JPH05238829A - Sintered silicone nitride ceramic - Google Patents

Sintered silicone nitride ceramic

Info

Publication number
JPH05238829A
JPH05238829A JP4035249A JP3524992A JPH05238829A JP H05238829 A JPH05238829 A JP H05238829A JP 4035249 A JP4035249 A JP 4035249A JP 3524992 A JP3524992 A JP 3524992A JP H05238829 A JPH05238829 A JP H05238829A
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
weight
powder
spinel structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4035249A
Other languages
Japanese (ja)
Inventor
Michiyasu Komatsu
通泰 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4035249A priority Critical patent/JPH05238829A/en
Publication of JPH05238829A publication Critical patent/JPH05238829A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To provide a sintered silicon nitride ceramic having improved mechanical strength under high-temperature condition and especially further improved oxidation resistance under severe temperature condition at >=1200 deg.C. CONSTITUTION:The objective sintered silicon nitride ceramic is produced by baking a ceramic mixture composed of 1-10wt.% of MgO.Al2O3 spinel structure, 1-10wt.% of aluminum nitride, 0.1-5wt.% of at least one kind of compound selected from oxide, carbide or silicide of Hf, Nb or Ti and the remaining part of silicon nitride.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は窒化けい素セラミックス
焼結体に係り、特に高温使用時における優れた機械的強
度に加えて、耐酸化性にも優れた特性を有する窒化けい
素セラミックス焼結体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon nitride ceramics sintered body, and particularly to a silicon nitride ceramics sintered body having not only excellent mechanical strength at high temperature use but also excellent oxidation resistance. Regarding the body

【0002】[0002]

【従来の技術】窒化けい素を主成分とするセラミックス
焼結体は、1000℃以上の環境下でも優れた耐熱性を
有し、かつ低熱膨脹係数のため耐熱衝撃性も優れている
等の諸特性をもつことから、従来の耐熱性超合金に代わ
る高温構造材料としてガスタービン用部品、エンジン用
部品、製鋼用機械部品等の各種高強度耐熱部品への応用
が試みられている。また、金属に対する耐食性が優れて
いることから溶融金属の耐溶材料としての応用も試みら
れ、さらに耐摩耗性も優れていることから、軸受等の摺
動部材、切削工具への実用化も図られている。
2. Description of the Related Art Ceramic sintered bodies containing silicon nitride as a main component have excellent heat resistance even in an environment of 1000 ° C. or higher, and also have excellent thermal shock resistance due to a low coefficient of thermal expansion. Because of its properties, it has been attempted to be applied to various high-strength heat-resistant parts such as gas turbine parts, engine parts, and steel-making machine parts as a high-temperature structural material replacing conventional heat-resistant superalloys. In addition, since it has excellent corrosion resistance to metals, it has been tried to apply molten metal as a melt-resistant material, and because it has excellent wear resistance, it can be put to practical use in sliding members such as bearings and cutting tools. ing.

【0003】従来より窒化けい素セラミックス焼結体の
焼結組成としては窒化ケイ素−酸化イットリウム−酸化
アルミニウム系、窒化ケイ素−酸化イットリウム−酸化
アルミニウム−窒化アルミニウム系、窒化ケイ素−酸化
イットリウム−酸化アルミニウム−チタニウム、マグネ
シウムまたはジルコニウムの酸化物系等が知られてい
る。
Conventionally, as a sintering composition of a silicon nitride ceramics sintered body, silicon nitride-yttrium oxide-aluminum oxide system, silicon nitride-yttrium oxide-aluminum oxide-aluminum nitride system, silicon nitride-yttrium oxide-aluminum oxide- Titanium, magnesium or zirconium oxides and the like are known.

【0004】上記焼結組成における酸化イットリウム
(Y2 3 )などの希土類元素の酸化物は、従来から焼
結助剤として一般に使用されており、焼結性を高めて焼
結体を緻密化し、高温度における焼結体の強度劣化を防
止するために添加されている。そして複数種類の酸化物
を組合せたものを添加することによって高温で過酷な使
用環境においても優れた機械的強度を発揮するように工
夫されている。
Oxides of rare earth elements such as yttrium oxide (Y 2 O 3 ) in the above-mentioned sintering composition have been generally used as a sintering aid from the past, and enhance the sinterability to densify the sintered body. , Is added to prevent the strength deterioration of the sintered body at high temperature. Then, by adding a combination of a plurality of kinds of oxides, it is devised so as to exhibit excellent mechanical strength even in a severe use environment at high temperature.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記組
成を有するセラミックス焼結体は、いずれも、高温度環
境、特に1200℃以上に達する使用環境における耐酸
化性が未だ不充分であり、高温用構造材料として採用し
た場合に、所定の耐久性、信頼性が得られず耐酸化特性
の改善が強く望まれている。
However, any of the ceramic sintered bodies having the above composition still has insufficient oxidation resistance in a high temperature environment, particularly in a use environment of reaching 1200 ° C. or higher, and thus the structure for high temperature use is high. When it is used as a material, the predetermined durability and reliability cannot be obtained, and improvement in oxidation resistance is strongly desired.

【0006】特に近年、ガスタービンなどの燃焼機関に
おいては運転効率を高めるために、運転温度および圧力
を従来より大幅に上昇させる方向で実用化が進められて
いる。そこで酸化成分を多量に含有する高温度の燃焼排
ガス中においても機械的特性の劣化が少ない窒化けい素
セラミックス焼結体の開発が要請されている。
In particular, in recent years, in a combustion engine such as a gas turbine, in order to improve the operation efficiency, the practical use has been promoted in the direction of significantly increasing the operation temperature and the pressure as compared with the conventional case. Therefore, there is a demand for the development of a silicon nitride ceramics sintered body that has little deterioration in mechanical properties even in high-temperature combustion exhaust gas containing a large amount of oxidizing components.

【0007】本発明は上記のような課題要請に対処する
ためになされたものであり、高温度条件下における機械
的強度を向上させるとともに、特に1200℃以上の過
酷な温度条件下における耐酸化性をさらに向上させた窒
化けい素セラミックス焼結体を提供することを目的とす
る。
The present invention has been made in order to meet the above-mentioned demands, and improves the mechanical strength under high temperature conditions and, particularly, the oxidation resistance under severe temperature conditions of 1200 ° C. or higher. It is an object of the present invention to provide a silicon nitride ceramics sintered body having further improved properties.

【0008】[0008]

【課題を解決するための手段と作用】本発明者らは、上
記目的を達成するため、従来の窒化けい素セラミックス
焼結体を製造する際に一般に使用されていた焼結助剤、
添加物の他に、各種の化合物を原料中に添加して、その
化合物の添加が最終製品としての焼結体の特性に及ぼす
影響を実験により確認した。
In order to achieve the above-mentioned object, the present inventors have proposed a sintering aid which is generally used when producing a conventional silicon nitride ceramics sintered body,
In addition to the additives, various compounds were added to the raw materials, and the effects of the addition of the compounds on the properties of the sintered body as the final product were confirmed by experiments.

【0009】その結果、ある種のスピネル構造体と、H
f、NbまたはTiの酸化物等と、窒化アルミニウムと
を窒化けい素原料中にそれぞれ所定量ずつ添加したとき
に、特に1300℃を超える高温度条件下においても大
きな耐酸化性を有し、強度劣化が少ない窒化けい素セラ
ミックス焼結体が得られることが判明した。
As a result, some spinel structures and H
When a predetermined amount of each of f, Nb or Ti oxide and aluminum nitride is added to the silicon nitride raw material, it has great oxidation resistance even under high temperature conditions exceeding 1300 ° C. It was found that a silicon nitride ceramics sintered body with little deterioration can be obtained.

【0010】本発明は上記知見に基づいて完成されたも
のである。すなわち本発明に係る窒化けい素セラミック
ス焼結体は、MgO・Al2 3 スピネル構造体を1〜
10重量%と、窒化アルミニウムを1〜10重量%と、
Hf、NbまたはTiの酸化物、炭化物またはけい化物
から成る群から選択された少くとも1種を0.1〜5重
量%と、残部を構成する窒化けい素とから成るセラミッ
クス混合体を焼成してなることを特徴とする。
The present invention has been completed based on the above findings. That is, the silicon nitride ceramics sintered body according to the present invention has MgO.Al 2 O 3 spinel structure 1 to
10% by weight and 1 to 10% by weight of aluminum nitride,
Firing a ceramic mixture consisting of 0.1 to 5% by weight of at least one selected from the group consisting of oxides, carbides or suicides of Hf, Nb or Ti, and silicon nitride constituting the balance. It is characterized by

【0011】本発明に係るセラミックス焼結体を製造す
る工程において、窒化けい素原料粉末に添加されるMg
O・Al2 3 スピネル構造体は、立方晶の結晶構造を
有し、単位格子中に8個の化学単位(MgO・Al2
3 )を含むものである。このMgO・Al2 3 スピネ
ル構造体は製造プロセスにおいて、焼結促進剤として機
能するばかりではなく、特に焼結体表面に酸化抵抗が大
きな保護被膜を形成する役割を果たすために、原料粉末
中に1〜10重量%の範囲で添加される。その添加量が
1重量%未満の場合には、上記保護被膜の形成が不充分
となり、得られる焼結体の高温時、特に1200℃以上
の酸化性雰囲気下における機械的な強度の劣化を防止す
る機能が充分に発揮されない。一方添加量が10重量%
を超える過量とした場合には、高温強度が逆に低下し始
めるので上記範囲に設定される。特に好ましくは2〜5
重量に設定することが望ましい。
Mg added to the silicon nitride raw material powder in the process of manufacturing the ceramic sintered body according to the present invention.
The O.Al 2 O 3 spinel structure has a cubic crystal structure and has eight chemical units (MgO.Al 2 O) in the unit cell.
3 ) is included. This MgO.Al 2 O 3 spinel structure not only functions as a sintering accelerator in the manufacturing process, but also plays a role in forming a protective film having a large oxidation resistance on the surface of the sintered body, so In the range of 1 to 10% by weight. If the amount added is less than 1% by weight, the formation of the above-mentioned protective film will be insufficient, and the deterioration of mechanical strength of the obtained sintered body at high temperature, particularly in an oxidizing atmosphere of 1200 ° C or higher, can be prevented. The function to do is not fully exerted. On the other hand, the addition amount is 10% by weight
If the amount exceeds the limit, the high temperature strength will start to decrease, and therefore the above range is set. Especially preferably 2-5
It is desirable to set the weight.

【0012】なお、上記スピネル構造体ではなく、Mg
O粉末とAl2 3 粉末との混合体を添加した場合に
は、α型−サイアロン(Si−Al−O−N)が形成さ
れ易く、本来の窒化けい素系焼結体の性質が得られなく
なるので好ましくない。
Incidentally, instead of the above spinel structure, Mg
When the mixture of O powder and Al 2 O 3 powder is added, α-sialon (Si-Al-O-N) is easily formed, and the original properties of the silicon nitride based sintered body are obtained. It is not preferable because it cannot be done.

【0013】また上記MgO成分およびAl2 3 成分
をスピネル構造体の形で添加することにより、従来製法
と比較して焼結性が大幅に改善され、焼結体の密度改善
効果が著しくなる。また従来製法による焼結体と同一密
度の焼結体を製造する場合には、焼結温度を50〜10
0℃程度引き下げることが可能になり、製造条件を緩和
することができ製造コストの低減も図ることができる。
Further, by adding the above MgO component and Al 2 O 3 component in the form of a spinel structure, the sinterability is greatly improved as compared with the conventional manufacturing method, and the density improving effect of the sintered body becomes remarkable. .. Further, when a sintered body having the same density as that of the conventional manufacturing method is produced, the sintering temperature is set to 50 to 10
It is possible to lower the temperature by about 0 ° C., the manufacturing conditions can be relaxed, and the manufacturing cost can be reduced.

【0014】さらに本発明において原料粉末に添加する
他の成分としての窒化アルミニウム(AlN)は、高温
域における焼結体の機械的強度を増加させると同時に焼
結促進にも寄与するものであり、特に常圧焼結を行なう
場合に著しい効果を発揮するものである。その添加量が
1重量%未満の場合においては、上記高温強度の改善お
よび焼結性が不充分である一方、10重量%を超える過
量となる場合には、常温度における焼結体強度が劣化し
てしまうため、添加量は1〜10重量%の範囲に設定さ
れる。特に常温および高温ともに良好な強度を確保する
ためには、添加量を3〜6重量%の範囲に設定すること
が望ましい。
Further, aluminum nitride (AlN) as another component added to the raw material powder in the present invention not only increases the mechanical strength of the sintered body in a high temperature range but also contributes to the promotion of sintering. In particular, it exhibits a remarkable effect when performing normal pressure sintering. When the addition amount is less than 1% by weight, the improvement of the high temperature strength and the sinterability are insufficient, while when the addition amount exceeds 10% by weight, the strength of the sintered body at normal temperature deteriorates. Therefore, the addition amount is set in the range of 1 to 10% by weight. In particular, in order to secure good strength at both normal temperature and high temperature, it is desirable to set the addition amount in the range of 3 to 6% by weight.

【0015】また本発明に係る焼結体の製造プロセスに
おいて原料粉末に添加する他の成分であるHf、Nbま
たはTiの酸化物、炭化物またはけい化物は焼結促進剤
として機能する上に、焼結後において高融点の化合物と
なり、単独に粒子として焼結体組織内に分散する形態を
有し、焼結体の耐摩耗性を向上させる効果を有し、原料
粉末中に0.1〜5重量%の範囲で添加される。
In addition, the oxides, carbides or silicides of Hf, Nb or Ti, which are other components added to the raw material powder in the manufacturing process of the sintered body according to the present invention, function as a sintering promoter and It becomes a high-melting point compound after binding and has a form in which it is dispersed as particles in the sintered body structure independently, and has the effect of improving the wear resistance of the sintered body. It is added in the range of% by weight.

【0016】添加量が0.1重量%未満の場合は、高温
強度および耐摩耗性の改善効果が少ない一方、添加量が
5重量%を超える場合にも高温強度が低下してしまう。
焼結体の機械的強度を最適に保持するためには、好まし
くは0.3〜5重量%、より好ましくは1〜4重量%の
範囲に設定することが望ましい。
If the amount added is less than 0.1% by weight, the effect of improving high-temperature strength and wear resistance is small, while if the amount added exceeds 5% by weight, the high-temperature strength decreases.
In order to maintain the mechanical strength of the sintered body at an optimum value, it is desirable to set the content in the range of preferably 0.3 to 5% by weight, more preferably 1 to 4% by weight.

【0017】また本発明に係る焼結体の主成分となる窒
化けい素(Si3 4 )は、菱面体晶系のα相型および
六方晶系のβ相型の2種のいずれも使用することが可能
であるが、α相型窒化けい素は、β相型と比較して高温
焼結後に結晶粒が長く成長し、高い機械的強度を保持す
ることができるため、原料窒化けい素全体のうちα相型
の窒化けい素が80重量%以上を占めることが望まし
い。さらに窒化けい素特有の耐熱衝撃特性、耐摩耗性を
確保するために、焼結体に占める窒化けい素成分比が8
5重量%以上となるように、他の添加成分量を設定する
ことが望ましい。
As the silicon nitride (Si 3 N 4 ) which is the main component of the sintered body according to the present invention, both of rhombohedral α-phase type and hexagonal β-phase type are used. However, compared with β-phase type, α-phase type silicon nitride can grow longer after high temperature sintering and can maintain high mechanical strength. It is desirable that α-phase silicon nitride accounts for 80% by weight or more of the whole. Furthermore, in order to secure the thermal shock resistance and wear resistance peculiar to silicon nitride, the silicon nitride component ratio in the sintered body is 8
It is desirable to set the amount of other additive components so as to be 5% by weight or more.

【0018】本発明に係る窒化けい素セラミックス焼結
体は、例えば以下のようなプロセスを経て製造される。
すなわち窒化けい素粉末に対してMgO・Al2 3
ピネル構造体粉末と、窒化アルミニウム粉末と、Hf、
NbまたはTiの酸化物、炭化物またはけい化物から成
る群より選択された少くとも1種の粉末とを所定量添加
して原料混合体を調製し、次に得られた原料混合体を金
型プレス等の汎用の成形法によって所定形状の成形体と
した後に、この成形体を窒素ガスまたはアルゴンなどの
不活性ガス雰囲気中で1700〜1800℃程度の温度
で所定時間焼成する。
The silicon nitride ceramics sintered body according to the present invention is manufactured through the following processes, for example.
That is, with respect to silicon nitride powder, MgO.Al 2 O 3 spinel structure powder, aluminum nitride powder, Hf,
A predetermined amount of at least one powder selected from the group consisting of oxides, carbides, and silicides of Nb or Ti is added to prepare a raw material mixture, and the obtained raw material mixture is then die-pressed. After being formed into a molded product having a predetermined shape by a general-purpose molding method such as the above, the molded product is fired at a temperature of about 1700 to 1800 ° C. for a predetermined time in an atmosphere of an inert gas such as nitrogen gas or argon.

【0019】ここで焼成雰囲気を窒素やアルゴンなどの
不活性ガス雰囲気とする理由は、酸素等を含む酸化性雰
囲気では高温焼結時に窒化けい素が酸化されてSiO2
に変化し、目的とする窒化けい素焼結体本来の高温強度
が得られないからである。
The reason why the firing atmosphere is an inert gas atmosphere such as nitrogen or argon is that the silicon nitride is oxidized during high temperature sintering in an oxidizing atmosphere containing oxygen or the like and SiO 2 is used.
This is because the desired high-temperature strength of the intended silicon nitride sintered body cannot be obtained.

【0020】なお、上記焼成操作は常圧焼結法によって
も、あるいはその他の焼結法、例えばホットプレス法、
雰囲気加圧法、熱間静水圧焼結法(HIP)等を使用し
て実施してもよい。いずれの焼成法においても緻密で、
かつ高温機械強度、特に1200℃を超える高温環境下
における耐酸化性が優れた窒化けい素セラミックス焼結
体が得られる。特に常圧焼結法によっても焼結性が良好
であるため、窒化けい素セラミックス焼結体の量産性を
大幅に改善することが可能になる。
The above-mentioned firing operation may be carried out by a normal pressure sintering method or another sintering method such as a hot pressing method,
It may be carried out by using an atmospheric pressure method, a hot isostatic pressing method (HIP) or the like. Dense in any firing method,
In addition, a silicon nitride ceramics sintered body having high temperature mechanical strength, particularly excellent oxidation resistance in a high temperature environment exceeding 1200 ° C., can be obtained. In particular, since the sinterability is good even by the atmospheric pressure sintering method, it is possible to greatly improve the mass productivity of the silicon nitride ceramics sintered body.

【0021】[0021]

【実施例】次に本発明を以下に示す実施例を参照してよ
り具体的に説明する。
EXAMPLES Next, the present invention will be described more specifically with reference to the following examples.

【0022】実施例1および比較例1 α相型窒化けい素95wt%を含む平均粒径0.6μm
の窒化けい素粉末88重量%と、平均粒径0.8μmの
MgO・Al2 3 スピネル構造体粉末5重量%と、平
均粒径0.9μmの窒化アルミニウム粉末5重量%と、
平均粒径0.8μmの酸化ハフニウム粉末2重量%との
混合物を、エタノールを溶媒としてボールミルにて24
時間混合し、均一な原料粉末混合体を調製した。
Example 1 and Comparative Example 1 Average particle size of 0.6 μm containing 95 wt% of α-phase silicon nitride
88% by weight of silicon nitride powder, 5% by weight of MgO.Al 2 O 3 spinel structure powder having an average particle size of 0.8 μm, and 5% by weight of aluminum nitride powder having an average particle size of 0.9 μm,
A mixture with 2% by weight of hafnium oxide powder having an average particle diameter of 0.8 μm was mixed with ethanol as a solvent in a ball mill for 24 hours.
The materials were mixed for a time to prepare a uniform raw material powder mixture.

【0023】次に得られた原料粉末混合体に有機バイン
ダーを所定量添加して均一に混合した後に、1000kg
/cm2 の成形圧力で加圧成形し、長さ50mm×幅50mm
×厚さ5mmの成形体を多数製作した。
Next, a predetermined amount of an organic binder was added to the obtained raw material powder mixture and the mixture was uniformly mixed.
50mm in length x 50mm in width by pressure molding at a molding pressure of / cm 2.
× Many molded products having a thickness of 5 mm were manufactured.

【0024】次に得られた成形体を温度500℃の窒素
ガス雰囲気中において2時間脱脂した後に、この脱脂体
を、窒素ガス雰囲気中において、温度1775℃で2時
間常圧焼結を行い、実施例1に係る窒化けい素セラミッ
クス焼結体を調製した。
Next, after degreasing the obtained molded body in a nitrogen gas atmosphere at a temperature of 500 ° C. for 2 hours, the degreased body was subjected to normal pressure sintering at a temperature of 1775 ° C. for 2 hours in a nitrogen gas atmosphere, A silicon nitride ceramics sintered body according to Example 1 was prepared.

【0025】一方比較例1として、実施例1において、
MgO・Al2 3 スピネル構造体の代わりに平均粒径
0.9μmの酸化イットリウム(Y2 3 )を5重量%
添加した以外は実施例1と同一条件で原料混合、成形、
脱脂、焼結処理して比較例1に係る窒化けい素セラミッ
クス焼結体を調製した。
On the other hand, as Comparative Example 1, in Example 1,
5% by weight of yttrium oxide (Y 2 O 3 ) having an average particle size of 0.9 μm is used instead of the MgO · Al 2 O 3 spinel structure.
Mixing of raw materials, molding under the same conditions as in Example 1 except that the addition was performed,
The silicon nitride ceramics sintered body according to Comparative Example 1 was prepared by degreasing and sintering.

【0026】こうして得た実施例1および比較例1に係
る窒化けい素セラミックス焼結体(試料)について、常
温(25℃の室温)および1300℃における曲げ強度
を測定した後に、高温時の耐酸化性を評価するために各
試料を空気中において、1300℃で5時間加熱して酸
化処理を実施し、酸化処理後における各試料の常温にお
ける曲げ強度を測定し、下記表1に示す結果を得た。
With respect to the silicon nitride ceramics sintered bodies (samples) according to Example 1 and Comparative Example 1 thus obtained, the bending strength at room temperature (room temperature of 25 ° C.) and 1300 ° C. was measured. In order to evaluate the properties, each sample was heated in air at 1300 ° C. for 5 hours to carry out an oxidation treatment, and the bending strength of each sample after the oxidation treatment at room temperature was measured to obtain the results shown in Table 1 below. It was

【0027】[0027]

【表1】 [Table 1]

【0028】なお表1中の曲げ強度値は、3点曲げ強度
試験によって測定したものであり、試料サイズは4mm×
3mm×40mm、クロスヘッドスピード0.5mm/min 、
スパン30mmの試験条件で測定した。各温度での測定操
作は4回ずつ実施しその平均値で示している。
The bending strength values in Table 1 are measured by a three-point bending strength test, and the sample size is 4 mm ×
3mm x 40mm, crosshead speed 0.5mm / min,
The measurement was performed under the test conditions of a span of 30 mm. The measurement operation at each temperature was carried out four times, and the average value is shown.

【0029】表1に示す結果から明らかなように、実施
例1に係る焼結体では、酸化処理後においても、高い曲
げ強度値を示しており、高温度における耐酸化性に優れ
ている。一方、スピネル構造体を添加せず、従来の焼結
助剤(Y2 3 )を添加した比較例1の焼結体において
は、酸化処理前では実施例1の焼結体とほぼ同等の特性
を有するものの、高温酸化処理後は強度が大幅に低下し
ていることが判明した。
As is clear from the results shown in Table 1, the sintered body according to Example 1 exhibits a high bending strength value even after the oxidation treatment, and is excellent in oxidation resistance at high temperatures. On the other hand, in the sintered body of Comparative Example 1 in which the conventional sintering aid (Y 2 O 3 ) was added without adding the spinel structure, it was almost the same as the sintered body of Example 1 before the oxidation treatment. Although it has characteristics, it was found that the strength was significantly reduced after the high temperature oxidation treatment.

【0030】実施例2〜12および比較例2〜9 実施例2〜12として、実施例1において使用した窒化
けい素粉末と、MgO・Al2 3 スピネル構造体粉末
と、窒化アルミニウム粉末と、酸化ハフニウム粉末と、
表2に示す各種金属化合物粉末とを表2左欄に示す組成
比となるように調合して原料混合体をそれぞれ調製し
た。
Examples 2 to 12 and Comparative Examples 2 to 9 As Examples 2 to 12, the silicon nitride powder used in Example 1, the MgO.Al 2 O 3 spinel structure powder, and the aluminum nitride powder, Hafnium oxide powder,
Various metal compound powders shown in Table 2 were blended so as to have the composition ratio shown in the left column of Table 2 to prepare respective raw material mixtures.

【0031】次に得られた各原料混合体を実施例1と同
一条件で原料混合、成形、脱脂、焼結処理してそれぞれ
実施例2〜12に係る窒化けい素焼結体を製造した。
Next, the respective raw material mixtures thus obtained were mixed under the same conditions as in Example 1, raw materials were mixed, molded, degreased and sintered to produce silicon nitride sintered bodies according to Examples 2 to 12, respectively.

【0032】一方比較例2〜9として表2左欄に示すよ
うに、金属化合物を過量に添加したもの(比較例2)、
AlN粉末を過量に添加したもの(比較例3)、スピネ
ル構造体を過量に添加したもの(比較例4)、スピネル
構造体を全く添加しないもの(比較例5)、スピネル構
造体およびAlN粉末をともに添加しないもの(比較例
6)、金属化合物を添加しないもの(比較例7)、Al
N粉末および金属化合物をともに添加しないもの(比較
例8)、AlN粉末を添加しないもの(比較例9)の原
料混合体をそれぞれ調製し、実施例1と同一条件で原料
混合から焼結操作を実施してそれぞれ比較例2〜9に係
る焼結体を製造した。
On the other hand, as shown in the left column of Table 2 as Comparative Examples 2 to 9, a metal compound added in an excessive amount (Comparative Example 2),
An excessive amount of AlN powder (Comparative Example 3), an excessive amount of spinel structure (Comparative Example 4), no spinel structure (Comparative Example 5), a spinel structure and AlN powder were used. No addition (Comparative Example 6), no metal compound (Comparative Example 7), Al
A raw material mixture was prepared in which neither the N powder nor the metal compound was added (Comparative Example 8) and the AlN powder was not added (Comparative Example 9), and the sintering operation was performed from the raw material mixing under the same conditions as in Example 1. It carried out and manufactured the sintered compact which concerns on Comparative Examples 2-9, respectively.

【0033】なお、比較例5,6において使用した酸化
イットリウム粉末は比較例1で使用したものと同一であ
り、Al2 3 粉末は平均粒径が0.9μmのものを使
用した。
The yttrium oxide powder used in Comparative Examples 5 and 6 was the same as that used in Comparative Example 1, and the Al 2 O 3 powder used had an average particle size of 0.9 μm.

【0034】こうして製造した実施例2〜12および比
較例2〜9に係る各窒化けい素セラミックス焼結体につ
いて、実施例1と同一条件で酸化処理前後における曲げ
強度をそれぞれ測定し、下記表2右欄に示す結果を得
た。
With respect to the silicon nitride ceramics sintered bodies according to Examples 2 to 12 and Comparative Examples 2 to 9 thus manufactured, the bending strengths before and after the oxidation treatment were measured under the same conditions as in Example 1, and Table 2 below. The results shown in the right column were obtained.

【0035】[0035]

【表2】 [Table 2]

【0036】表2に示す結果から明らかなように、スピ
ネル構造体、窒化アルミニウムおよび金属化合物をそれ
ぞれ所定量含有した実施例2〜12に係る焼結体は、い
ずれも酸化処理後においても高い曲げ強度値を有してお
り、高温環境における耐酸化性が優れていることが確認
された。
As is clear from the results shown in Table 2, the sintered bodies according to Examples 2 to 12 each containing a predetermined amount of the spinel structure, aluminum nitride and metal compound had high bending even after the oxidation treatment. It has strength values, and it was confirmed that it has excellent oxidation resistance in a high temperature environment.

【0037】一方、比較例2〜9に示すように上記スピ
ネル構造体、窒化アルミニウムおよび金属化合物の少く
とも1種の成分が過量に添加されたり、あるいは不足す
る場合には、特に酸化処理後における曲げ強度が低下す
る傾向があり、高温時における耐酸化性が劣ることが確
認された。
On the other hand, as shown in Comparative Examples 2 to 9, when at least one component of the above spinel structure, aluminum nitride and metal compound is added in an excessive amount or is insufficient, especially after the oxidation treatment. It was confirmed that the bending strength tended to decrease and the oxidation resistance at high temperature was poor.

【0038】[0038]

【発明の効果】以上説明の通り本発明に係る窒化けい素
セラミックス焼結体によれば、原料粉末中にMgO・A
2 3 スピネル構造体、窒化アルミニウムおよびH
f、NbまたはTiの化合物が複合添加されており、特
にスピネル構造体によって焼結体表面に耐酸化被膜が形
成されているため、高温度においても機械的強度に優れ
ており、さらに1200℃以上の高温酸化雰囲気におい
ても機械的強度の低下が少ない。従って、ガスタービン
部品など従来の耐熱性超合金に代わる高強度耐熱部材と
して極めて有用である。
As described above, according to the silicon nitride ceramics sintered body of the present invention, MgO.A is contained in the raw material powder.
l 2 O 3 spinel structure, aluminum nitride and H
The compound of f, Nb or Ti is added in combination, and since the oxidation resistant film is formed on the surface of the sintered body by the spinel structure in particular, it has excellent mechanical strength even at high temperature, and more than 1200 ° C. The mechanical strength is not significantly reduced even in the high temperature oxidizing atmosphere. Therefore, it is extremely useful as a high-strength heat-resistant member that replaces conventional heat-resistant superalloys such as gas turbine parts.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 MgO・Al2 3 スピネル構造体を1
〜10重量%と、窒化アルミニウムを1〜10重量%
と、Hf、NbまたはTiの酸化物、炭化物またはけい
化物から成る群から選択された少くとも1種を0.1〜
5重量%と、残部を構成する窒化けい素とから成るセラ
ミックス混合体を焼成してなることを特徴とする窒化け
い素セラミックス焼結体。
1. A MgO.Al 2 O 3 spinel structure is used.
-10 wt% and aluminum nitride 1-10 wt%
And 0.1 to at least one selected from the group consisting of oxides, carbides or silicides of Hf, Nb or Ti.
A silicon nitride ceramics sintered body obtained by firing a ceramics mixture composed of 5% by weight and the remaining silicon nitride.
【請求項2】 窒化けい素原料粉末のうちα相型窒化け
い素が80重量%以上であることを特徴とする請求項1
記載の窒化けい素セラミックス焼結体。
2. The α-phase type silicon nitride in the silicon nitride raw material powder is 80% by weight or more.
The described silicon nitride ceramics sintered body.
JP4035249A 1992-02-21 1992-02-21 Sintered silicone nitride ceramic Pending JPH05238829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4035249A JPH05238829A (en) 1992-02-21 1992-02-21 Sintered silicone nitride ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4035249A JPH05238829A (en) 1992-02-21 1992-02-21 Sintered silicone nitride ceramic

Publications (1)

Publication Number Publication Date
JPH05238829A true JPH05238829A (en) 1993-09-17

Family

ID=12436560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4035249A Pending JPH05238829A (en) 1992-02-21 1992-02-21 Sintered silicone nitride ceramic

Country Status (1)

Country Link
JP (1) JPH05238829A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995012764A1 (en) * 1993-11-02 1995-05-11 Koyo Seiko Co., Ltd. Ball-and-roller bearing
US7056850B2 (en) 2001-07-24 2006-06-06 Kabushiki Kaisha Toshiba Wear-resistant silicon nitride member and method of manufacture thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995012764A1 (en) * 1993-11-02 1995-05-11 Koyo Seiko Co., Ltd. Ball-and-roller bearing
US5575571A (en) * 1993-11-02 1996-11-19 Koyo Seiko Co., Ltd. Rolling bearing
US7056850B2 (en) 2001-07-24 2006-06-06 Kabushiki Kaisha Toshiba Wear-resistant silicon nitride member and method of manufacture thereof

Similar Documents

Publication Publication Date Title
JPH0244786B2 (en)
JP2829229B2 (en) Silicon nitride ceramic sintered body
JPH09268072A (en) Production of silicon nitride sintered compact
JPH0777986B2 (en) Manufacturing method of silicon carbide sintered body
JPS6050750B2 (en) Silicon nitride composite sintered body
JPH05238829A (en) Sintered silicone nitride ceramic
JP3210399B2 (en) Chemically resistant silicon nitride ceramic sintered body
JP3810806B2 (en) Sintered silicon nitride ceramics
JP2980342B2 (en) Ceramic sintered body
JP2673523B2 (en) Alumina sintered body for cutting tool and its manufacturing method
JPH0632658A (en) Silicon nitride-based sintered compact
JP2710865B2 (en) Manufacturing method of silicon nitride sintered body
JPH10279360A (en) Silicon nitride structural parts and its production
JPH07172926A (en) Silicon nitride sintered compact
JP3176203B2 (en) Method for producing silicon nitride based sintered body
JP2684250B2 (en) Silicon nitride sintered body and method for producing the same
JPH06116045A (en) Silicon nitride sintered compact and its production
JP3216973B2 (en) Silicon nitride sintered body and method for producing the same
JPH0712980B2 (en) Silicon carbide sintered body and method for producing the same
JPH05208870A (en) Silicon nitride sintered product
JP2700786B2 (en) High-temperature high-strength silicon nitride sintered body and method for producing the same
JP2742620B2 (en) Boride-aluminum oxide sintered body and method for producing the same
JPS6125676B2 (en)
JP3237963B2 (en) Silicon nitride sintered body and method for producing the same
JP2694368B2 (en) Method for producing silicon nitride based sintered body