JPS638264A - Silicon carbide base composite material - Google Patents

Silicon carbide base composite material

Info

Publication number
JPS638264A
JPS638264A JP61147176A JP14717686A JPS638264A JP S638264 A JPS638264 A JP S638264A JP 61147176 A JP61147176 A JP 61147176A JP 14717686 A JP14717686 A JP 14717686A JP S638264 A JPS638264 A JP S638264A
Authority
JP
Japan
Prior art keywords
silicon carbide
composite material
silicon
spalling resistance
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61147176A
Other languages
Japanese (ja)
Inventor
小野 春介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKAI KONETSU KOGYO KK
TOKAI KOUNETSU KOGYO KK
Original Assignee
TOKAI KONETSU KOGYO KK
TOKAI KOUNETSU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKAI KONETSU KOGYO KK, TOKAI KOUNETSU KOGYO KK filed Critical TOKAI KONETSU KOGYO KK
Priority to JP61147176A priority Critical patent/JPS638264A/en
Publication of JPS638264A publication Critical patent/JPS638264A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は炭化ケイ素結晶間に充填されているケイ素中へ
黒鉛を分散させることにより耐スポーリング性を高めた
、炭化ケイ素系複合材料に関するものである。該材料は
高温で強度と耐スポーリング性を要求される耐熱構造材
として有用な材料である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a silicon carbide-based composite material that has improved spalling resistance by dispersing graphite into silicon filled between silicon carbide crystals. It is. This material is useful as a heat-resistant structural material that requires strength and spalling resistance at high temperatures.

〔従来の技術〕[Conventional technology]

炭化ケイ素材料はその優れた耐熱性ゆえに、比較的古く
から高温用溝造材として用いられてきた。
Silicon carbide materials have been used as high-temperature groove construction materials for a relatively long time due to their excellent heat resistance.

構造材としての強度を確保するためには炭化ケイ素材料
をできるだけち密化させる必要があり、様様な試みがな
されている。炭化ケイ素結晶間の気孔に、高温で溶融し
た金属ケイ素を含浸させた炭化ケイ素−ケイ素複合材料
はその一例である。
In order to ensure strength as a structural material, it is necessary to make the silicon carbide material as dense as possible, and various attempts have been made. One example is a silicon carbide-silicon composite material in which the pores between silicon carbide crystals are impregnated with metallic silicon molten at high temperature.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

金属ケイ素2含浸させた炭化ケイ素−ケイ素複合材料は
炭化ケイ素のみよりなる材料より1よ、確かに高強度と
なっている。しかしながら、ち密であることは同時に該
複合材料の耐スポーリング性を失わせることとなり、結
局は耐熱構造材として改良が求められでいた。
Silicon carbide-silicon composites impregnated with metallic silicon 2 are certainly stronger than materials consisting only of silicon carbide. However, being dense also causes the composite material to lose its spalling resistance, and as a result, improvements as a heat-resistant structural material have not been sought.

本発明の目的は炭化ケイ素結晶間の気孔に金属ケイ素を
含浸させる際、同時にケイ素中に黒鉛粒子を分散させる
ことにより、ち密で、高強度で、しかも耐スポーリング
性に優れる炭化ケイ素系複合材料を提供することにある
The purpose of the present invention is to create a silicon carbide-based composite material that is dense, has high strength, and has excellent spalling resistance by impregnating metallic silicon into the pores between silicon carbide crystals and simultaneously dispersing graphite particles in the silicon. Our goal is to provide the following.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち本発明は炭化ケイ素−ケイ素複合材料において
、該複合材料中のケイ素に、未反応の黒鉛粒子を4〜1
0重量%分散させたことを特徴とする特 〔作用・構成〕 炭化ケイ素−ケイ素複合材料は、一般に炭化ケイ素粉末
と黒鉛粉末とを母材とした成形体を、溶融ケイ素の存在
下で反応焼結させることによりつくられる。該成形体中
の黒鉛粉末はケイ素と反応(siliciding) 
して炭化ケイ素となり、余分の金属ケイ素が炭化ケイ素
の結晶間に充填されで、ち密な炭化ケイ素−ケイ素複合
材料となっている。
That is, the present invention provides a silicon carbide-silicon composite material in which 4 to 1 unreacted graphite particles are added to silicon in the composite material.
Silicon carbide-silicon composite materials are generally produced by reaction-sintering a molded body made of silicon carbide powder and graphite powder in the presence of molten silicon. It is created by tying it together. Graphite powder in the compact reacts with silicon (siliciding)
The silicon carbide becomes silicon carbide, and excess metallic silicon is filled between the silicon carbide crystals, forming a dense silicon carbide-silicon composite material.

本発明によrば、該成形体を溶融ケイ素の存在下で反応
焼結させる際、成形体中の黒鉛粉末はケイ素と完全には
反応せず、一部未反応の黒鉛粒子としで、充填された金
属ケイ素のなかに分散している。炭化ケイ素−ケイ素複
合材料中に黒鉛粒子が未反応な形で残っていることは、
該複合材料のX線回折結果により確認される。
According to the present invention, when the molded body is reacted and sintered in the presence of molten silicon, the graphite powder in the molded body does not completely react with silicon, and some of the graphite powder remains as unreacted graphite particles. dispersed in metallic silicon. The fact that graphite particles remain in an unreacted form in the silicon carbide-silicon composite material
This is confirmed by the X-ray diffraction results of the composite material.

さて材料の耐スポーリング性能を測定する方法はいろい
ろあるが、ヤング率を便っで耐スポーリング性を比較し
た。耐スポーリング性を評価する物理量としでは、式(
1)の熱衝撃破壊抵抗係数尺がよく知られでいる。
There are various methods for measuring the spalling resistance of materials, but we compared the spalling resistance using Young's modulus. As a physical quantity to evaluate spalling resistance, the formula (
1) Thermal shock fracture resistance coefficient scale is well known.

R=S(1−1’)/(Ej)     <1)ここで
 S:破壊強度 ノ:ボアッソン比 E:ヤング率 メ
:熱膨張係数 である。式(1)によれば強度Sが大キ
<、ヤング率Eの小さいものが耐スポーリング性に優れ
る。
R=S(1-1')/(Ej) <1) Here, S: breaking strength, N: Boisson's ratio, E: Young's modulus, M: coefficient of thermal expansion. According to formula (1), a material with a large strength S and a small Young's modulus E has excellent spalling resistance.

本発明による黒鉛粒子を分散させた炭化ケイ素系複合材
料は、従来の炭化ケイ素−ケイ素複合材料と比較して強
度を劣化させずにヤング率を小さくしたものであり、式
(1)から耐スポーリング性が改善されていることがわ
かる。
The silicon carbide-based composite material in which graphite particles are dispersed according to the present invention has a lower Young's modulus without deteriorating the strength compared to the conventional silicon carbide-silicon composite material. It can be seen that polling performance has been improved.

つぎに該複合材料の強度を劣化させずに耐スポーリング
性を与えるには、黒鉛粒子が該複合材料に対して4〜1
0重量%の範囲で存在すればよいことが、各種の実験か
られかった。すなわち黒鉛粒子が母材に比して4重量%
未満の場合には耐スポーリング性を向上させる効果はな
く、10重量%以上の場合には該複合材料の強度は著し
く劣化する。
Next, in order to provide spalling resistance without deteriorating the strength of the composite material, it is necessary to add graphite particles of 4 to 1
Various experiments have shown that it is sufficient if the amount is present in the range of 0% by weight. In other words, the graphite particles are 4% by weight compared to the base material.
When the amount is less than 10% by weight, there is no effect of improving spalling resistance, and when it is 10% by weight or more, the strength of the composite material is significantly deteriorated.

〔実施例〕〔Example〕

粒径120μm以下の炭化ケイ素粉末と、粒径40μm
以下の黒鉛粉末とfe60対40対重0比で配合する。
Silicon carbide powder with a particle size of 120 μm or less and a particle size of 40 μm
It is blended with the following graphite powder in a Fe ratio of 60:40:0 by weight.

これに通常もちいられるバインダー類を添加した後よく
混練し、外径16 mm1内径11皿長さ15Qmmの
チューブ状に成形した。これを1900℃で溶融した金
属ケイ素に約1分間浸しで、炭化ケイ素・黒鉛粉末の反
応焼結と、金属ケイ素の含浸を同時に行なった。この結
果えられた炭化ケイ素系複合材料は気孔率1%の、ち密
なものであり、該複合材料中には9重量%の黒鉛粒子が
分散しでいた。該複合材料の曲′げ強度は2000Kg
/cm”と十分に大きく、またヤング率は1.8xlO
’Kg/cm’と小さく、耐スポーリング性も確保され
た。
After adding commonly used binders to this, the mixture was thoroughly kneaded and formed into a tube having an outer diameter of 16 mm, an inner diameter of 11 plates, and a length of 15 Q mm. This was immersed in metal silicon melted at 1900° C. for about 1 minute to simultaneously perform reaction sintering of the silicon carbide/graphite powder and impregnation with metal silicon. The resulting silicon carbide composite material was dense with a porosity of 1%, and 9% by weight of graphite particles were dispersed in the composite material. The bending strength of the composite material is 2000Kg.
/cm”, which is sufficiently large, and the Young’s modulus is 1.8xlO
It is as small as 'Kg/cm' and has good spalling resistance.

〔比較例1〕 前記実施例と同様の、炭化ケイ素粉末と黒鉛粉末を母材
とした成形体を準備する。該成形体を最大1400μm
の金属ケイ素粉末の中に埋め込み、これを電気炉内に入
れて1850℃の温度で約10分間加熱した。この結果
得られた炭化ケイ素−ケイ素複合材料の中には2重量%
の黒鉛粒子が分散していた。
[Comparative Example 1] A molded body using silicon carbide powder and graphite powder as base materials is prepared as in the above example. The molded body has a maximum thickness of 1400 μm.
This was placed in an electric furnace and heated at a temperature of 1850° C. for about 10 minutes. The resulting silicon carbide-silicon composite contained 2% by weight
graphite particles were dispersed.

該複合材料の曲げ強度は1970 Kg/cm’と十分
に大きいものであったが、ヤング率も3.lX1O’K
g/cm”と大きいため、スポーリングには弱い材質で
あった。
The bending strength of the composite material was 1970 Kg/cm', which was sufficiently high, but the Young's modulus was also 3. lX1O'K
g/cm", so it was a material that was susceptible to spalling.

〔比較例2〕 前記実施例と同様の、炭化ケイ素粉末と黒鉛粉末を母材
とした成形体を準備する。該成形体を最大1400μm
の金属ケイ素粉末の中に埋め込み、これを電気炉内に入
れて1600cの温度で約10分間加熱した。この結果
得られた炭化ケイ素−ケイ素複合材料の中には18重量
%の黒鉛粒子が分散していた。
[Comparative Example 2] A molded body using silicon carbide powder and graphite powder as base materials is prepared, similar to the above example. The molded body has a maximum thickness of 1400 μm.
This was placed in an electric furnace and heated at a temperature of 1600°C for about 10 minutes. In the resulting silicon carbide-silicon composite material, 18% by weight of graphite particles were dispersed.

該複合材料のヤング率は2. OX 10’ Kg/c
m”と小さいが、強度も870Kg/cm”と小さく、
構造材料としでは不適格なものであった。
The Young's modulus of the composite material is 2. OX 10' Kg/c
Although it is small at 870Kg/cm, its strength is also small at 870Kg/cm.
It was unsuitable as a structural material.

〔効果〕〔effect〕

以上述べたように本発明によれば、炭化ケイ素−ケイ素
複合材料へ4〜10重量%の黒鉛粒子を分散させるだけ
で、該複合材料の強度を劣化させる7ことなく、耐スポ
ーリング性を向上させることができた。
As described above, according to the present invention, by simply dispersing 4 to 10% by weight of graphite particles into a silicon carbide-silicon composite material, spalling resistance can be improved without deteriorating the strength of the composite material. I was able to do it.

従来、高温用構造材として、炭化ケイ素−ケイ素複合材
料は耐スポーリング性に劣るため、大さな問題となって
いたが、本発明に係る炭化ケイ素系複合材料は、耐スポ
ーリング性の向上をみたことにより、今後、ますます期
待されるファインセラミックスの構造材への用途髭発に
大きな役割を担うことが予想される。
Conventionally, silicon carbide-silicon composite materials have been used as high-temperature structural materials, resulting in a major problem due to their poor spalling resistance, but the silicon carbide-based composite material according to the present invention has improved spalling resistance. As a result, it is expected that fine ceramics will play a major role in the increasingly anticipated use of fine ceramics as structural materials.

Claims (1)

【特許請求の範囲】[Claims] 炭化ケイ素−ケイ素複合材料において、該複合材料中に
未反応の黒鉛粒子を4〜10重量%分散させたことを特
徴とする炭化ケイ素系複合材料。
1. A silicon carbide-based composite material comprising 4 to 10% by weight of unreacted graphite particles dispersed in the silicon carbide-silicon composite material.
JP61147176A 1986-06-25 1986-06-25 Silicon carbide base composite material Pending JPS638264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61147176A JPS638264A (en) 1986-06-25 1986-06-25 Silicon carbide base composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61147176A JPS638264A (en) 1986-06-25 1986-06-25 Silicon carbide base composite material

Publications (1)

Publication Number Publication Date
JPS638264A true JPS638264A (en) 1988-01-14

Family

ID=15424301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61147176A Pending JPS638264A (en) 1986-06-25 1986-06-25 Silicon carbide base composite material

Country Status (1)

Country Link
JP (1) JPS638264A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002040424A1 (en) * 2000-11-17 2002-05-23 Ngk Insulators, Ltd Honeycomb structure and method for manufacture thereof
WO2002040423A1 (en) * 2000-11-17 2002-05-23 Ngk Insulators,Ltd. Silicon carbide based porous article and method for preparing the same
JP2008239476A (en) * 1997-09-05 2008-10-09 Element Six Ltd Diamond-silicon carbide-silicon composite

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008239476A (en) * 1997-09-05 2008-10-09 Element Six Ltd Diamond-silicon carbide-silicon composite
WO2002040424A1 (en) * 2000-11-17 2002-05-23 Ngk Insulators, Ltd Honeycomb structure and method for manufacture thereof
WO2002040423A1 (en) * 2000-11-17 2002-05-23 Ngk Insulators,Ltd. Silicon carbide based porous article and method for preparing the same
JP2002154882A (en) * 2000-11-17 2002-05-28 Ngk Insulators Ltd Silicon carbide porous body and method for producing the same
US6746748B2 (en) 2000-11-17 2004-06-08 Ngk Insulators, Ltd. Honeycomb structure and process for production thereof
US6777114B2 (en) 2000-11-17 2004-08-17 Ngk Insulators, Ltd. Silicon carbide-based porous body and process for production thereof

Similar Documents

Publication Publication Date Title
JPS638264A (en) Silicon carbide base composite material
JPS5864279A (en) Non-oxide ceramics sintered body
JPS6077174A (en) Manufacture of silicon nitride sintered body
JPS6236987B2 (en)
JPS5957964A (en) Manufacture of fiber reinforced silicon nitride sintered bo-dy
JPH02302368A (en) Silicon carbide sintered compact having high toughness and its production thereof
JPS5957965A (en) Manufacture of fiber reinforced silicon nitride sintered bo-dy
JPS59207873A (en) Manufacture of high density silicon carbide sintered body
JP2549976B2 (en) Heat-resistant mullite sintered body
JPS6191063A (en) Powdery refractory material containing silicon carbide shortfiber and manufacture
JPS6374978A (en) Ceramic composite body
JPS5954678A (en) Manufacture of fiber reinforced silicon nitride sintered body
JPS60246273A (en) Amorphous refractory composition
JPS6042190B2 (en) Refractory material for blast furnace tapping
JPS6345173A (en) High toughness ceramic sintered body and manufacture
JP2621896B2 (en) Silicon nitride-based composite ceramics and method for producing the same
JPS62158172A (en) Manufacture of fiber reinforced ceramic
JPS6212191B2 (en)
JPS59107961A (en) Carbon-containing refractories
JPS63117966A (en) Manufacture of boron nitride base sintered body
SU773030A1 (en) Charge for making ceramic material
JPH0437454A (en) Nozzle for casting wide and thin slab
JPS598669A (en) Silicon nitride composite sintered body and manufacture
JP2000107839A (en) Manufacture of plate for slide gate
JPS63103870A (en) Fine powder zrb2-containig monolithic refractories