JPH0733286B2 - Method for manufacturing silicon carbide sintered body - Google Patents

Method for manufacturing silicon carbide sintered body

Info

Publication number
JPH0733286B2
JPH0733286B2 JP63047275A JP4727588A JPH0733286B2 JP H0733286 B2 JPH0733286 B2 JP H0733286B2 JP 63047275 A JP63047275 A JP 63047275A JP 4727588 A JP4727588 A JP 4727588A JP H0733286 B2 JPH0733286 B2 JP H0733286B2
Authority
JP
Japan
Prior art keywords
silicon carbide
sintered body
metal
fluoride
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63047275A
Other languages
Japanese (ja)
Other versions
JPH01219062A (en
Inventor
貞三 長谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP63047275A priority Critical patent/JPH0733286B2/en
Publication of JPH01219062A publication Critical patent/JPH01219062A/en
Publication of JPH0733286B2 publication Critical patent/JPH0733286B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、炭化珪素焼結体の製造方法に関する。TECHNICAL FIELD The present invention relates to a method for manufacturing a silicon carbide sintered body.

[従来の技術] 近年、耐熱性や機械強度に優れていることにより炭化珪
素(SiC)焼結体が自動車部品に使用されている。この
炭化珪素焼結体は、炭化珪素粉末と焼結助剤との混合粉
末を成形した後、約2000℃の高温で焼結することにより
製造されている。
[Prior Art] In recent years, silicon carbide (SiC) sintered bodies have been used for automobile parts because of their excellent heat resistance and mechanical strength. This silicon carbide sintered body is manufactured by molding a mixed powder of silicon carbide powder and a sintering aid, and then sintering it at a high temperature of about 2000 ° C.

炭化珪素の常圧焼結には、通常焼結性を高めるため焼結
助剤としてホウ素系化合物やアルミニウム系化合物を用
いることが知られている。ホウ素系化合物の場合には、
ホウ素または炭化ホウ素を炭素と共に炭化珪素粉末に添
加して焼結する。炭化珪素およびホウ素系化合物は高温
での安定性が高いので2000℃以上という高温で焼結が可
能である。このような高温で焼結することにより常圧で
も緻密な焼結体が得られる。またアルミニウム系化合物
の場合には、高温時にアルミニウム系化合物が分解して
蒸散するのでこれに対する対策が必要とされている。
For atmospheric pressure sintering of silicon carbide, it is generally known to use a boron-based compound or an aluminum-based compound as a sintering aid in order to improve the sinterability. In the case of boron compounds,
Boron or boron carbide is added to silicon carbide powder together with carbon and sintered. Since silicon carbide and boron compounds have high stability at high temperatures, they can be sintered at temperatures as high as 2000 ° C or higher. By sintering at such a high temperature, a dense sintered body can be obtained even at normal pressure. Further, in the case of an aluminum compound, the aluminum compound decomposes and evaporates at high temperature, and a countermeasure against this is required.

特公昭62−1346号公報には、焼結助剤にアルミナを用い
て炭化珪素を焼結する場合に、より高密度な焼結体とす
るためにAl、Al2O、AlOから選ばれる一種または二種以
上をアルミナに添加する方法を開示している。また炭化
珪素の成形性、焼結性を向上させるために特開昭57−20
5378号公報には、有機物質のバインダーと共に焼結助剤
として酸化イットリウム、酸化アルミニウム、酸化マグ
ネシウムの添加して成形・加熱・焼結する旨の製造方法
の開示がある。さらに特開昭60−180961号公報には、炭
化珪素の焼結助剤として酸化イットリウム、スピネルを
特定量用いて焼結する旨の開示がある。
Japanese Patent Publication No. 62-1346 discloses a type selected from Al, Al 2 O and AlO in order to obtain a higher density sintered body when sintering silicon carbide using alumina as a sintering aid. Alternatively, a method of adding two or more kinds to alumina is disclosed. Further, in order to improve the formability and sinterability of silicon carbide, JP-A-57-20
Japanese Patent No. 5378 discloses a manufacturing method for forming, heating and sintering by adding yttrium oxide, aluminum oxide and magnesium oxide as a sintering aid together with a binder of an organic substance. Further, JP-A-60-180961 discloses that a specific amount of yttrium oxide and spinel are used as a sintering aid for silicon carbide, and sintering is performed.

[発明が解決しようとする課題] しかしながら、前記の焼結助剤ではまだ充分に緻密化し
た炭化珪素焼結体が得られにくい。本発明はこの焼結性
を改善する焼結助剤について検討した結果、緻密化し高
密度の焼結体が得られることを見出し本発明を完成し
た。すなわち高密度の炭化珪素焼結体の製造方法を提案
することを目的とする。
[Problems to be Solved by the Invention] However, it is still difficult to obtain a sufficiently densified silicon carbide sintered body with the above-mentioned sintering aid. In the present invention, as a result of studying a sintering aid for improving the sinterability, it was found that a dense and high-density sintered body can be obtained, and the present invention was completed. That is, it is an object to propose a method for producing a high-density silicon carbide sintered body.

[課題を解決するための手段] 本発明の炭化珪素焼結体の製造方法は、炭化珪素粉末と
焼結助剤粉末との混合粉末を焼結した炭化珪素焼結体を
得る炭化珪素焼結体の製造方法において、 前記焼結助剤粉末は少なくとも一種の金属酸化物と前記
金属酸化物を構成する金属のフッ化物である金属フッ化
物とを含み、前記金属フッ化物の配合量は前記金属酸化
物を100重量部としたとき1〜10重量部であることを特
徴とする。
[Means for Solving the Problems] A method for manufacturing a silicon carbide sintered body according to the present invention is a method for producing a silicon carbide sintered body by sintering a mixed powder of a silicon carbide powder and a sintering aid powder. In the method for producing a body, the sintering aid powder contains at least one metal oxide and a metal fluoride that is a fluoride of a metal forming the metal oxide, and the compounding amount of the metal fluoride is the metal. It is characterized in that it is 1 to 10 parts by weight when the oxide is 100 parts by weight.

この炭化珪素粉末は難焼結性であるため微粉であること
が好ましく、平均粒径が1μm以下であればα型あるい
はβ型または両者の混合物を用いることができる。
Since this silicon carbide powder is difficult to sinter, it is preferably a fine powder. If the average particle size is 1 μm or less, α type or β type or a mixture of both can be used.

この焼結助剤粉末は少なくとも一種の金属酸化物と金属
フッ化物とを併用する。金属酸化物としてはアルミナ、
イットリア、マグネシヤ、スピネルなどが挙げられる。
金属フッ化物としてはフッ化アルミニウム、フッ化イッ
トリウム、フッ化マグネシウムなどの前記金属酸化物を
構成する金属のフッ化物が用いられる。
This sintering aid powder uses at least one kind of metal oxide and metal fluoride in combination. Alumina as the metal oxide,
Examples include yttria, magnesia, and spinel.
As the metal fluoride, a fluoride of a metal forming the metal oxide, such as aluminum fluoride, yttrium fluoride, or magnesium fluoride, is used.

この焼結助剤粉末は平均粒径が主原料である炭化硅素粒
子の大きさより細かいことが焼結性を高めるのに好まし
い。
It is preferable that the average particle size of the sintering aid powder is smaller than the size of the main raw material silicon carbide particles in order to improve the sinterability.

また金属フッ化物の配合量は金属酸化物を100重量部と
したとき1〜10重量部である。配合量が1重量部未満の
場合は添加効果が認められず、10重量部を越えた場合は
理由は明確ではないが、却って焼結助剤の効果が妨げら
れ焼結密度が低下する。すなわち、この金属フッ化物は
融点が1200〜1300℃であり焼結温度の2000℃付近では液
化ないしは気化状態となっていると考えられる。そこで
この金属フッ化物は、焼結時に炭化珪素粒子の表面に移
行し粒子表面の酸素等を除去して表面を浄化するととも
に、焼結体を緻密化する作用をしていると考えられる。
しかし金属フッ化物の量が10重量部を超えて多くなると
焼結助剤の高融点の金属酸化物の働きが弱められるので
はないかと推測される。
The amount of the metal fluoride compounded is 1 to 10 parts by weight when the metal oxide is 100 parts by weight. If the compounding amount is less than 1 part by weight, the effect of addition is not recognized, and if it exceeds 10 parts by weight, the reason is not clear, but rather the effect of the sintering aid is hindered and the sintered density is lowered. That is, it is considered that this metal fluoride has a melting point of 1200 to 1300 ° C and is in a liquefied or vaporized state near the sintering temperature of 2000 ° C. Therefore, it is considered that the metal fluoride migrates to the surface of the silicon carbide particles during sintering, removes oxygen and the like on the surface of the particles to purify the surface, and at the same time, acts to densify the sintered body.
However, if the amount of metal fluoride exceeds 10 parts by weight, the function of the high melting point metal oxide of the sintering additive may be weakened.

この金属フッ化物は、焼結助剤の金属酸化物と同種の金
属であることにより焼結時に有害な副作用をもたらさな
いことも有利な点と考えられる。
It is considered that this metal fluoride does not bring harmful side effects at the time of sintering because it is the same metal as the metal oxide of the sintering aid.

したがって焼結助剤に金属酸化物と金属酸化物を構成す
る金属の金属フッ化物を特定量併用することにより焼結
体の緻密化が向上する。
Therefore, the densification of the sintered body is improved by using a specific amount of the metal oxide and the metal fluoride of the metal forming the metal oxide as the sintering aid.

[発明の効果] 本発明の炭化珪素焼結体の製造方法によれば、従来方法
により得た炭化珪素焼結体よりも緻密化し高密度を有す
るものが容易に得られる。したがってこの製造方法で得
た炭化珪素焼結体は耐熱性や機械的性質が優れ適用範囲
が大幅に拡大される。
[Effect of the Invention] According to the method for manufacturing a silicon carbide sintered body of the present invention, it is possible to easily obtain a denser and higher density than the silicon carbide sintered body obtained by the conventional method. Therefore, the silicon carbide sintered body obtained by this manufacturing method has excellent heat resistance and mechanical properties, and its range of application is greatly expanded.

[実施例] 以下実施例により本発明を説明する。[Examples] The present invention will be described below with reference to Examples.

(原料) 使用した炭化珪素粉末は市販のもので、粒径1μm以下
のものを用いα型またはβ型または両者の混合物など特
に差は認められなかったため特に区別をしないで使用し
た。
(Raw material) The silicon carbide powder used was a commercially available powder having a particle diameter of 1 μm or less, and no particular difference was observed between α type and β type or a mixture of the two types.

焼結助剤は第1表に示す割合で配合して用いた。The sintering aid was blended and used in the ratio shown in Table 1.

Al2O3は粒径約0.1μmの粉末を使用した。Y2O3はイット
リウムイソプロキシドをベンゼンに溶解して添加した。
大気中の湿気で転換される水和物から最終的に形成され
たY2O3の量は上記イットリウムイソプロキシドに含まれ
るイットリウムの量にもとづき換算した。スピルネ(Mg
AlO4)は粒径約0.3μmの粉末を用いた。
As Al 2 O 3 , powder having a particle size of about 0.1 μm was used. Y 2 O 3 was added by dissolving yttrium isoproxide in benzene.
The amount of Y 2 O 3 finally formed from the hydrate converted by atmospheric humidity was converted based on the amount of yttrium contained in the yttrium isoproxide. Spirne (Mg
AlO 4 ) used was powder having a particle size of about 0.3 μm.

金属酸化物の炭化珪素への配合は、金属酸化物をベンゼ
ンを媒体にしプラスチック製のボールミルで混合して分
散させた後、ベンゼンを留去して乾燥させた。金属フッ
化物(MgF2、AlF3)は水溶液で前記の乾燥混合粉に添加
しボールミルで混合したのち、凍結乾燥を行なった。但
しYF3の場合は粉末を10μm以下に乳鉢で粉砕した後金
属酸化物混合時に添加して混合した。
To mix the metal oxide with silicon carbide, the metal oxide was mixed and dispersed in a plastic ball mill using benzene as a medium, and then benzene was distilled off and dried. The metal fluorides (MgF 2 , AlF 3 ) were added to the dry mixed powder as an aqueous solution, mixed with a ball mill, and then freeze-dried. However, in the case of YF 3 , the powder was pulverized to a size of 10 μm or less in a mortar and then added and mixed at the time of mixing the metal oxide.

(焼結) 前記で得た混合粉末を3000kg/cm2の圧力で試験片を静水
圧成形で形成した。得られた成形体の寸法は巾4mm、高
さ6mm、長さ50mmの直方体である。この成形体を以下の
条件で焼結を行った。
(Sintering) A test piece was formed by isostatic pressing the mixed powder obtained above at a pressure of 3000 kg / cm 2 . The obtained molded product has a rectangular shape with a width of 4 mm, a height of 6 mm and a length of 50 mm. This compact was sintered under the following conditions.

液体窒素のトラップを通過した1気圧のアルゴン気体雰
囲気下で焼結温度が2000℃で1.5時間の焼結を行なっ
た。なお昇温速度は1200〜2000℃の間を14時間を要し
た。焼結炉は黒鉛発熱体炉を用いた。
Sintering was carried out at a sintering temperature of 2000 ° C. for 1.5 hours under an atmosphere of argon gas of 1 atm passing through a liquid nitrogen trap. The temperature rising rate was between 1200 and 2000 ° C for 14 hours. A graphite heating element furnace was used as the sintering furnace.

(評価) 得られた焼結体の焼結密度(焼結体の理論密度に対する
相対密度)を第1表に示す。
(Evaluation) Table 1 shows the sintered density of the obtained sintered body (relative density to the theoretical density of the sintered body).

No.1〜4は、金属酸化物に酸化アルミニウムを用い、N
o.1は金属フッ化物なしの比較例、No.2〜4は金属フッ
化物にフッ化アルミニウムを添加した本発明の例であ
る。比較例の焼結密度が86.7%であるがAlF3の添加した
本実施例は焼結密度が90%をこえており金属フッ化物の
効果を示している。またNo.2はAl2O3:AlF3=100:1で焼
結密度が91.3%であり、No.4がAl2O3:AlF3=100:10で
焼結密度が92.7%であるが、No.4の場合はNo.3(Al
2O3:AlF3=100:2.5で焼結密度が93.8%である)よりも
焼結密度が低下している。すなわち金属フッ化物はこれ
以上多くしても効果上昇は望めないことを示している。
No. 1 to 4 use aluminum oxide as the metal oxide, and N
o.1 is a comparative example without metal fluoride, and Nos. 2 to 4 are examples of the present invention in which aluminum fluoride is added to metal fluoride. Although the sintered density of the comparative example is 86.7%, the sintered density of this example in which AlF 3 is added exceeds 90%, which shows the effect of the metal fluoride. No. 2 has Al 2 O 3 : AlF 3 = 100: 1 and a sintered density of 91.3%, and No. 4 has Al 2 O 3 : AlF 3 = 100: 10 and a sintered density of 92.7%. However, in case of No. 4, No. 3 (Al
2 O 3 : AlF 3 = 100: 2.5 and the sintered density is 93.8%). That is, it is shown that the effect cannot be expected to increase even if the amount of metal fluoride is further increased.

No.5〜No.7は二種の金属酸化物を用いた例である。No.5
は金属フッ化物を使用しない比較例であり、No.6はフッ
化イットリウムを対金属酸化物量に対し8/600量用いた
例であり、No.7はフッ化アルミニウム、フッ化マグネシ
ウムの二種を合計1/100量用いた例である。
No. 5 to No. 7 are examples using two kinds of metal oxides. No.5
Is a comparative example not using a metal fluoride, No. 6 is an example using yttrium fluoride 8/600 amount to the amount of metal oxide, No. 7 is two kinds of aluminum fluoride, magnesium fluoride This is an example of using 1/100 in total.

金属フッ化物を用いたNo.6、No.7の焼結密度は98%前後
で金属フッ化物を使用しないNo.5の95%に比べて向上し
ている。
The sintered densities of No. 6 and No. 7 using metal fluoride are around 98%, which is higher than 95% of No. 5 without using metal fluoride.

また焼結体の組織はNo.1、No.5のものが4〜10μmでか
つ10μmを越える粗大粒が存在するが、No.2、No.3、N
o.4、No.6、No.7の金属フッ化物を添加した本発明例で
は、1〜3μmで粗大なものでも10μm以下のものしか
存在しない。したがって本発明の焼結体は微細な粒子で
構成された高密度を有している。
In addition, the sintered body has No.1 and No.5 having a grain size of 4 to 10 μm and coarse particles exceeding 10 μm, but No.2, No.3, N
In the examples of the present invention in which o.4, No. 6, and No. 7 metal fluorides were added, only coarse particles of 1 to 3 μm and particles of 10 μm or less existed. Therefore, the sintered body of the present invention has a high density composed of fine particles.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】炭化珪素粉末と焼結助剤粉末との混合粉末
を焼結して炭化珪素焼結体を得る炭化珪素焼結体の製造
方法において、 前記焼結助剤粉末は、少なくとも一種の金属酸化物と前
記金属酸化物を構成する金属のフッ化物である金属フッ
化物とを含み、前記金属フッ化物の配合量は前記金属酸
化物を100重量部としたとき1〜10重量部であることを
特徴とする炭化珪素焼結体の製造方法。
1. A method for manufacturing a silicon carbide sintered body, comprising sintering a mixed powder of silicon carbide powder and a sintering aid powder to obtain a silicon carbide sintered body, wherein the sintering aid powder is at least one kind. Of the metal oxide and a metal fluoride that is a fluoride of the metal forming the metal oxide, the compounding amount of the metal fluoride is 1 to 10 parts by weight when the metal oxide is 100 parts by weight. A method of manufacturing a silicon carbide sintered body, characterized by:
JP63047275A 1988-02-29 1988-02-29 Method for manufacturing silicon carbide sintered body Expired - Fee Related JPH0733286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63047275A JPH0733286B2 (en) 1988-02-29 1988-02-29 Method for manufacturing silicon carbide sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63047275A JPH0733286B2 (en) 1988-02-29 1988-02-29 Method for manufacturing silicon carbide sintered body

Publications (2)

Publication Number Publication Date
JPH01219062A JPH01219062A (en) 1989-09-01
JPH0733286B2 true JPH0733286B2 (en) 1995-04-12

Family

ID=12770738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63047275A Expired - Fee Related JPH0733286B2 (en) 1988-02-29 1988-02-29 Method for manufacturing silicon carbide sintered body

Country Status (1)

Country Link
JP (1) JPH0733286B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101457215B1 (en) * 2007-03-12 2014-10-31 엔지케이 인슐레이터 엘티디 Yttrium oxide-containing material, component of semiconductor manufacturing equipment, amd method of producing yttrium oxide-containing material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4532793B2 (en) * 2001-08-07 2010-08-25 福田金属箔粉工業株式会社 Sintering aid for aluminum-containing copper-based alloy powder, and sintering alloy powder containing the same
US7833924B2 (en) 2007-03-12 2010-11-16 Ngk Insulators, Ltd. Yttrium oxide-containing material, component of semiconductor manufacturing equipment, and method of producing yttrium oxide-containing material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101457215B1 (en) * 2007-03-12 2014-10-31 엔지케이 인슐레이터 엘티디 Yttrium oxide-containing material, component of semiconductor manufacturing equipment, amd method of producing yttrium oxide-containing material

Also Published As

Publication number Publication date
JPH01219062A (en) 1989-09-01

Similar Documents

Publication Publication Date Title
US5470806A (en) Making of sintered silicon carbide bodies
US4778778A (en) Process for the production of sintered aluminum nitrides
JPH0244787B2 (en)
US6197248B1 (en) Process for preparing aluminum titanate powder and sintered body
JPH0672051B2 (en) Silicon carbide sintered body and method for producing the same
JP2829229B2 (en) Silicon nitride ceramic sintered body
JPH0733286B2 (en) Method for manufacturing silicon carbide sintered body
JP2777679B2 (en) Spinel ceramics and manufacturing method thereof
JP2766445B2 (en) Sialon composite sintered body and method for producing the same
JP3810183B2 (en) Silicon nitride sintered body
JPH0254297B2 (en)
JP2690571B2 (en) Zirconia cutting tool and its manufacturing method
JP3121996B2 (en) Alumina sintered body
JPH0224789B2 (en)
JPH0712980B2 (en) Silicon carbide sintered body and method for producing the same
JP3570676B2 (en) Porous ceramic body and method for producing the same
JPH06116045A (en) Silicon nitride sintered compact and its production
JP2820846B2 (en) High toughness sialon sintered body and method of manufacturing the same
JP2981689B2 (en) High-strength Al2O3-SiC composite sintered body and method for producing the same
JP3567001B2 (en) Method for producing composite sintered body of silicon carbide and silicon nitride
KR910003901B1 (en) Manufacture method of sic sintering material
JP2916934B2 (en) Method for producing sialon-based sintered body
JPH09227233A (en) Production of silicon carbide sintered compact
JP2961389B2 (en) High strength magnesia sintered body and method for producing the same
JPH0517210A (en) Production of alumina-based composite sintered body and the sintered body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees