering in an atmosphere consisting of seeds at a temperature range of 1,700 to 2,200°C. A method for producing ceramic composite materials dispersed in. (i) Amorphous consisting essentially of Si, C and O (ii) Aggregate consisting of crystalline ultrafine particles consisting essentially of β-SiC with a grain size of 500 Å or less and amorphous SiO_2 (iii) ) A mixed system of the amorphous substance of (i) above and the aggregate of (ii) above.
(4)繊維がチョップ状短繊維であることを特徴とする
、特許請求の範囲第(3)項記載のセラミック複合材料
の製造方法。
(4) The method for producing a ceramic composite material according to claim (3), wherein the fibers are chopped short fibers.
(5)繊維が平織物に編織されていることを特徴とする
、特許請求の範囲第(3)項記載のセラミック複合材料
の製造方法。
(5) The method for producing a ceramic composite material according to claim (3), wherein the fibers are woven into a plain weave.
(6)繊維が不織布または三次元織物に編織されている
ことを特徴とする、特許請求の範囲第(3)項記載のセ
ラミック複合材料の製造方法。
(6) The method for producing a ceramic composite material according to claim (3), wherein the fibers are woven into a nonwoven fabric or a three-dimensional fabric.
(7)下記(i)、(ii)または(iii)の何れか
の無機質物質からなる無機質繊維から構成される不織布
および/または三次元織物の繊維間隙に、該無機質繊維
と同一組成を有する無機質物質を粉砕した微粉末を充填
した後、所定の形状に成形し、この成形と同時にまたは
成形後に真空中、不活性ガス、還元性ガスおよび炭化水
素ガスからなる群から選ばれる少なくとも1種からなる
雰囲気中で、1,700〜2,200℃の温度範囲で加
熱焼結して得られる、フレーク状、塊状または針状のS
iC結晶と超微粒子のSiC結晶集合体とが均一に分散
した高強度セラミック複合材料。 (i)Si、CおよびOから実質的になる非結晶質 (ii)粒径が500Å以下の実質的にβ−SiCから
なる結晶質超微粒子と非晶質のSiO_2とからなる集
合体 (iii)上記(i)の非晶質物質と上記(ii)の集
合体との混合系
(7) Inorganic fibers having the same composition as the inorganic fibers of a nonwoven fabric and/or three-dimensional fabric made of inorganic fibers made of any of the inorganic substances listed in (i), (ii), or (iii) below. After being filled with fine powder obtained by crushing a substance, it is molded into a predetermined shape, and at the same time or after the molding, in a vacuum, it is made of at least one gas selected from the group consisting of an inert gas, a reducing gas, and a hydrocarbon gas. Flaky, lumpy or acicular S obtained by heating and sintering in an atmosphere at a temperature range of 1,700 to 2,200°C.
A high-strength ceramic composite material in which iC crystals and ultrafine SiC crystal aggregates are uniformly dispersed. (i) Amorphous consisting essentially of Si, C and O (ii) Aggregate consisting of crystalline ultrafine particles consisting essentially of β-SiC with a grain size of 500 Å or less and amorphous SiO_2 (iii) ) A mixed system of the amorphous substance of (i) above and the aggregate of (ii) above.
JP63026200A 1987-11-05 1988-02-05 High-strength ceramic composite material and production thereof Pending JPH01230475A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63026200A JPH01230475A (en) 1987-11-05 1988-02-05 High-strength ceramic composite material and production thereof
US07/265,254 US4990470A (en) 1987-11-05 1988-10-31 High-strength and high-toughness sinter and process for producing the same
CA000582211A CA1319713C (en) 1987-11-05 1988-11-03 High-strength and high-toughness sinter and process for producing the same
US07/606,762 US5207861A (en) 1987-11-05 1990-10-31 Process for producing a high strength and high toughness sinter

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP27988687 1987-11-05
JP62-279886 1987-11-05
JP63026200A JPH01230475A (en) 1987-11-05 1988-02-05 High-strength ceramic composite material and production thereof

Publications (1)

Publication Number Publication Date
JPH01230475A true JPH01230475A (en) 1989-09-13

Family

ID=26363943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63026200A Pending JPH01230475A (en) 1987-11-05 1988-02-05 High-strength ceramic composite material and production thereof

Country Status (1)

Country Link
JP (1) JPH01230475A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191063A (en) * 1984-10-09 1986-05-09 ニチアス株式会社 Powdery refractory material containing silicon carbide shortfiber and manufacture
JPS63256572A (en) * 1987-04-15 1988-10-24 株式会社日立製作所 Sic base ceramics and manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191063A (en) * 1984-10-09 1986-05-09 ニチアス株式会社 Powdery refractory material containing silicon carbide shortfiber and manufacture
JPS63256572A (en) * 1987-04-15 1988-10-24 株式会社日立製作所 Sic base ceramics and manufacture

Similar Documents

Publication Publication Date Title
US11180419B2 (en) Method for preparation of dense HfC(Si)—HfB2 composite ceramic
Greil Near net shape manufacturing of polymer derived ceramics
JPS5924751B2 (en) Sintered shaped body
TW397807B (en) Aluminium nitride sintered body
EP1375452B1 (en) Method for producing sic fiber-reinforced sic composite material by means of hot press
JP2010503605A (en) Low CTE isotropic graphite
Yoshida et al. Improvement of the mechanical properties of hot-pressed silicon-carbide-fiber-reinforced silicon carbide composites by polycarbosilane impregnation
CN102219536A (en) B4C/SiC whisker/SiC multiphase ceramic matrix composite and preparation method thereof
Zabelina et al. SiC composites containing carbon nanotubes and oxide additives based on organoelementoxanes. Preparation by spark plasma sintering
CN104817326B (en) A kind of hexagonal boron nitride ytterbium silica silicon dioxide composite material and preparation method
US4990470A (en) High-strength and high-toughness sinter and process for producing the same
CN110330349B (en) Silicon nitride nanofiber reinforced boron nitride ceramic and preparation method thereof
JPH01230475A (en) High-strength ceramic composite material and production thereof
JP3141512B2 (en) Silicon carbide based inorganic fiber reinforced ceramic composite
JPH0672052B2 (en) High strength / high toughness sintered body and method for producing the same
EP0315177B1 (en) High-strength and high-toughness sinter and process for producing the same
US5207861A (en) Process for producing a high strength and high toughness sinter
US5318860A (en) Inorganic fiber sinter and process for producing same
JPH01298073A (en) Boride-based ceramics
JPH0881275A (en) Production of fiber composite material having silicon carbide group
JP3001130B2 (en) Alumina-based inorganic fiber reinforced ceramic composite
JPH01230474A (en) Production of formed article of high-strength ceramic
JP3001128B2 (en) Carbon-based composite fiber reinforced ceramic composite
JPH01230473A (en) High-strength ceramic composite material and production thereof
JP2001181046A (en) Inorganic fiber bound ceramics, method for producing the same and high-surface accuracy member using the same