JPH0712980B2 - Silicon carbide sintered body and method for producing the same - Google Patents

Silicon carbide sintered body and method for producing the same

Info

Publication number
JPH0712980B2
JPH0712980B2 JP60068411A JP6841185A JPH0712980B2 JP H0712980 B2 JPH0712980 B2 JP H0712980B2 JP 60068411 A JP60068411 A JP 60068411A JP 6841185 A JP6841185 A JP 6841185A JP H0712980 B2 JPH0712980 B2 JP H0712980B2
Authority
JP
Japan
Prior art keywords
sintered body
less
silicon carbide
weight
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60068411A
Other languages
Japanese (ja)
Other versions
JPS61227968A (en
Inventor
彰 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP60068411A priority Critical patent/JPH0712980B2/en
Publication of JPS61227968A publication Critical patent/JPS61227968A/en
Publication of JPH0712980B2 publication Critical patent/JPH0712980B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、機械的強度が高くそして靱性の向上した炭化
珪素質焼結体及びその製法に関するものである。
TECHNICAL FIELD The present invention relates to a silicon carbide based sintered body having high mechanical strength and improved toughness, and a method for producing the same.

(従来の技術及び問題点) 炭化珪素質焼結体は耐酸化性、耐蝕性、耐熱性、耐熱衝
撃性、高温強度等の種々の優れた特性を有するため、高
温ガスタービン用部品、自動車エンジン用部品、耐蝕部
材などとして好適な材料である。
(Prior Art and Problems) Silicon carbide sintered bodies have various excellent properties such as oxidation resistance, corrosion resistance, heat resistance, thermal shock resistance, and high temperature strength. Therefore, high temperature gas turbine parts, automobile engines, etc. It is a suitable material for parts and corrosion resistant members.

しかしながら、従来から提供されている炭化珪素質焼結
体には、機械的強度(曲げ強度)及び靱性(臨界応力拡
大係数K1c)が共に優れたものはない。例えばボロン
(B)及びカーボン(C)添加系では上記強度が40〜50
Kg/mm2(4点曲げ強度)と通常の値を有しているが、靱
性において約3MN/m3/2と劣っている。
However, none of the conventionally provided silicon carbide sintered bodies has excellent mechanical strength (bending strength) and toughness (critical stress intensity factor K 1 c). For example, in a boron (B) and carbon (C) addition system, the strength is 40 to 50
Although it has a normal value of Kg / mm 2 (4-point bending strength), it has a poor toughness of about 3 MN / m 3/2 .

(問題を解決するための手段) 本発明者は以上の点に鑑み研究の結果、機械的強度が高
くかつ靱性も向上した炭化珪素質焼結体を開発した。
(Means for Solving the Problem) As a result of research in view of the above points, the present inventor has developed a silicon carbide sintered body having high mechanical strength and improved toughness.

すなわち本発明の炭化珪素質焼結体は、α−SiCを結晶
主体とし、その粒界相が少なくともアルミニウム(A
l)、イットリウム(Y)及び珪素(Si)を含む酸化物
からなる焼結体であって、前記結晶主体が、結晶長手方
向の平均粒径10μm以下、アスペクト比3以下の微細な
等軸晶から構成されていることを特徴とするものであ
り、かかる焼結体を製造する方法として、酸化アルミニ
ウムを1〜7重量%と、酸化イットリウムを0.1〜5重
量%と、二酸化珪素を1〜5重量%と、残部がα−SiC
とからなる混合粉体を平均粒径1.0μm以下に粉砕後成
形して得られた圧粉成形体を、非酸化性雰囲気中におい
て1800〜1950℃で常圧焼成することを特徴とするもので
ある。
That is, the silicon carbide-based sintered body of the present invention is mainly composed of α-SiC and has a grain boundary phase of at least aluminum (A
l), a sintered body composed of an oxide containing yttrium (Y) and silicon (Si), wherein the crystal main body is a fine equiaxed crystal having an average grain size of 10 μm or less in a crystal longitudinal direction and an aspect ratio of 3 or less. As a method for producing such a sintered body, 1 to 7% by weight of aluminum oxide, 0.1 to 5% by weight of yttrium oxide, and 1 to 5 of silicon dioxide are used. % By weight and the balance α-SiC
A powder compact formed by crushing a mixed powder of and having an average particle size of 1.0 μm or less and molding the mixture is fired at 1800 to 1950 ° C. under normal pressure in a non-oxidizing atmosphere. is there.

本発明の炭化珪素質焼結体は機械的強度が高いものであ
って常温における3点曲げ強度は60kg/mm2以上である
が、その理由は、焼結体はα−SiCを結晶主体とし、そ
の結晶主体の結晶長手方向の平均粒径が10μm以下、ア
スペクト比3以下の微細な等軸晶で構成された均質な結
晶組織であるため、応力集中が起こらず、そのために曲
げ強度が高められているものと考えられる。
The silicon carbide-based sintered body of the present invention has high mechanical strength and has a three-point bending strength of 60 kg / mm 2 or more at room temperature because the sintered body is mainly composed of α-SiC. Since the crystal grain is mainly composed of fine equiaxed crystals with an average grain size in the longitudinal direction of the crystal of 10 μm or less and an aspect ratio of 3 or less, stress concentration does not occur and therefore bending strength is increased. It is thought to have been done.

また本発明の焼結体は靱性の向上したものであって、臨
界応力拡大係数K1c(MN/m3/2)が5以上であるが、これ
は理由は明らかでないけれども、粒界には、焼結助剤の
添加によるアルミニウム、イットリウム及び珪素を含む
酸化物からなる液相が残存する。クラックはこの粒界を
選択的に伸展するため、分岐及びジグザグな経路をとる
ことによりエネルギーが消費される。即ち、本発明では
アスペクト比が3以下で、10μm以下の微細な結晶組織
であるため、クラックが伸びる経路はより複雑なジグザ
グ経路となり、エネルギーの消費がより多くなる。その
結果として靱性が向上したものと考えられる。
Further, the sintered body of the present invention has improved toughness and has a critical stress intensity factor K 1 c (MN / m 3/2 ) of 5 or more. The reason for this is not clear, but at the grain boundaries. As for, a liquid phase composed of an oxide containing aluminum, yttrium and silicon by the addition of the sintering aid remains. Since cracks selectively extend this grain boundary, energy is consumed by taking branching and zigzag paths. That is, in the present invention, since the aspect ratio is 3 or less and the fine crystal structure is 10 μm or less, the crack extending path becomes a more complicated zigzag path, and the energy consumption increases. As a result, it is considered that the toughness is improved.

そしてまた、本発明では焼成温度が非加圧法としてはか
なり低いが、これは主に含有SiO2の液相形成能力による
ものと考えられ、混合粉体の平均粒径が1.0μm以下と
微細であり、また焼成温度が低くできるので焼成中にお
ける粒成長が抑制され、したがって焼結体中の結晶主体
が10μm以下の微細な等軸晶からなるα−SiCで構成さ
れるものと考えられる。
Moreover, in the present invention, the firing temperature is considerably low as in the non-pressurized method, but this is considered to be mainly due to the liquid phase forming ability of the contained SiO 2 , and the average particle diameter of the mixed powder is as fine as 1.0 μm or less. In addition, since the firing temperature can be lowered, grain growth during firing is suppressed. Therefore, it is considered that the main crystal grains in the sintered body are α-SiC composed of fine equiaxed crystals of 10 μm or less.

次に、本発明の製法で規定する成分及び範囲限定につい
て説明する。
Next, the components and the range limitation specified in the production method of the present invention will be described.

本発明における出発原料における焼結助剤成分の重量比
を、Al2O3を1〜7重量%としたのは、1%より少ない
と焼結作用が不充分で緻密な焼結体が得られず、7重量
%を越えると焼成物の分解が激しく形状が保てなくなる
からであり、Y2O3を0.1〜5重量%としたのは0.1%より
少ないと、焼結が進まず充分な緻密体が得られなく、5
%より多いと緻密化は進むが分解が激しく焼結体内部に
ポアが発生して強度劣化の原因となるからである。
The weight ratio of the sintering aid component in the starting material in the present invention is set to 1 to 7% by weight of Al 2 O 3 because when it is less than 1%, the sintering action is insufficient and a dense sintered body is obtained. If it exceeds 7% by weight, the decomposition of the burned material is so severe that the shape cannot be maintained. The reason why Y 2 O 3 is 0.1 to 5% by weight is that if 0.1% is less than 0.1%, sintering does not proceed sufficiently. A dense body is not obtained,
If it is more than%, densification will proceed, but decomposition will be violent and pores will be generated inside the sintered body, which will cause strength deterioration.

またSiO2を1〜5重量%としたのは、5%より多いと焼
成時の分解が激しくボアの発生が見られた高強度な焼結
体が得られないからであり、それを少なくとも1%の必
須成分としたのは前述したごとく、焼結体を無加圧でか
つ比較的低温焼成で得るようにするためである。
Moreover, the reason why the SiO 2 content is set to 1 to 5% by weight is that if it is more than 5%, a high-strength sintered body in which decomposition during firing is severe and a bore is observed cannot be obtained. %, It is necessary to obtain the sintered body without pressure and at a relatively low temperature as described above.

これらの焼結助剤は、焼結過程で融点の低い液相を生成
することにより、低温での焼成が可能となる。また、焼
成後、これらの液相は焼結体の粒界に少なくともアルミ
ニウム、イットリウム及び珪素を含むガラス質の酸化物
として残在するものである。
These sintering aids can be fired at a low temperature by forming a liquid phase having a low melting point during the sintering process. Further, after firing, these liquid phases remain at the grain boundaries of the sintered body as a glassy oxide containing at least aluminum, yttrium and silicon.

更に本発明の焼成法において配合成分を発明要旨のとお
りの数値範囲としたのは、そうした範囲のものを1800〜
1950℃で焼成することにより前記本発明の焼結体が得ら
れるためであり、焼成温度については、1800℃より低温
で行うと焼結が満足できる程に進まず、1950℃以上では
焼成物の分解が激しくなってボイドが発生するとともに
SiC結晶の粒成長が生じ前述したような微細な等軸晶の
結晶が生成されなくなる。
Further, in the firing method of the present invention, the compounding ingredients are set in the numerical range as in the gist of the invention because the range is 1800 to
This is because the sintered body of the present invention can be obtained by firing at 1950 ° C. Regarding the firing temperature, sintering does not proceed to a satisfactory degree when performed at a temperature lower than 1800 ° C. As the decomposition becomes more intense and voids occur,
Grain growth of SiC crystals occurs and the above-mentioned fine equiaxed crystals are not generated.

なお非酸化性雰囲気中で焼成するのは、酸化性雰囲気で
焼成するとSiCが酸化されて多量のSiC2を生成してしま
うからである。
The firing in a non-oxidizing atmosphere is because firing in an oxidizing atmosphere oxidizes SiC and produces a large amount of SiC 2 .

そしてまた、成形前の混合粉末の平均粒径を1.0μm以
下にしたのは、1μmより大きいと低温での焼結が難し
くなり、焼結助剤量を増す必要があるが、それに伴い、
焼成時の分解が激しくなり、ポアの発生原因となり、本
発明の目的である高強度高緻密体が得られないためであ
る。なお、この平均粒径1.0μm以下の粉末は、各成分
の原料粉末として平均粒径1.0μm以下の粉末を用いれ
ば、粉砕後も当然1.0μm以下となるが、原料粉末が平
均粒径1.0μmを越える場合には、粉砕によって平均粒
径が1.0μm以下になるように粉砕時間などを適宜調整
すればよい。
Also, the reason why the average particle size of the mixed powder before molding is 1.0 μm or less is that if it is larger than 1 μm, it becomes difficult to sinter at a low temperature, and it is necessary to increase the amount of sintering aid.
This is because decomposition during firing becomes violent, which causes the generation of pores, and the high-strength and high-density body that is the object of the present invention cannot be obtained. The powder having an average particle size of 1.0 μm or less will naturally be 1.0 μm or less after pulverization if powder having an average particle size of 1.0 μm or less is used as a raw material powder for each component. If it exceeds, the crushing time and the like may be appropriately adjusted so that the average particle size becomes 1.0 μm or less by crushing.

(実施例) 例1: 炭化珪素(α−SiC、平均粒径0.4μm)粉末にアルミナ
(平均粒径0.6μm)粉末及び酸化イットリウム(0.6μ
m)粉末、二酸化珪素(平均粒径0.1μm)粉末を表1
に示すとおり配合した。なお、二酸化珪素については、
炭化珪素粉末中に一般に不可避的に存在する不純物酸素
に基づく二酸化珪素を含め、表1の組成となるように二
酸化珪素を外添した。
Examples Example 1: Silicon carbide (α-SiC, average particle size 0.4 μm) powder, alumina (average particle size 0.6 μm) powder and yttrium oxide (0.6 μm)
m) powder and silicon dioxide (average particle size 0.1 μm) powder are shown in Table 1.
It was compounded as shown in. Regarding silicon dioxide,
Silicon dioxide was externally added so as to have the composition shown in Table 1 including silicon dioxide based on the impurity oxygen that is generally inevitably present in the silicon carbide powder.

この配合粉末をポットミルにて24時間、エタノール溶媒
を用いて湿式混合粉料を行った後、得られた混合粉末に
ポリビニルアルコール等の成形用バインダーを加えて乾
燥造粒し、それを原料として金型に入れ成形圧1t/cm2
プレス成形して成形体を得た。成形体は脱バインダー処
理後、アルゴンガス雰囲気中で第1表に示す焼成温度下
で無加圧焼成し、試料1〜19を得た。
This blended powder was subjected to wet mixing powder using an ethanol solvent in a pot mill for 24 hours, and then a molding binder such as polyvinyl alcohol was added to the resulting mixed powder for dry granulation. It was placed in a mold and press-molded at a molding pressure of 1 t / cm 2 to obtain a molded body. The molded body was subjected to binder removal treatment and then pressureless firing in an argon gas atmosphere at a firing temperature shown in Table 1 to obtain Samples 1 to 19.

得られた試料に対して電子顕微鏡写真により結晶組織を
観察し、α−SiCの結晶の平均的形態で等軸晶(アスペ
クト比3以下)又は柱状晶(アスペクト比3を越える)
の区別を行うとともに、結晶長手方向の平均粒径を算出
した。さらに、常温強度(4点曲げ強度)、圧痕法で求
めた靱性値(K1c)及びアルキメデス法で求めた焼結体
の比重を測定した結果を表1に示す。
The crystal structure of the obtained sample is observed by an electron micrograph, and an equiaxed crystal (aspect ratio of 3 or less) or a columnar crystal (aspect ratio of more than 3) is observed in an average α-SiC crystal form.
And the average grain size in the crystal longitudinal direction was calculated. Further, Table 1 shows the results of measuring the room temperature strength (4-point bending strength), the toughness value (K 1 c) obtained by the indentation method, and the specific gravity of the sintered body obtained by the Archimedes method.

表1に記載のデータは本発明範囲のものと、範囲外のも
のを表しており、No1〜6,10〜12本発明範囲外のもので
ある。
The data shown in Table 1 represent those within the scope of the present invention and those outside the scope of the present invention, and are outside the scope of the present invention Nos.

該データから明らかなように、本発明の試料番号7〜
9、13〜19は、強度(60Kg/mm2以上)及び靱性(MN/m
3/2=5以上)に優れている。しかし表1のデータから
判るように試料番号1〜6、10〜12のものは、成分組成
が本発明の範囲から逸脱するものであって、焼結体の強
度、靱性又は電気比抵抗が悪かつたり、焼結が不充分で
あるものや焼結体の分解が激しくボイドが生じていたり
している。
As is clear from the data, the sample numbers 7 to 7 of the present invention
Nos. 9 and 13 to 19 are strength (60 kg / mm 2 or more) and toughness (MN / m)
3/2 = 5 or more). However, as can be seen from the data in Table 1, the sample compositions of Sample Nos. 1 to 6 and 10 to 12 had component compositions deviating from the scope of the present invention, and the sintered body had poor strength, toughness or electrical resistivity. In some cases, the sintering is insufficient and the sintered body is decomposed so much that voids are generated.

例2: なお、SiCは導電性に優れ、放電加工が可能なため、精
密な微細加工が要求される。例えば精密な微細孔を有す
る噴射ノズルなどの用途に適している材料で知られてい
るが、添加組成の重量比又は混合等の条件により導電率
(電気比抵抗)にかなりの差が生じる。したがって、前
記試料7〜9及び13〜19についてその電気比抵抗を測定
してみたところ各々多少のバラツキはあるものの、いず
れも10Ω・cm以下の値を示しており、放電加工が充分可
能であることが分かった。
Example 2: Since SiC has excellent conductivity and is capable of electric discharge machining, precise microfabrication is required. For example, it is known as a material suitable for applications such as an injection nozzle having precise fine holes, but the electric conductivity (electrical resistivity) varies considerably depending on the weight ratio of the additive composition or the conditions such as mixing. Therefore, when the electric resistivity of each of the samples 7 to 9 and 13 to 19 was measured, there were some variations, but all showed a value of 10 Ω · cm or less, and the electric discharge machining was sufficiently possible. I found out.

(発明の効果) 以上本発明によれば、従来例に比して比較的低温の1800
〜1950℃の焼成温度で目的とする焼結体が得られ、得ら
れた焼結体は以下の優れた特性を有するものであって、
従来にないものである。
(Effect of the Invention) As described above, according to the present invention, a temperature of 1800, which is relatively low as compared with the conventional example
The target sintered body is obtained at a firing temperature of ~ 1950 ° C., and the obtained sintered body has the following excellent properties:
It is unprecedented.

すなわち、機械的強度が常温のJIS4点曲げ強度で60Kg/m
m2以上であり、靱性は臨界応力拡大係数K1c(MN/m
m3/2)として5以上である。
That is, the mechanical strength of JIS 4-point bending strength at room temperature is 60 Kg / m.
m 2 or more, and the toughness has a critical stress intensity factor K 1 c (MN / m
m 3/2 ) is 5 or more.

なお、導電性については電気比抵抗が10Ω・cm以下であ
ることが理解されたが、因に、ボロン−炭素系焼結助剤
を用いた一般の炭化珪素質焼結体のそれが105〜6Ω・
cmであることと比較すると格段の差がある。
Regarding electrical conductivity, it was understood that the electrical resistivity was 10 Ω · cm or less. However, the reason for this was that the general silicon carbide based sintered body using a boron-carbon based sintering aid was 10 5 ~ 6 Ω
There is a marked difference compared to being cm.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】α−SiCを結晶主体とし、その粒界相が少
なくともアルミニウム(A1)、イットリウム(Y)及び
珪素(Si)を含む酸化物からなる焼結体であって、前記
結晶主体が、結晶長手方向の平均粒径10μm以下、アス
ペクト比3以下の微細な等軸晶から構成されてなること
を特徴とする炭化珪素質焼結体。
1. A sintered body mainly composed of α-SiC and having a grain boundary phase composed of an oxide containing at least aluminum (A1), yttrium (Y) and silicon (Si), wherein the crystal main body is A silicon carbide-based sintered body characterized by comprising fine equiaxed crystals having an average grain size in the longitudinal direction of the crystal of 10 μm or less and an aspect ratio of 3 or less.
【請求項2】酸化アルミニウムを1〜7重量%と、酸化
イットリウムを0.1〜5重量%と、二酸化珪素を1〜5
重量%と、残部がα−SiCとからなる混合粉体を平均粒
径1.0μm以下に粉砕後成形して得られた圧粉成形体
を、非酸化性雰囲気中において1800〜1950℃で常圧焼成
することを特徴とする炭化珪素質焼結体の製法。
2. Aluminum oxide of 1 to 7% by weight, yttrium oxide of 0.1 to 5% by weight, and silicon dioxide of 1 to 5% by weight.
A powder compact obtained by crushing a mixed powder composed of wt% and the balance of α-SiC to an average particle size of 1.0 μm or less and molding the mixture at 1800 to 1950 ° C under normal pressure in a non-oxidizing atmosphere. A method for producing a silicon carbide-based sintered body, which comprises firing.
JP60068411A 1985-04-02 1985-04-02 Silicon carbide sintered body and method for producing the same Expired - Lifetime JPH0712980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60068411A JPH0712980B2 (en) 1985-04-02 1985-04-02 Silicon carbide sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60068411A JPH0712980B2 (en) 1985-04-02 1985-04-02 Silicon carbide sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPS61227968A JPS61227968A (en) 1986-10-11
JPH0712980B2 true JPH0712980B2 (en) 1995-02-15

Family

ID=13372905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60068411A Expired - Lifetime JPH0712980B2 (en) 1985-04-02 1985-04-02 Silicon carbide sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0712980B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993006060A1 (en) * 1991-09-26 1993-04-01 Mamoru Omori Composite mixed oxide ceramic and production thereof
AU6186496A (en) * 1995-07-13 1997-02-10 Negawatt Gmbh Process for fabricating an electrically insulating silicon carbide
CN109803942A (en) * 2016-09-30 2019-05-24 圣戈本陶瓷及塑料股份有限公司 Ceramic component and forming method thereof
EP3301080B1 (en) * 2016-09-30 2022-01-12 Fiven Norge AS Ceramic component comprising sic and method of forming the same

Also Published As

Publication number Publication date
JPS61227968A (en) 1986-10-11

Similar Documents

Publication Publication Date Title
JPH0777986B2 (en) Manufacturing method of silicon carbide sintered body
JPH0712980B2 (en) Silicon carbide sintered body and method for producing the same
JP2002513374A (en) Gas pressure sintered silicon nitride with high strength and stress rupture resistance
JP2001181053A (en) Silicon nitride sintered product and method for producing the same
JP2008156142A (en) Aluminum nitride sintered compact and method for manufacturing the same
JPH10226578A (en) Electrically conductive and oxidation resistant ceramic material sintered in liquid phase, its production and its use
JPH1179848A (en) Silicon carbide sintered compact
JP2980342B2 (en) Ceramic sintered body
JPH0737340B2 (en) Silicon carbide sintered body and method for producing the same
JP2960591B2 (en) Silicon carbide-silicon nitride-mixed oxide-based sintered body and method for producing the same
JPS6346029B2 (en)
JPH06116045A (en) Silicon nitride sintered compact and its production
JPH10279360A (en) Silicon nitride structural parts and its production
JPH0733286B2 (en) Method for manufacturing silicon carbide sintered body
JPS6344713B2 (en)
Dongxu et al. Preparation and Performance Study of Silicon Nitride Ceramic Substrate with High Thermal Conductivity
JPH05238829A (en) Sintered silicone nitride ceramic
JP2694354B2 (en) Silicon nitride sintered body
JPH0686331B2 (en) High-strength sialon-based sintered body
JPH02221160A (en) Production of high-density silicon nitride sintered body
JP2687633B2 (en) Method for producing silicon nitride sintered body
JPH107463A (en) Free-cutting silicon carbide sintered compact and its production
JPS6126514B2 (en)
JP3207065B2 (en) Silicon nitride sintered body
JPH02116679A (en) Production of high-density sintered silicon nitride body

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term