JPS6191063A - Powdery refractory material containing silicon carbide shortfiber and manufacture - Google Patents
Powdery refractory material containing silicon carbide shortfiber and manufactureInfo
- Publication number
- JPS6191063A JPS6191063A JP59211686A JP21168684A JPS6191063A JP S6191063 A JPS6191063 A JP S6191063A JP 59211686 A JP59211686 A JP 59211686A JP 21168684 A JP21168684 A JP 21168684A JP S6191063 A JPS6191063 A JP S6191063A
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- organic
- silicon carbide
- fibers
- silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Ceramic Products (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
技術分野
本発明は炭化けい素短繊維を均一に含有する粉末状の耐
火性材料とその製造方法iこ関する。DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a powdered refractory material uniformly containing short silicon carbide fibers and a method for producing the same.
従来技術
よく知られているように、炭化けい素繊維は耐熱性にす
ぐれ、熱膨張率が小さく、また耐熱衝撃性にすぐれてい
る。加えて、比重が小さく、強度弾性率が大きい。これ
らの理由から、炭化けい素繊維は各種の耐熱材料などの
繊維強化複合材料用素材として使用されている。As is well known in the prior art, silicon carbide fibers have excellent heat resistance, low coefficient of thermal expansion, and excellent thermal shock resistance. In addition, it has a low specific gravity and a high strength-elastic modulus. For these reasons, silicon carbide fibers are used as materials for fiber-reinforced composite materials such as various heat-resistant materials.
従来技術の問題点
炭化けい索長繊維を得る方法は1例えば4?開昭52−
70122号公報に記載されているが、有機けい素重合
体例えばポリカルボシランを合成紡糸し、かつ焼成する
工程が複雑なため、コストが非常に高い。また、 81
C2,などとメタンなどの混合ガスから炭化けい素ウィ
スカーを得ることも提案されているが、大量生産が困難
な上に。Problems with conventional technology How to obtain carbonized silica fibers 1 For example, 4? Kaisho 52-
Although it is described in Japanese Patent No. 70122, the process of synthetically spinning an organosilicon polymer such as polycarbosilane and firing it is complicated, so the cost is very high. Also, 81
It has also been proposed to obtain silicon carbide whiskers from a mixed gas such as C2, etc. and methane, but it is difficult to mass produce.
コストが同様に非常に高い。また、このウィスカーは1
0〜15μrn程度と短く、複合用繊維としては不十分
である。さらに、複合化にさいして。The cost is very high as well. Also, this whisker is 1
It is short, about 0 to 15 μrn, and is insufficient as a composite fiber. Furthermore, regarding compounding.
ウィスカーと粉末の均一混合、大量混合が困難である。It is difficult to mix whiskers and powder uniformly or in large quantities.
発明の目的
本発明の目的は、従来法の有する価格面及び混合処理時
の欠点を解決し、低コストで大量生産可能であって、均
一混合に極めてすぐれた炭化けい素短繊維からなる繊維
強化複合材料用素材及びその製造方法を提供することに
ある。OBJECT OF THE INVENTION The purpose of the present invention is to solve the disadvantages of conventional methods in terms of cost and in the mixing process, and to provide fiber reinforced fibers made of silicon carbide short fibers that can be mass-produced at low cost and have excellent uniform mixing properties. An object of the present invention is to provide a material for composite material and a method for manufacturing the same.
発明の要約
即ち1本発明によれば、けい素(Sl)成分(金属8i
など)と繊維状炭素(C成分(炭素繊維など)とを有機
バインダーで結合して接触させ、非酸化性ふん囲気中で
焼成して炭化けい素または窒化けい素粉末マトリックス
中に炭素繊維が反応して生じる炭化けい素短繊維を均一
分散させた複合材料及びその製造方法が提供される。SUMMARY OF THE INVENTION 1 According to the present invention, silicon (Sl) component (metal 8i
etc.) and fibrous carbon (C component (carbon fiber, etc.) are bonded with an organic binder and brought into contact, and fired in a non-oxidizing atmosphere to react with the carbon fibers in the silicon carbide or silicon nitride powder matrix. Provided are a composite material in which short silicon carbide fibers produced by the process are uniformly dispersed, and a method for manufacturing the same.
好適な実施態様
本発明で使用するけい素成分としては、金属けい素、シ
リカ粉末、コロイダルシリか、 810゜81、N4な
どがある。また、有機けい素化合物例えばs t o4
.ポリカルボシラン、エチルシリケートも使用できる。Preferred Embodiment The silicon component used in the present invention includes metal silicon, silica powder, colloidal silica, 810°81, N4, and the like. In addition, organic silicon compounds such as sto4
.. Polycarbosilane and ethyl silicate can also be used.
これらのけい素成分は単独でも。These silicon components can also be used alone.
あるいは複合して使用してもよい。Alternatively, they may be used in combination.
繊維状炭素成分としては、有機繊維ポリビニルアルコー
ル、ポリアクリロニトリル、レーヨン、ポリエステルや
その他の市販品が使用できる。特に、炭素繊維としては
、炭素繊維それ自体、黒鉛繊維、耐炎績m、カイノール
繊維やその市販品が使用される。As the fibrous carbon component, organic fibers such as polyvinyl alcohol, polyacrylonitrile, rayon, polyester, and other commercial products can be used. In particular, as carbon fibers, carbon fibers themselves, graphite fibers, flame-resistant fibers, kynor fibers, and commercially available products thereof are used.
けい素成分と繊維状炭素成分とを結合密接させるために
使用する有機質バインダーとしては。As an organic binder used to closely bind silicon components and fibrous carbon components.
PVA 、ポリエチレンオキシド、 CMC、メトロ
ーズなどの有機重合体が使用できる。これらバインダー
は特にけい素成分として金属けい素やシリカ粉末を使用
する場合に有効である。後述するように、上記有機質バ
インダーは焼成工程で炭IA#ζな−る。、
゛上記けい素成分、炭素成分及び有機質バインダーを先
ず混合する。この場合、けい素成分と炭素成分の量は1
次の反応式St+O→別0゜8401+50→SムO+
200等を考慮して、化学社論的に8五と0との重量
比によって決定する。Organic polymers such as PVA, polyethylene oxide, CMC, Metrose, etc. can be used. These binders are particularly effective when metallic silicon or silica powder is used as the silicon component. As will be described later, the organic binder becomes charcoal IA#ζ during the firing process. , ``First, the silicon component, carbon component, and organic binder are mixed. In this case, the amount of silicon component and carbon component is 1
The following reaction formula St+O→Another 0゜8401+50→SmuO+
200 etc., it is determined by the weight ratio of 85 and 0 based on chemical theory.
有機質バインダーの量についていえば、固形分で81成
分とC成分とを結合させて密接される量で十分である。As for the amount of organic binder, it is sufficient that the solid content binds component 81 and component C in close contact with each other.
例えば、8五成分と0次分との配合量100重量部に対
し1〜20重量部が好適である。有機質バインダーは予
め溶媒に溶解してもよい。そのさいに使用する溶媒は水
、その他ベンゼン、トルエン、アセトン、ヘキサン、メ
チルアルコール、エチルアルコールなト有機溶剤であれ
ばよい。有機質バインダーはまた固形状のまま使用して
もよい。For example, 1 to 20 parts by weight is suitable for 100 parts by weight of the 85 components and the 0th order component. The organic binder may be dissolved in a solvent in advance. The solvent used in this case may be water or any other organic solvent such as benzene, toluene, acetone, hexane, methyl alcohol, and ethyl alcohol. The organic binder may also be used in solid form.
このようにして混合した成分は1反応物を粉砕しやすく
するため、予め適当な大きさの粒状に成形しておくが1
粒径は5〜20謔が好ましい。The components mixed in this way are formed into particles of an appropriate size in advance to make it easier to crush the 1 reactant.
The particle size is preferably 5 to 20 mm.
この造粒工程は適当な公知手段で行えばよい。This granulation step may be carried out by any suitable known means.
次に、けい素成分と炭素成分とを有機質バインダーで結
合し、密接させるため、適当な手段によって乾燥する。Next, the silicon component and the carbon component are combined with an organic binder and dried by an appropriate method in order to bring them into close contact with each other.
その乾燥温度・時間は使用する有機質バインダーによっ
て異なるが、50@〜100°Cで1時間程度である。The drying temperature and time vary depending on the organic binder used, but are approximately 1 hour at 50 to 100°C.
このようにして得た乾燥生成物をN1アルゴン、NH,
ガスなどの非酸化性ふん囲気中500゜〜2100℃の
温度範囲で焼成する。The dry product thus obtained was washed with N1 argon, NH,
Calcination is performed in a non-oxidizing atmosphere such as gas at a temperature range of 500° to 2100°C.
この焼成過程では各温度段階で次のような反応が生じる
。In this firing process, the following reactions occur at each temperature stage.
(1) 100〜800″′C程度 :有機繊維が炭
化する。(1) Approximately 100 to 800''C: Organic fibers are carbonized.
(II) 800〜1400@O程度:#を雄状炭素
の表面で次の反応が生じる。(II) About 800 to 1400@O: The following reaction occurs on the surface of the male carbon.
S轟 +O−+8i0
(冊 1400〜2100’O程度: f9i +O−
+SiO(7)反応が繊維状カーボンの内部まで生じる
。S Todoroki +O-+8i0 (book 1400-2100'O: f9i +O-
+SiO(7) reaction occurs to the inside of the fibrous carbon.
一方、マトリックスでは以下の反応によって840、8
1.N番の粉末が生じる。On the other hand, in the matrix, 840, 8
1. Powder number N is produced.
581 + 2N、→81.N4(約1400’0)8
i +0 →B10 (1400’○以上)810、
+50−+810+200 (2000’○)5810
、+2N、+60→S轟、N4+600 (150G@
O勾天−E)焼成工程において、加熱によって固化した
粒状反応生成物を次に粉砕するが、これは乳鉢等によっ
て簡単に実施できる。前述したように。581 + 2N, →81. N4 (about 1400'0)8
i +0 →B10 (1400'○ or more) 810,
+50-+810+200 (2000'○)5810
, +2N, +60 → S Todoroki, N4+600 (150G@
In the firing step, the granular reaction product solidified by heating is then pulverized, which can be easily carried out using a mortar or the like. As previously mentioned.
反応生成物はSl0や81 、N、粉末のマトリックス
中に炭化けい素糸短繊維が均一に分散した状態で得られ
る。マトリックスを形成する粉末はSt酸成分原料及び
焼成条件によってsioかSl、N4あるいはこれらの
混合物からなる。The reaction product is obtained in a state in which short silicon carbide fibers are uniformly dispersed in a matrix of Sl0, 81, N, and powder. The powder forming the matrix is composed of sio, Sl, N4, or a mixture thereof depending on the St acid component raw material and firing conditions.
粉砕して得られた反応生成物を水中に分散させ、炭化け
い素糸短繊維とマトリックスとの粉末粒子をフィルター
によって簡単に分離できる。The reaction product obtained by pulverization is dispersed in water, and the powder particles of the short silicon carbide fibers and the matrix can be easily separated using a filter.
以上の如く1本発明は8i0や別畠N番粉末マトリック
ス中ζζ炭化けい素繊維を均一に分散させた。As described above, in the present invention, ζζ silicon carbide fibers are uniformly dispersed in the 8i0 and Betsuhata N powder matrix.
繊維強化複合材料用原料を提供するものである。It provides raw materials for fiber-reinforced composite materials.
さらに、これから分離される炭化けい素糸短繊維は強化
繊維として有望である。Furthermore, the short silicon carbide fibers separated from this are promising as reinforcing fibers.
以下に、この発明の実施例を示す。Examples of this invention are shown below.
実施例(1) 金属珪素粉末(平均粒径5μ)100重量部と。Example (1) and 100 parts by weight of metallic silicon powder (average particle size 5μ).
黒鉛繊維(クラレカーボンファイバーチョツズ平均繊維
長6 m 、平均直径10μ)50重量部と。50 parts by weight of graphite fiber (Kuraray Carbon Fiber Chotsuzu average fiber length 6 m, average diameter 10 μm).
ポリビニルアルコール6チ水溶液(信越化学0−17)
45000とを配合し、ミキサーで混練し。Polyvinyl alcohol 6-ti aqueous solution (Shin-Etsu Chemical 0-17)
45,000 and kneaded with a mixer.
混線後、直径10■の球状に造粒し、温度90@0の乾
燥機で約1時間乾燥して試料を固化させ。After cross-mixing, the sample was granulated into spheres with a diameter of 10 cm and dried in a dryer at a temperature of 90@0 for about 1 hour to solidify the sample.
次で、この試料を、電気炉で、窒素雰囲気中で1450
’0. 5時間焼成して反応させ、焼成後固化した試料
を乳鉢中で粉砕した。粉砕して得られた反応生成物は微
細な粉末のマトリックス中に、810の短繊維が均一に
分散されていた。Next, this sample was heated in an electric furnace at 1450°C in a nitrogen atmosphere.
'0. The sample was fired for 5 hours to react, and the solidified sample was ground in a mortar. The reaction product obtained by pulverization had 810 short fibers uniformly dispersed in a fine powder matrix.
次で、前記反応生成物を水中に分散させ、フィルターを
通して、粉末粒子と繊維状物質とこと分離した。The reaction product was then dispersed in water and passed through a filter to separate powder particles and fibrous material.
X線回折によれば、その粒末は、α−及びI−818N
4 S #!維はp−5toであった。得られた繊維の
平均繊維長さは200μであった。According to X-ray diffraction, the particle powder contains α- and I-818N
4 S#! The fiber was p-5to. The average fiber length of the obtained fibers was 200μ.
実施例(2)
シリカ粉末(日本シリカニ業株式会社、ニブシル■、、
平均粒径14mA、 8101941G)100重量
部と、耐炎化繊維(東邦レーヨン、チョップ。Example (2) Silica powder (Nihon Silikani Gyo Co., Ltd., Nibcil ■,,
100 parts by weight of average particle size 14 mA, 8101941G) and flame-resistant fiber (Toho Rayon, chopped).
平均繊維長5■、平均直径15〜15μ)6O重量部と
、メトロース1s水溶液(信越化学908H3oooo
) 45000とを配合し、′!、キサーで混練し。average fiber length 5■, average diameter 15-15μ) 6O parts by weight, Metrose 1s aqueous solution (Shin-Etsu Chemical 908H3oooo
) 45,000, and '! , knead with a kisser.
実施例(1)と同様に、゛1気炉でアルゴン雰囲気中1
70060で2時間焼成して、粉末マトリックス中に繊
維が均一に分散した反応生成物を得た。As in Example (1), 1 in an argon atmosphere in an air furnace.
70060 for 2 hours to obtain a reaction product with fibers uniformly dispersed in the powder matrix.
X線回折によれば、この反応生成物は、粉末及び繊維と
もβ−別0であった。得られた繊維の平均繊維長さは2
50μであった。According to X-ray diffraction, the reaction product was found to have 0 β-characteristics for both powder and fiber. The average fiber length of the obtained fibers is 2
It was 50μ.
実施例(3)
シリカ粉末80重通部、エチルシリケート(コルコート
株式会社、シリカ分401G) 50重量部、カイノー
ル繊維(日本カイノール株式会社、平均繊維長3■、平
均直径9〜11μ)60重量部とメトロース1−水溶液
45000とを配合し。Example (3) 80 parts by weight of silica powder, 50 parts by weight of ethyl silicate (Colcoat Co., Ltd., silica content 401G), 60 parts by weight of Kynol fiber (Japan Kynol Co., Ltd., average fiber length 3cm, average diameter 9-11μ) and Metrose 1-aqueous solution 45,000.
ミキサーで混練し、実施例(りと同様に、゛4気炉でア
ルゴン雰囲気中1650″′0で5時間焼成して、粉末
マl−IJラックス中繊維が均一に分散した反応生成物
を得た。The mixture was kneaded in a mixer, and fired in a 4-air furnace at 1650°C for 5 hours in an argon atmosphere in the same manner as in Example (2) to obtain a reaction product in which the fibers were uniformly dispersed in powdered Mal-IJ lux. Ta.
X線回折によれば、この反応生成物は粉末及び繊維とも
/−810であった。繊維の平均繊維長さは250μで
あった。According to X-ray diffraction, the reaction product had a particle size of /-810 for both powder and fiber. The average fiber length of the fibers was 250μ.
発明の効果
この発明によれば、炭化けい累短繊維を極めて均一に分
散した炭化けい素あるいは窒化けい素粉来状物質の製造
を可能とすることができ。Effects of the Invention According to the present invention, it is possible to produce a silicon carbide or silicon nitride powder-based material in which silicon carbide short fibers are extremely uniformly dispersed.
それは繊維強化複合セラミックス製造の原料として有望
である。It is promising as a raw material for producing fiber-reinforced composite ceramics.
また、前記炭化けい素短繊維は簡単に分離可能であり、
各種の複合材料用原料(例えば繊維強化金属)として有
望である。Further, the silicon carbide short fibers can be easily separated,
It is promising as a raw material for various composite materials (for example, fiber-reinforced metals).
加えて、この発明によれば、炭化けい素短繊維の安価な
製法を提供することができる。In addition, according to the present invention, an inexpensive method for producing silicon carbide short fibers can be provided.
Claims (13)
質と、有機繊維または炭素繊維とを有機質バインダーで
結合して接触させ、これを非酸化性ふん囲気中で焼成し
て炭化けい素又は窒化けい素粉末マトリックス中に炭素
繊維が反応して生じる炭化けい素短繊維を均一に分散さ
せた粉末状耐火性材料。(1) An organic substance and/or an inorganic substance containing a silicon component and an organic fiber or carbon fiber are bonded with an organic binder and brought into contact with each other, and this is fired in a non-oxidizing atmosphere to form silicon carbide or carbon fiber. A powdered fire-resistant material in which short silicon carbide fibers produced by reaction of carbon fibers are uniformly dispersed in a silicon nitride powder matrix.
である特許請求の範囲第1項記載の材料。(2) The material according to claim 1, wherein the organic substance is ethyl silicate or polycarbosilane.
ダルシリカ、SiC、Si_3N_4、SiCl_4で
ある特許請求の範囲第1項記載の材料。(3) The material according to claim 1, wherein the inorganic substance is metal silicon powder, silica powder, colloidal silica, SiC, Si_3N_4, or SiCl_4.
ニトリル、ナイロン、テトロン、ビスコースレーヨンで
ある特許請求の範囲第1項記載の材料。(4) The material according to claim 1, wherein the organic fiber is polyvinyl alcohol, polyacrylonitrile, nylon, Tetoron, or viscose rayon.
繊維、不融化繊維、カイノール繊維である特許請求の範
囲第1項記載の材料。(5) The material according to claim 1, wherein the carbon fiber is carbon fiber itself, graphite fiber, flame-resistant fiber, infusible fiber, or kynol fiber.
エチレンオキシド、CMC、メトローズである特許請求
の範囲第1項記載の材料。(6) The material according to claim 1, wherein the organic binder is polyvinyl alcohol, polyethylene oxide, CMC, or Metrose.
スから分離した炭化けい素短繊維。(7) Short silicon carbide fibers separated from a matrix of silicon carbide or silicon nitride powder particles.
質と、有機繊維または炭素繊維及び有機質バインダーと
を混合造粒、乾燥、焼成及び粉砕することからなる、炭
化けい素あるいは窒化けい素粉末粒子マトリックス中に
炭素繊維が反応して生じる炭化けい素短繊維を均一に分
散させた粉末状耐火性材料の製造方法。(8) Silicon carbide or silicon nitride powder made by mixing, granulating, drying, calcining, and pulverizing organic and/or inorganic substances containing silicon components, organic fibers or carbon fibers, and organic binders. A method for producing a powdered fire-resistant material in which short silicon carbide fibers produced by reacting carbon fibers are uniformly dispersed in a particle matrix.
である特許請求の範囲第8項記載の方法。(9) The method according to claim 8, wherein the organic substance is ethyl silicate or polycarbosilane.
イダルシリカ、SiC、Si_3N_4、SiCl_4
である特許請求の範囲第8項記載の方法。(10) The inorganic substance is metal silicon powder, silica powder, colloidal silica, SiC, Si_3N_4, SiCl_4
The method according to claim 8.
ロニトリル、ナイロン、テトロン、ビスコースレーヨン
である特許請求の範囲第8項記載の方法。(11) The method according to claim 8, wherein the organic fiber is polyvinyl alcohol, polyacrylonitrile, nylon, Tetron, or viscose rayon.
化繊維、不融化繊維、カイノール繊維である特許請求の
範囲第8項記載の方法。(12) The method according to claim 8, wherein the carbon fiber is carbon fiber itself, graphite fiber, flame-resistant fiber, infusible fiber, or kynol fiber.
リエチレンオキシド、CMC、メトローズである特許請
求の範囲第8項記載の方法。(13) The method according to claim 8, wherein the organic binder is polyvinyl alcohol, polyethylene oxide, CMC, or Metrose.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59211686A JPS6191063A (en) | 1984-10-09 | 1984-10-09 | Powdery refractory material containing silicon carbide shortfiber and manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59211686A JPS6191063A (en) | 1984-10-09 | 1984-10-09 | Powdery refractory material containing silicon carbide shortfiber and manufacture |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6191063A true JPS6191063A (en) | 1986-05-09 |
JPH0215514B2 JPH0215514B2 (en) | 1990-04-12 |
Family
ID=16609903
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59211686A Granted JPS6191063A (en) | 1984-10-09 | 1984-10-09 | Powdery refractory material containing silicon carbide shortfiber and manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6191063A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01230475A (en) * | 1987-11-05 | 1989-09-13 | Ube Ind Ltd | High-strength ceramic composite material and production thereof |
US5077242A (en) * | 1988-03-02 | 1991-12-31 | Honda Giken Kogyo Kabushiki Kaisha | Fiber-reinforced ceramic green body and method of producing same |
JPH08143364A (en) * | 1994-11-15 | 1996-06-04 | Agency Of Ind Science & Technol | Production of fiber reinforced silicon carbide composite ceramic molded body |
CN101954443A (en) * | 2010-09-03 | 2011-01-26 | 吴江市液铸液压件铸造有限公司 | Fire-resistant quartz powder mending paste |
CN111087229A (en) * | 2019-12-05 | 2020-05-01 | 宜兴市耐火材料有限公司 | Nano-material modified high-oxidation-resistance long nozzle and preparation process thereof |
-
1984
- 1984-10-09 JP JP59211686A patent/JPS6191063A/en active Granted
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01230475A (en) * | 1987-11-05 | 1989-09-13 | Ube Ind Ltd | High-strength ceramic composite material and production thereof |
US5077242A (en) * | 1988-03-02 | 1991-12-31 | Honda Giken Kogyo Kabushiki Kaisha | Fiber-reinforced ceramic green body and method of producing same |
JPH08143364A (en) * | 1994-11-15 | 1996-06-04 | Agency Of Ind Science & Technol | Production of fiber reinforced silicon carbide composite ceramic molded body |
CN101954443A (en) * | 2010-09-03 | 2011-01-26 | 吴江市液铸液压件铸造有限公司 | Fire-resistant quartz powder mending paste |
CN111087229A (en) * | 2019-12-05 | 2020-05-01 | 宜兴市耐火材料有限公司 | Nano-material modified high-oxidation-resistance long nozzle and preparation process thereof |
Also Published As
Publication number | Publication date |
---|---|
JPH0215514B2 (en) | 1990-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4388255A (en) | Method for producing pre-shaped α-silicon nitride whisker compacts and loose whiskers for composite material reinforcement | |
US4105455A (en) | Method of producing dense sintered silicon carbide body from polycarbosilanes | |
US3246950A (en) | Method of preparing fibrous silicon carbide | |
JPH0633193B2 (en) | Hard mullite-whisker felt manufacturing method | |
JPS62260782A (en) | Hot bonded fibrous product | |
US3386840A (en) | Article containing silicon carbon fibers | |
JPS5850929B2 (en) | Method for manufacturing silicon carbide powder | |
US4579699A (en) | Method for making α-Si3 N4 whiskers and articles therefrom | |
IT9020456A1 (en) | SILICON OXYCARBON GLASS AND OBJECTS MADE WITH THE SAME | |
JPH11128639A (en) | Ceramic filter and its production | |
JPS6191063A (en) | Powdery refractory material containing silicon carbide shortfiber and manufacture | |
JP2879675B1 (en) | Method for producing two-dimensional fiber reinforced silicon carbide / carbon composite ceramics | |
JPS59190276A (en) | Formless refractories | |
JPS61132509A (en) | Production of silicon carbide | |
JPS61178468A (en) | Fiber reinforced composite ceramic and manufacture | |
JPS62143854A (en) | Manufacture of calcium silicate base formed body | |
JPH0421605B2 (en) | ||
JPS638264A (en) | Silicon carbide base composite material | |
JPH0383900A (en) | Single-crystal silicon-carbide fiber and its manufacture | |
JPS60186491A (en) | Silicon nitride sintered body | |
JP2931648B2 (en) | Method for producing silicon nitride coated fiber | |
Semchenko et al. | Oxidation-Resistant Nano-Reinforced PC-Refractories of Modified Phenolformaldehyde Resin. Part 3. Formation Mechanism of Organic–Inorganic Complexes During Low-Temperature Synthesis of Nanoparticles of Additional Antioxidants and Their Effectiveness | |
JPH03109269A (en) | Sialon-based ceramics composite material reinforced with carbon fiber | |
KR100382991B1 (en) | Method for preparing porous mullite powder | |
JP3224406B2 (en) | Method for producing silicon carbide single crystal |