JPS5957965A - Manufacture of fiber reinforced silicon nitride sintered bo-dy - Google Patents

Manufacture of fiber reinforced silicon nitride sintered bo-dy

Info

Publication number
JPS5957965A
JPS5957965A JP57170155A JP17015582A JPS5957965A JP S5957965 A JPS5957965 A JP S5957965A JP 57170155 A JP57170155 A JP 57170155A JP 17015582 A JP17015582 A JP 17015582A JP S5957965 A JPS5957965 A JP S5957965A
Authority
JP
Japan
Prior art keywords
silicon nitride
whisker
sintered body
nitride sintered
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57170155A
Other languages
Japanese (ja)
Inventor
栄治 上條
樋口 松夫
修 小村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP57170155A priority Critical patent/JPS5957965A/en
Priority to US06/534,143 priority patent/US4753764A/en
Priority to DE8383305641T priority patent/DE3380349D1/en
Priority to EP83305641A priority patent/EP0107349B1/en
Publication of JPS5957965A publication Critical patent/JPS5957965A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (イ)背景技術 本発明は耐熱性七ラミック焼結体、特に窒化硅素焼結体
の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Background Art The present invention relates to a method for producing a heat-resistant heptadramic sintered body, particularly a silicon nitride sintered body.

耐熱性セラミックのなかでも窒化硅素は+11熱性、耐
熱衝撃性、待食性が優れているため、高温ガス中で使用
するタービン、ディーゼルエンジンなどの4fl+ 造
4A、。
Among heat-resistant ceramics, silicon nitride has excellent +11 heat resistance, thermal shock resistance, and corrosion resistance, so it is suitable for use in turbines, diesel engines, etc. used in high-temperature gases.

部品材として有力であり非常に関心をもっC進められて
いる。
It is a promising material for parts and is being developed with great interest.

1側熱性セラミック焼結体のこれら構造相への使用に当
っては、高温における物理的、化学的安定性が要求され
る。特に高温における機械的特性の高いことが望まれて
いる。
When the one-side thermal ceramic sintered body is used in these structural phases, physical and chemical stability at high temperatures is required. In particular, high mechanical properties at high temperatures are desired.

ところが窒化硅素や炭化硅素はともに共有結合性化合物
であって難読結材とされている。
However, silicon nitride and silicon carbide are both covalent compounds and are considered difficult to read binding materials.

従って、窒化硅素や炭化硅素はそれ単独に焼結させるの
ではなく、焼結助剤を数%乃至数10%添加することに
より低融点化合物を形成させ焼結させている。
Therefore, silicon nitride and silicon carbide are not sintered alone, but are sintered by adding several percent to several tens of percent of a sintering aid to form a low melting point compound.

例えば窒化硅素の場合には、焼結助剤としてMgO・A
/、−z03. Yp+Oaなどを単独又は複数の組み
合せで5〜20%添加し、ホットプレスを行うことによ
って理論密度に近い焼結体が得られている。
For example, in the case of silicon nitride, MgO・A is used as a sintering aid.
/, -z03. A sintered body with a density close to the theoretical density is obtained by adding 5 to 20% of Yp+Oa or the like alone or in combination and hot pressing.

しかしながら、このようにして得られる焼結体は、高温
における強度が不十分である。
However, the sintered body thus obtained has insufficient strength at high temperatures.

即ち、焼結助剤として添加MgO、AL203あるいは
Y2O5;lどは、前記したように低融点化合物を形成
してす3°L結を促進せしめるという利点がある反面、
この低融点化合物が原因して高温における強度が下るの
である。
That is, while MgO, AL203, Y2O5, etc. added as a sintering aid have the advantage of forming a low melting point compound and promoting sintering as described above, on the other hand,
This low melting point compound causes a decrease in strength at high temperatures.

このようなことから、窒化硅素や炭化硅素焼結体製造時
における焼結助剤の種類やその量をてきるだけ少なくす
るなどの検討がなされているが、高温時の強度低下の欠
点は未だ解決されていないのが現状である。
For this reason, efforts are being made to minimize the type and amount of sintering aids used during the production of silicon nitride and silicon carbide sintered bodies, but the drawback of reduced strength at high temperatures still remains. The current situation is that it has not been resolved.

本発明者らは上記の点に鑑み、削熱性とともに高温強度
にすぐれた窒化硅素焼結体を得るべく鋭意検討の結果、
先に繊維状ウィスカーで強化した窒化硅素焼結体の製造
法を見出し出願している。
In view of the above points, the present inventors conducted extensive studies to obtain a silicon nitride sintered body that has excellent heat-reducing properties and high-temperature strength.
We have previously discovered and applied for a method for producing a silicon nitride sintered body reinforced with fibrous whiskers.

(特願昭54・−171844=号及び特願昭55−2
293号)ウィスカーは一般に猫のひけ゛パとも呼ばれ
る単結晶繊維であって、この繊維の強さは多結晶体の数
10倍から数百倍といわれている。
(Patent application No. 171844= and Patent application No. 17184-2)
(No. 293) Whiskers are single-crystal fibers that are generally called cat's whiskers, and the strength of these fibers is said to be several tens to hundreds of times stronger than polycrystalline materials.

更にウィスカーは単結晶であるため、高温での強度劣化
がなく、単結晶繊維のからみあいにより強化されて、焼
結助剤を含んでいても高温強度の改良が計られる。
Furthermore, since the whisker is a single crystal, there is no strength deterioration at high temperatures, and it is strengthened by the entanglement of single crystal fibers, and even if it contains a sintering aid, the high temperature strength can be improved.

」−記発明者らの出願はこのウィスカーを窒化硅素の焼
結体中に分散させるのに工業的に容易な製造法を提供す
るものであり、高強度特に高温でも強度の低下が少ない
焼結体が得られるものである。
” - The application filed by the inventors provides an industrially easy manufacturing method for dispersing these whiskers in a sintered body of silicon nitride, and provides a sintered product with high strength, particularly with little loss of strength even at high temperatures. It's what the body gets.

しかし、従来の製造法は粉末混合時にウィスカーを混合
し、このあとプレス成型するためにウィスカーの混合が
不均一であったり特定方向にのみ揃ってしまい焼結体の
強度が方向によって異るという問題があった。
However, in the conventional manufacturing method, whiskers are mixed during powder mixing and then press-molded, which causes the whiskers to be mixed unevenly or aligned only in a specific direction, resulting in the strength of the sintered body varying depending on the direction. was there.

(ロ)発明の開示 本発明は従来法による窒化硅素焼結体の有する特徴のほ
かに」−記の種々の欠点や問題点をも悉く解消すること
のできる窒化硅素焼結体の製造法を提供しようとするも
のであり窒化硅素ウィスカー強化窒化硅素焼結体の製造
法の改良に関するものである。
(b) Disclosure of the Invention The present invention provides a method for producing a silicon nitride sintered body that can eliminate all of the various drawbacks and problems described in "--" in addition to the characteristics of silicon nitride sintered bodies produced by conventional methods. The present invention relates to an improvement in the manufacturing method of silicon nitride whisker-reinforced silicon nitride sintered bodies.

以下本発明の詳細な説明すると、窒化硅素、熱処理でウ
ィスカーとなるウィスカー生成材、ウィスカー生成促進
剤、および焼結助剤の混合粉末を窒素ガス分圧を有する
非酸化性雰囲気下でウィスカー生成熱処理し、ついで、
所定形状にプレス成型し、引続き非酸化性雰囲気で焼結
することを4.′i徴とする製造法である。
To explain the present invention in detail below, a mixed powder of silicon nitride, a whisker-forming material that becomes whiskers through heat treatment, a whisker-formation accelerator, and a sintering aid is heat-treated to form whiskers in a non-oxidizing atmosphere having a partial pressure of nitrogen gas. Then,
4. Press molding into a predetermined shape and then sintering in a non-oxidizing atmosphere. This is a manufacturing method with the following characteristics.

粒状の原料粉末および焼結助剤と繊維状のウィスカーの
混合という従来法は、均一混合および多量の混合が困難
である欠点があった。更に、熱処理によりウィスカーと
なるウィスカー生成相を粒状で混合し、ウィスカー生成
熱処理についで焼結する方法を採用し、従来法の欠点は
解消されるが、ウィスカーの成長は、lO〜50/7長
さで、不均一である欠点がある。本発明では、このウィ
スカーを均一に最適長にするために、ウィスカー生成促
進剤を原料等の混合時に同時に混合する事である。
The conventional method of mixing granular raw material powders and sintering aids with fibrous whiskers has the disadvantage that it is difficult to mix uniformly and in large quantities. Furthermore, a method is adopted in which the whisker-forming phase, which becomes whiskers through heat treatment, is mixed in granular form and then sintered after the whisker-forming heat treatment, which eliminates the drawbacks of the conventional method. However, it has the disadvantage of being non-uniform. In the present invention, in order to uniformly make the whiskers the optimum length, a whisker generation accelerator is mixed at the same time as the raw materials are mixed.

この添加によりウィスカー長は、均一化し、焼結体の強
度およびその分布の向上を計る事ができる。
By this addition, the whisker length can be made uniform and the strength of the sintered body and its distribution can be improved.

すなわち、粒状の原料粉末、焼結助剤、および熱処理に
よりウィスカーとなるウィスカー生成It。
That is, whisker generation It that becomes whiskers by granular raw material powder, sintering aid, and heat treatment.

更にウィスカー生成促進剤を混合し、この粉末を窒素ガ
スの分圧を有する非酸化性雰囲気下で14・O0= 1
650°Cの温度で熱処理することにより混合したウィ
スカー生成材、生成促進剤により繊維状のウィスカーを
粉末中に均一に生成でせた後に所定形状に成形したのち
、非酸化性雰囲気下で焼結を行うことにより繊にイ(強
化型の窒化硅素)〕′L結体を製造する方法である。
Further, a whisker generation promoter is mixed, and the powder is heated under a non-oxidizing atmosphere with a partial pressure of nitrogen gas to give 14.O0=1.
After heat treatment at a temperature of 650°C, fibrous whiskers are uniformly generated in the powder using a whisker-forming material and a generation accelerator, and then formed into a predetermined shape, and then sintered in a non-oxidizing atmosphere. This is a method for producing fiber-strength silicon nitride (reinforced silicon nitride) L aggregates by performing the following steps.

本発明にJ・・いて、原料粉末及び焼結助剤は、特に限
定されるものではなく、一般に公知の結晶構造、化学組
成のもので可能である。
In the present invention, the raw material powder and sintering aid are not particularly limited, and may have a generally known crystal structure and chemical composition.

混合されるウィスカー生成材は、窒素ガス分圧を有する
非酸化性雰囲気中で気体状−酸化硅素を発生ずるものと
して発明者等は金属S i 、 S iO,5iOz等
の51を含む無機化合物、シリコンゴム、シリコン樹脂
等のSiを含む有機化合物、更には非晶質のSi3N、
粉末、5102とカーボンまたはSiの混合物等の一種
又は複数の組み合せであればいずれでも同様の効果があ
ることをみつけた。
The whisker generating material to be mixed is one that generates gaseous silicon oxide in a non-oxidizing atmosphere having a partial pressure of nitrogen gas, and the inventors have selected an inorganic compound containing 51 such as metal Si, SiO, 5iOz, etc. Organic compounds containing Si such as silicone rubber and silicone resin, as well as amorphous Si3N,
It has been found that any combination of one or more of powder, a mixture of 5102 and carbon or Si, etc. can have similar effects.

本発明のウィスカー生成促進剤としてはFe、Ni。The whisker formation promoter of the present invention includes Fe and Ni.

C(1、Cr 、V、Ti 、Ta 、W、Moの1種
またはそれ以上の金属又は合金を0.01〜5wt%添
加する事である。
One or more metals or alloys of C(1, Cr, V, Ti, Ta, W, Mo) are added in an amount of 0.01 to 5 wt%.

これら金属および合金の添加は、ウィスカー生成処理温
度においてSi、Nzの固溶した液相が発生し、5ia
Naウイスカーの成長を促進し約・1・O〜5 (+ 
1tmの均一な長さを有するウィスカーが粉末中に生成
されるものである。更にウィスカー生成促進剤量、種類
、生成処理条件を操作すれば、更に長いウィスカーをも
生成させる事ができる。
The addition of these metals and alloys generates a liquid phase containing Si and Nz in solid solution at the whisker generation treatment temperature, and
Promotes the growth of Na whiskers and increases the concentration of about ・1・O~5 (+
Whiskers with a uniform length of 1 tm are produced in the powder. Furthermore, by manipulating the amount, type, and generation treatment conditions of the whisker generation accelerator, even longer whiskers can be generated.

以下実施例により本発明の詳細な説明する。The present invention will be explained in detail below with reference to Examples.

実施例 第1表に示す種類の結晶質のSi3N、+粉末、焼結助
剤、ウィスカー生成材、ウィスカー促進剤をボールミル
で50時間混合粉砕を行った。この混合粉末を14・5
0 ’Cで400Torrの窒素雰囲気で2時間熱処理
を行った後所定形状の金型を用いて1.5t/C♂の圧
力で成形した。その成形体を1気圧の窒素雰囲気中で、
1750°Cに昇温して1時間保持し緻密化焼結を行っ
た。
Example Crystalline Si3N of the types shown in Table 1, + powder, sintering aid, whisker forming material, and whisker accelerator were mixed and ground in a ball mill for 50 hours. Add this mixed powder to 14.5
After heat treatment was performed at 0'C in a nitrogen atmosphere of 400 Torr for 2 hours, it was molded at a pressure of 1.5t/C♂ using a mold of a predetermined shape. The molded body was placed in a nitrogen atmosphere of 1 atm.
The temperature was raised to 1750°C and held for 1 hour to perform densification and sintering.

焼結体より4・mmX3mmX4・Ommの試験片を切
り出し、30mmスパンで抗折力を測定、破面の観察を
行った。測定、観察結果をまとめて第1表に示す。
A test piece measuring 4 mm x 3 mm x 4 O mm was cut out from the sintered body, transverse rupture strength was measured over a 30 mm span, and the fracture surface was observed. The measurement and observation results are summarized in Table 1.

比較のためにウィスカー生成相を含−!ないもの、およ
びウィスカー生成材を含むが、生成促進剤を第1表 含まないもの等本発明外のものを、14・50°Cの窒
素雰囲気下で同様熱処理し、成形後焼結を行ったものを
第1表No、 ]〜8.10〜12として示した。
Including whisker generation phase for comparison! Those that do not contain whisker-forming materials, but those that are not according to the present invention, such as those that do not contain the formation accelerator shown in Table 1, were similarly heat-treated in a nitrogen atmosphere at 14.50°C, and sintered after forming. Those are shown in Table 1 as Nos. ]~8.10~12.

本発明の方法によるものは、室温での抗折力は向上する
と、ともに1200°Cでの高温強度も大11」に向上
しており本発明の効果が高いことを示している。ウィス
カー生成材の配合量は196未満及び75%をこえる範
囲では効果が少いので1%以上、75%以下が有効であ
ると判断される。
In the case of the method of the present invention, the transverse rupture strength at room temperature was improved, and the high temperature strength at 1200°C was also improved by 11'', indicating that the effect of the present invention is high. If the content of the whisker-generating material is less than 196% or more than 75%, the effect will be small, so it is judged that a content of 1% or more and 75% or less is effective.

ウィスカー生成促進剤は0.01%未満では効果は少く
、5%をこえると金属量が多くなり高温特性の劣化があ
り、本発明の効果を少なくするため、0.01%以上、
5%以下が適当である。
If the whisker formation promoter is less than 0.01%, the effect will be small, and if it exceeds 5%, the amount of metal will increase and the high temperature characteristics will deteriorate.
5% or less is appropriate.

伺ウィスカー生成熱処理温度の範囲は、14・00゛C
以下ではウィスカー生成速度が極端に遅くなり、実用的
でない。更に1650°C以上では緻密化焼結が進行す
る温度域であるためウィスカーの成長途中で緻密化が進
行するため効果が少ない。従って1400°C以上16
50°C以下の温度で14.50°C〜1550°Cの
範囲が最良である。
The whisker generation heat treatment temperature range is 14.00°C.
Below this, the whisker generation speed becomes extremely slow and is not practical. Furthermore, since densification and sintering proceed at temperatures above 1650°C, densification progresses during whisker growth, resulting in little effect. Therefore, over 1400°C16
A range of 14.50°C to 1550°C with a temperature below 50°C is best.

本発明の試料の抗折力i1!II定後の破面を顕微鏡で
観察すると、径が]/7+11メ程度で長さが40 μ
m〜507tmの均−長のウィスノノー繊維が3次元的
にからみ合った。rJh、 kll:強化型の111J
造になっCいることが確認きれた。
Transverse rupture strength i1 of the sample of the present invention! When the fracture surface after II treatment was observed under a microscope, the diameter was about ]/7+11 mm and the length was 40 μm.
Wisnono fibers with uniform lengths of m to 507 tm were intertwined three-dimensionally. rJh, kll: Enhanced 111J
I was able to confirm that C was built.

Claims (1)

【特許請求の範囲】 (+)窒化硅素ウィスカーが分散した窒化硅素焼結体の
製造法にあ・いて、窒化硅素粉末と熱処理でウィスカー
となるウィスカー生成材、ウィスカー生成促進利及び焼
結助材とを用い、これらを混合した後、窒素ガス分圧を
有する非酸化性雰囲気下でウィスカー成長熱処理を行っ
た後、所定形状に成形し、その成形体を、非酸化性雰囲
気下で緻密化焼結することを特徴とする繊維強化型窒化
硅素焼結体の製造法。 (2、特許請求の範囲第1項記載のウィスカー生成4・
4が、SiまたはSlを含む無機化合物、Siを含む有
機化合物、非晶質の窒化硅素粉末、Singとカーボン
またはSiの混合物の一煎又は複数の組み合せであるこ
とを特徴とする繊維強化型窒化硅素焼結体の製造法。 (3)特ii’l′請求の範囲第1項記載のウィスカー
生成促進材がFe、Ni 、Co、Cr 、V、Ti 
、Ta 、W、MOから選ばれた1種またはそれ以」二
の金属又は合金であることを特徴とする繊維強化型窒化
硅素焼結体の製造法。 (4)特許請求の範囲第1項記載のウィスカー生成熱処
理温度が14. O0°C〜1650°Cであることを
特徴とする繊維強化型窒化硅素焼結体の製造法。 (5)特許請求の範囲第1項記載の製造法において、ウ
ィスカー生成材が1重量%以上75重量%以下であり、
ウィスカー生成促進材が0.01重量%以」−5重置%
以下であることを特徴とする繊維強化型窒化硅素焼結体
の製造法。
[Scope of Claims] (+) In the method of manufacturing a silicon nitride sintered body in which silicon nitride whiskers are dispersed, a whisker generating material, a whisker generation promoting agent, and a sintering aid that become whiskers by heat treatment with silicon nitride powder After mixing these, they are subjected to whisker growth heat treatment in a non-oxidizing atmosphere with nitrogen gas partial pressure, then molded into a predetermined shape, and the molded body is densified and sintered in a non-oxidizing atmosphere. A method for manufacturing a fiber-reinforced silicon nitride sintered body, which is characterized by being fused. (2. Whisker generation according to claim 1)
Fiber-reinforced nitriding characterized in that 4 is a combination of Si or an inorganic compound containing Si, an organic compound containing Si, an amorphous silicon nitride powder, a mixture of Sing and carbon or Si, or a combination of these. Method for manufacturing silicon sintered bodies. (3) Particularly ii'l' The whisker generation promoting material according to claim 1 is Fe, Ni, Co, Cr, V, Ti.
, Ta, W, MO, or an alloy thereof. (4) The whisker generation heat treatment temperature described in claim 1 is 14. A method for producing a fiber-reinforced silicon nitride sintered body, characterized in that the temperature is O0°C to 1650°C. (5) In the manufacturing method according to claim 1, the whisker-generating material is 1% by weight or more and 75% by weight or less,
Whisker generation accelerator is 0.01% by weight or more”-5%
A method for producing a fiber-reinforced silicon nitride sintered body, characterized by the following.
JP57170155A 1982-09-24 1982-09-28 Manufacture of fiber reinforced silicon nitride sintered bo-dy Pending JPS5957965A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP57170155A JPS5957965A (en) 1982-09-28 1982-09-28 Manufacture of fiber reinforced silicon nitride sintered bo-dy
US06/534,143 US4753764A (en) 1982-09-24 1983-09-21 Manufacturing method for fiber reinforced silicon ceramics sintered body
DE8383305641T DE3380349D1 (en) 1982-09-24 1983-09-22 Manufacturing method for fiber reinforced silicon ceramics sintered body
EP83305641A EP0107349B1 (en) 1982-09-24 1983-09-22 Manufacturing method for fiber reinforced silicon ceramics sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57170155A JPS5957965A (en) 1982-09-28 1982-09-28 Manufacture of fiber reinforced silicon nitride sintered bo-dy

Publications (1)

Publication Number Publication Date
JPS5957965A true JPS5957965A (en) 1984-04-03

Family

ID=15899700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57170155A Pending JPS5957965A (en) 1982-09-24 1982-09-28 Manufacture of fiber reinforced silicon nitride sintered bo-dy

Country Status (1)

Country Link
JP (1) JPS5957965A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61205699A (en) * 1985-03-08 1986-09-11 Ube Ind Ltd Production of silicon nitride whisker
JPS61275199A (en) * 1985-05-31 1986-12-05 Ube Ind Ltd Production of silicon nitride whisker
JPS61295300A (en) * 1985-06-25 1986-12-26 Ube Ind Ltd Preparation of silicon nitride whisker
JPS627672A (en) * 1985-07-04 1987-01-14 株式会社 香蘭社 Manufacture of fiber reinforced silicon nitride ceramic
JPH01252583A (en) * 1988-03-31 1989-10-09 Aisin Seiki Co Ltd High tough ceramics
JPH08245265A (en) * 1995-03-08 1996-09-24 Hitachi Ltd Self-reinforced silicon nitride sintered compact and its production

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61205699A (en) * 1985-03-08 1986-09-11 Ube Ind Ltd Production of silicon nitride whisker
JPS61275199A (en) * 1985-05-31 1986-12-05 Ube Ind Ltd Production of silicon nitride whisker
JPS61295300A (en) * 1985-06-25 1986-12-26 Ube Ind Ltd Preparation of silicon nitride whisker
JPS627672A (en) * 1985-07-04 1987-01-14 株式会社 香蘭社 Manufacture of fiber reinforced silicon nitride ceramic
JPH01252583A (en) * 1988-03-31 1989-10-09 Aisin Seiki Co Ltd High tough ceramics
JPH08245265A (en) * 1995-03-08 1996-09-24 Hitachi Ltd Self-reinforced silicon nitride sintered compact and its production

Similar Documents

Publication Publication Date Title
EP0107349B1 (en) Manufacturing method for fiber reinforced silicon ceramics sintered body
DE69706587T2 (en) Ceramic matrix composite and method of making the same
JPS6358791B2 (en)
KR920003029B1 (en) High toughness silicon nitride sintered body and process for producing the same
JPS6132254B2 (en)
JPH035374A (en) Silicon nitride-silicon carbide combined sintered body and its production
Li et al. In situ synthesis of porous ceramics with a framework structure of aluminium borate whisker
JP2535768B2 (en) High heat resistant composite material
JPS5957965A (en) Manufacture of fiber reinforced silicon nitride sintered bo-dy
JPS5957964A (en) Manufacture of fiber reinforced silicon nitride sintered bo-dy
EP0754659B1 (en) Porous inorganic material and metal-matrix composite material containing the same and process therefor
Chen et al. Oxidation of Ti 3 SiC 2 composites in air
JPS63225579A (en) Ceramic tool material
Baskin et al. Some physical properties of thoria reinforced by metal fibers
JPS5957961A (en) Manufacture of fiber reinforced silicon carbide sintered bo-dy
JPS5957960A (en) Manufacture of fiber reinforced silicon carbide sintered bo-dy
JPH02302368A (en) Silicon carbide sintered compact having high toughness and its production thereof
JPS5954675A (en) Manufacture of fiber reinforced silicon carbide sintered body
JPS5954679A (en) Manufacture of fiber reinforced silicon nitride sintered body
JPS6345173A (en) High toughness ceramic sintered body and manufacture
Xue et al. A New SiC‐Whisker‐Reinforced Lithium Aluminosilicate Composite
JPS5954678A (en) Manufacture of fiber reinforced silicon nitride sintered body
JP2972836B2 (en) Forming method of composite ceramics
JP3148559B2 (en) Ceramic fiber reinforced turbine blade and method of manufacturing the same
JPS63185862A (en) Manufacture of ceramic composite body