JPS6236987B2 - - Google Patents

Info

Publication number
JPS6236987B2
JPS6236987B2 JP55048375A JP4837580A JPS6236987B2 JP S6236987 B2 JPS6236987 B2 JP S6236987B2 JP 55048375 A JP55048375 A JP 55048375A JP 4837580 A JP4837580 A JP 4837580A JP S6236987 B2 JPS6236987 B2 JP S6236987B2
Authority
JP
Japan
Prior art keywords
zro
powder
sintered body
sintered
zirconia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55048375A
Other languages
Japanese (ja)
Other versions
JPS56145174A (en
Inventor
Akira Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP4837580A priority Critical patent/JPS56145174A/en
Publication of JPS56145174A publication Critical patent/JPS56145174A/en
Publication of JPS6236987B2 publication Critical patent/JPS6236987B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 本発明は、ジルコニア(ZrO2)−酸化クロム
(Cr2O3)系焼結体の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a zirconia (ZrO 2 )-chromium oxide (Cr 2 O 3 )-based sintered body.

現在、ジルコニア焼結体は安定化あるいは部分
安定化され耐火物として利用され、またクロミア
質焼結体は主としてガラス長繊維製造用耐火物と
して利用されている。
Currently, zirconia sintered bodies are stabilized or partially stabilized and used as refractories, and chromia sintered bodies are mainly used as refractories for producing long glass fibers.

しかしながら、ジルコニアと酸化クロムとから
なる焼結体は、緻密に焼結することが困難である
などにより、製造されていない。
However, a sintered body made of zirconia and chromium oxide has not been manufactured because it is difficult to sinter it densely.

本発明は、ジルコニアと酸化クロムとの混合物
が均一緻密に焼結され、ジルコニアおよびクロミ
ア質のそれぞれの焼結体より一層優れた物性を有
する焼結体の製造法を提供せんとするものであ
る。
The present invention aims to provide a method for producing a sintered body in which a mixture of zirconia and chromium oxide is sintered uniformly and densely, and which has physical properties superior to those of zirconia and chromia sintered bodies, respectively. .

本発明者はさきに、Cr2O3単味の成形体を炭素
粉末中で焼成することにより緻密に焼結できるこ
とを開発した(特開昭54−96508号公報)。更に研
究を進め、従来緻密化焼結が困難とされていた
ZrO2粉末とCr2O3粉末との混合成形体の焼結に発
展させた。すなわち、ZrO2粉末とCr2O3粉末とを
混合し、これを成形して炭素粉末中で焼成したと
ころ、均一緻密に焼結され、且つ得られる焼結体
は物性の優れた焼結体となることを知見した。本
発明はこの知見に基づいて完成したものである。
The present inventor has previously developed that compact Cr 2 O 3 compacts can be sintered densely by firing them in carbon powder (Japanese Unexamined Patent Publication No. 54-96508). Further research has revealed that densification sintering was previously thought to be difficult.
Sintering of a mixed compact of ZrO 2 powder and Cr 2 O 3 powder was developed. That is, when ZrO 2 powder and Cr 2 O 3 powder were mixed, molded, and fired in carbon powder, the resulting sintered body was uniformly dense and had excellent physical properties. We found that. The present invention was completed based on this knowledge.

この方法で製造された焼結体は、耐火物あるい
は特殊磁器として利用できる有用な特性を有する
ものである。耐えば耐火物としてみれば、従来の
クロミア質耐火物よりも、ZrO2の混合によつて
次の点が改良される。すなわちCr2O3の欠点の1
つは高温で蒸発しやすいことである。これに対し
て、ZrO2は高温度における蒸気圧が小さく蒸発
が極めて少ない特性を有する。そのため本発明の
焼結体においては、ZrO2の混合割合の増加とと
もに蒸発は少なくなり、Cr2O3単味の場合の蒸発
しやすいという欠点が大きく改良される。しか
も、ZrO2はCr2O3と同様に耐化学的侵食に優れ、
さらにCr2O3とZrO2の共融点は2090℃(2300℃と
する報告もある)であるため、実用上なんら耐火
性を損うことなく、Cr2O3単味の耐火物を改良す
ることができる。
The sintered body produced by this method has useful properties that can be used as a refractory or special porcelain. When viewed as a refractory, the addition of ZrO 2 improves the following points over conventional chromia refractories. In other words, one of the drawbacks of Cr 2 O 3
One is that it evaporates easily at high temperatures. On the other hand, ZrO 2 has a low vapor pressure at high temperatures and extremely little evaporation. Therefore, in the sintered body of the present invention, evaporation decreases as the mixing ratio of ZrO 2 increases, and the drawback of Cr 2 O 3 alone, which is easy to evaporate, is greatly improved. Furthermore, ZrO 2 has excellent chemical attack resistance similar to Cr 2 O 3 ,
Furthermore, since the eutectic point of Cr 2 O 3 and ZrO 2 is 2090℃ (some reports say it is 2300℃), it is possible to improve refractories made of Cr 2 O 3 alone without impairing the fire resistance in any way. be able to.

一方、ZrO2単味の焼結体からみれば、ZrO2
融点が約2700℃と高く、1400〜1500℃ほどの低温
では緻密に焼結できない。しかしながら本発明の
Cr2O3を添加して炭素粉末中で焼成することによ
つて、1400〜1500℃という比較的低温で極めて緻
密に焼結でき、しかも得られた焼結体は、ZrO2
単味の焼結体に比較して耐化学的侵食性が強化さ
れるという効果がもたらされる。
On the other hand, when looking at a sintered body of ZrO 2 alone, ZrO 2 has a high melting point of about 2700°C, and cannot be densely sintered at a low temperature of about 1400 to 1500°C. However, the present invention
By adding Cr 2 O 3 and firing in carbon powder, it is possible to sinter extremely densely at a relatively low temperature of 1400 to 1500°C, and the resulting sintered body is ZrO 2
The effect is that the chemical attack resistance is enhanced compared to a plain sintered body.

このように本発明のCr2O3−ZrO2系焼結体は、
1400〜1500℃という比較的低温でしかも容易な方
法で極めて緻密に焼結されたものであり、低コス
トで製造できるものである。しかもその焼結体は
化学的安定性が高く、その上高耐火性であるため
に、高温における過酷な条件下でも耐えられるす
ぐれた耐火物となり得るものである。
In this way, the Cr 2 O 3 −ZrO 2 based sintered body of the present invention is
It is sintered extremely densely at a relatively low temperature of 1,400 to 1,500°C and in a simple manner, and can be manufactured at low cost. Furthermore, the sintered body has high chemical stability and is also highly refractory, so it can be an excellent refractory that can withstand harsh conditions at high temperatures.

さらにZrO2もCr2O3も共に硬度は高く、そのた
め両者が極めて緻密に焼結された焼結体は、特殊
磁器としての多くの応用が期待できる材料であ
る。
Furthermore, both ZrO 2 and Cr 2 O 3 have high hardness, so a sintered body in which both ZrO 2 and Cr 2 O 3 are sintered extremely densely is a material that can be expected to have many applications as special porcelain.

実施例 Cr2O3粉末とZrO2粉末とを種々の割合に混合
し、アセトンによる湿式混合を行ない、この混合
粉末を広さ45×27mmの金型で厚さ15〜10mmの板状
に800Kg/cm2の圧力でもつてプレス成形した。こ
れをアルミナ容器に入れ、試料周囲に炭素粉末を
十分充填し蓋をして、このアルミナ容器を電気炉
に入れ、1500℃で3時間焼成した。そしてこの焼
結体について嵩密度および相対密度{(嵩密度/
真密度)×100〕を求め、これを組成比に対してプ
ロツトすると図−1のようになつた。Cr2O3が10
重量%以上の組成範囲の焼結体では95%以上の相
対密度であり、30〜70%の組成範囲のものは99%
以上の相対密度にまで緻密に焼結されほとんど気
孔はなかつた。そしてその微構造は、図−2の反
射顕微鏡写真によつて示されるように、Cr2O3
とZrO2粒が均一に分布していた。また図−3の
破断面の走真電顕写真では、ほとんど気孔はなく
5〜20μのCr2O3粒とZrO2粒の緻密な集合体とな
つていた。1400℃で3時間焼成した場合も、上記
の1500℃の場合とほぼ同じ結果が得られた。
Example Cr 2 O 3 powder and ZrO 2 powder were mixed in various proportions, wet mixed with acetone, and the mixed powder was molded into a plate shape of 15 to 10 mm thick using a mold with a width of 45 x 27 mm, weighing 800 kg. Press molding was also carried out at a pressure of /cm 2 . This was placed in an alumina container, carbon powder was sufficiently filled around the sample, the lid was closed, and the alumina container was placed in an electric furnace and fired at 1500° C. for 3 hours. The bulk density and relative density of this sintered body {(bulk density/
When the true density) x 100] was calculated and plotted against the composition ratio, the result was as shown in Figure 1. Cr2O3 is 10
Sintered bodies with a composition range of % by weight or more have a relative density of 95% or more, and those with a composition range of 30-70% have a relative density of 99%.
It was densely sintered to the above relative density and had almost no pores. As shown in the reflection micrograph in Figure 2, the microstructure was such that three Cr 2 O grains and two ZrO grains were uniformly distributed. In addition, in the electron micrograph of the fracture surface shown in Figure 3, there were almost no pores and it was a dense aggregate of 3 Cr 2 O grains and 2 ZrO grains of 5 to 20 microns. When firing at 1400°C for 3 hours, almost the same results as in the case of 1500°C described above were obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

図1はジルコニア(ZrO2)粉末と酸化クロム
(Cr2O3)粉末とを種々の割合で混合し、その混合
粉末成形体を炭素粉末中で、1500℃で3時間焼成
した試料の嵩密度および相対密度を組成に対して
示す。図2は焼結体の反射顕微鏡写真であり、そ
の中のA、B、CはCr2O3の混合割合がそれぞれ
70、50、30重量%の試料である。図3は焼結体破
断面の走査電顕写真であり、その中のD、E、
F、GはCr2O3の混合割合がそれぞれ90、70、
50、30重量%の試料である。
Figure 1 shows the bulk densities of samples obtained by mixing zirconia (ZrO 2 ) powder and chromium oxide (Cr 2 O 3 ) powder in various proportions and firing the mixed powder compact in carbon powder at 1500°C for 3 hours. and relative density versus composition. Figure 2 is a reflection micrograph of the sintered body, in which A, B, and C have different mixing ratios of Cr 2 O 3 .
The samples are 70, 50, and 30% by weight. Figure 3 is a scanning electron micrograph of the fractured surface of the sintered body, in which D, E,
For F and G, the mixing ratio of Cr 2 O 3 is 90 and 70, respectively.
The samples are 50 and 30% by weight.

Claims (1)

【特許請求の範囲】[Claims] 1 ジルコニア(ZrO2)粉末と酸化クロム
(Cr2O3)粉末との混合物からなる成形体を炭素粉
末中で焼成することを特徴とするジルコニア−酸
化クロム系焼結体の製造法。
1. A method for producing a zirconia-chromium oxide sintered body, which comprises firing a compact made of a mixture of zirconia (ZrO 2 ) powder and chromium oxide (Cr 2 O 3 ) powder in carbon powder.
JP4837580A 1980-04-12 1980-04-12 Manufacture of zirconia-chromium oxide sintered body Granted JPS56145174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4837580A JPS56145174A (en) 1980-04-12 1980-04-12 Manufacture of zirconia-chromium oxide sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4837580A JPS56145174A (en) 1980-04-12 1980-04-12 Manufacture of zirconia-chromium oxide sintered body

Publications (2)

Publication Number Publication Date
JPS56145174A JPS56145174A (en) 1981-11-11
JPS6236987B2 true JPS6236987B2 (en) 1987-08-10

Family

ID=12801569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4837580A Granted JPS56145174A (en) 1980-04-12 1980-04-12 Manufacture of zirconia-chromium oxide sintered body

Country Status (1)

Country Link
JP (1) JPS56145174A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6221755A (en) * 1985-07-22 1987-01-30 東芝タンガロイ株式会社 Chromium oxide base high temperature lubricating sintered body
JP2533854B2 (en) * 1986-05-30 1996-09-11 日立金属株式会社 ZrO2-based ceramics sintered body for wear resistant structural material
JPS63319251A (en) * 1987-06-22 1988-12-27 Mitsubishi Heavy Ind Ltd Production of chromium oxide-based dense sintered body
JP5751482B2 (en) * 2011-05-18 2015-07-22 三菱マテリアル株式会社 Method for producing oxide sputtering target and buffer powder used therefor
JP2013209716A (en) * 2012-03-30 2013-10-10 Mitsubishi Materials Corp Sputtering target and method for producing the same
CN106747367B (en) * 2016-12-13 2022-02-11 中钢集团洛阳耐火材料研究院有限公司 Preparation method of compact chromium oxide product with high thermal shock stability

Also Published As

Publication number Publication date
JPS56145174A (en) 1981-11-11

Similar Documents

Publication Publication Date Title
JP2828986B2 (en) Ceramic sintered body
JPS6236987B2 (en)
US4374897A (en) Chromium oxide-based sintered bodies and process for production thereof
KR900005510B1 (en) Method for producing siliconcarbide-sinteringbody
EP0116194B1 (en) A carbon-containing refractory
JPS6119584B2 (en)
DE2232719A1 (en) Refractory stones - contg refractory oxide and/or carbide grains and silicon carbide binder
US2684912A (en) Ceramic body
JPH02311361A (en) Production of aluminum titanate sintered compact stable at high temperature
JPS6125676B2 (en)
JPH0561228B2 (en)
JPH01294582A (en) Carbon-containing castable refractory
JPS5818346B2 (en) Heat-resistant silicon carbide refractories under nitrogen atmosphere
JPS6236985B2 (en)
EP0241514A1 (en) Dense ceramics containing a solid solution and method for making the same
JPS638264A (en) Silicon carbide base composite material
JPH0674172B2 (en) Cordierite ceramics and manufacturing method thereof
JP2000107839A (en) Manufacture of plate for slide gate
JPS6236986B2 (en)
JPH0733286B2 (en) Method for manufacturing silicon carbide sintered body
GB2206110A (en) Manufacturing fired, refractory magnesia bricks
SU914538A1 (en) Batch for producing refractories
JPS6011263A (en) Low heat conductivity basic refractories
JPS6120619B2 (en)
JP3787688B2 (en) Method for densifying chromia-magnesia brick