WO1997003030A1 - Process for fabricating an electrically insulating silicon carbide - Google Patents

Process for fabricating an electrically insulating silicon carbide Download PDF

Info

Publication number
WO1997003030A1
WO1997003030A1 PCT/CH1996/000253 CH9600253W WO9703030A1 WO 1997003030 A1 WO1997003030 A1 WO 1997003030A1 CH 9600253 W CH9600253 W CH 9600253W WO 9703030 A1 WO9703030 A1 WO 9703030A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
sintering
grain boundary
boundary phase
approximately
Prior art date
Application number
PCT/CH1996/000253
Other languages
German (de)
French (fr)
Inventor
Dusko Maravic
Original Assignee
Negawatt Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Negawatt Gmbh filed Critical Negawatt Gmbh
Priority to EP96920679A priority Critical patent/EP0837837A1/en
Priority to AU61864/96A priority patent/AU6186496A/en
Priority to JP9505388A priority patent/JPH11508868A/en
Publication of WO1997003030A1 publication Critical patent/WO1997003030A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/575Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by pressure sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics

Definitions

  • the present invention relates to a method for the manufacture of electrically insulating silicon carbide by means of liquid phase sintering.
  • Sintered silicon carbide is a well-known industrial ceramic, which is used in a variety of ways due to its good mechanical and chemical resilience. Silicon carbide above all has good high-temperature resistance, thermal shock resistance, acid resistance and mechanical strength.
  • Silicon carbide ceramics can be produced by solid state sintering or by liquid phase sintering. Methods for the liquid phase sintering of silicon carbide have been known since the mid-eighties. In addition to the properties mentioned above, liquid phase sintered silicon carbide has a high fracture toughness, which corresponds approximately to that of silicon nitride.
  • Such a liquid phase sintering process is described, for example, in US Pat. No. 4,564,490.
  • the powdered silicon carbide is mixed with metal oxides, called sintering additives.
  • sintering additives When the mixture is heated to the sintering temperature, a liquid phase forms and capillary forces cause the desired compression process.
  • sintering additives Aluminum oxide A1 2 0 3 and yttrium oxide Y 2 0 3 up to 10 G% (weight percent) are used, the use of aluminum nitride A1N also being known.
  • carbon C can be added as a further additive, which influences the wetting behavior between the liquid phase and the silicon carbide grains.
  • the production of sintered silicon carbide by means of the liquid phase has the advantage that ceramics with preferred mechanical or thermomechanical properties can be produced by adding certain sintering additives. In this case, only a small amount of sintering additives is always added, there being a lower limit, the undershoot of which results in an insufficient sintering behavior.
  • sintering additives were chosen so that the desired mechanical properties could be achieved. A maximum amount of sintering additives was assumed, the exceeding of which no longer leads to an improvement in the properties, but rather deteriorates the high-temperature and corrosion properties.
  • the electrical properties of the end product were not specifically optimized; on the contrary, they were generally not taken into account.
  • Pure silicon carbide is an electrical insulator.
  • pure silicon carbide is hardly produced, since raw materials are used which are not contaminated. These impurities considerably reduce the electrical resistance.
  • the addition of the known sintering additives leads to a further reduction in the electrical resistance, since the silicon crystals are doped with the sintering additives.
  • the known ceramics made of liquid sintered silicon carbide are therefore semiconductors.
  • the specific resistance achieved is primarily determined by the type and quantity of the added sintering additives.
  • the influence of the sintering additives on the electrical properties is also not unlimited, but is determined by the solubility of the additives in silicon carbide.
  • Another sintering additive which leads to an electrically insulating ceramic with a specific resistance of 10 8 ohm cm at room temperature is known from US-A-4'701'427. Boron B is used here as a sintering additive. In addition, carbon C is added or the sintering process is carried out in a nitrogen atmosphere. The temperature required to achieve the desired result is between 2250 ° C and 2350 ° C. In this process, the silicon carbide crystals are doped with nitrogen, as a result of which an increase in the density of the product is achieved. It was found that the end product must have a density of at least 95% of the theoretical density of pure silicon carbide in order to obtain an electrical insulator.
  • This object is achieved by a process for the production of sintered silicon carbide by means of a liquid phase, sintering additives being added before the sintering, which is characterized in that the quantity of sintering additives added, the sintering temperature and the sintering time period are selected as process parameters and by means of these The quantity of the grain boundary phase remaining in the sintered silicon carbide is predefined.
  • the liquid sintering method according to the invention enables the production of ceramics from silicon carbide with specific electrical resistances in the range of greater than 10 13 ohm cm at room temperature.
  • the main difference from the known methods is that the solubility of the sintering additives in silicon carbide is not essential, but that the process parameters are selected so that a certain amount of remaining grain boundary phase is retained in the end product.
  • the sintering additives dissolved in the crystal reduce the electrical resistance of the individual grain.
  • the remaining grain boundary phase increases the overall electrical resistance of the silicon carbide body.
  • the silicon carbide produced by the method according to the invention does not necessarily have the same good mechanical and chemical properties as the known ceramics made of silicon carbide. For most application areas, however, they are still sufficient.
  • the Swiss application CH 02 854 / 94-1 describes possible applications in the medium temperature range.
  • aluminum oxide A1 2 0 3 and yttrium oxide Y : 0 3 are used as sintering additives.
  • at least 8 V% (volume percent) grain boundary phase must be present when using these sintering additives after the sintering process. If less than 5 V% is present, the specific electrical resistance is less than 10 "ohm cm.
  • the amount of the added sintering additives must therefore be chosen so large that, despite the weight loss during sintering, a sufficient amount of grain boundary phase remains in the ceramic , which ensures a complete coating of all silicon carbide grains.
  • Another advantage of the method according to the invention is that it is possible to work in a lower temperature range, preferably 1800 ° C.-1900 ° C. This significantly reduces manufacturing costs.
  • Figure 1 shows the theoretical density of the sintered body as a function of weight loss in the sintering process
  • FIG. 2 shows the specific electrical resistance as a function of the amount of the grain boundary phase
  • Figure 3 is a schematic representation of the grain boundary phases of a sintered body according to the invention and.
  • Figure 4 is a schematic representation of the grain boundary phases of a sintered body according to the prior art.
  • Silicon carbide SiC in powder form is used as the starting material.
  • the silicon carbide powder preferably has a large surface area, greater than 10 m 2 / g.
  • a powder with an average grain diameter of 0.7 my is used.
  • Aluminum oxide Al-O3 and yttrium oxide Y 2 0 3 are added to this silicon carbide powder as sintering additives.
  • Silicon oxide Si0 2 is present as a further component, which is always present on the surface of fine-grained or powdery silicon carbide SiC and is therefore not referred to as an additive.
  • These three components A1 2 0 3 , Y 2 0 3 and Si0 2 form the liquid or grain boundary phase in the sintering process.
  • the sintered mixture is mixed and homogenized using known methods, for example in an attritor with an aqueous emulsion which has a solids content of approximately 50% by weight and a proportion of 2% by weight of organic substances.
  • the mixture is then dried and pressed into a desired shape.
  • cylindrical tablets with a diameter of 20 mm and a height of 5-7 mm were formed under a uniaxial pressure of 150 MPa. The density of the blanks is determined.
  • the sintering process can be carried out without pressure by heating in an oven or by means of hot presses. Argon is preferably used as the atmosphere.
  • the sintering temperature and the sintering period essentially determine the weight loss. Both parameters are selected so that at least 8 V% grain boundary phase remains after sintering.
  • the liquid or grain boundary phase formed by these three components thus comprises 12 G% of the sinter mixture.
  • the sintering process takes place using hot presses at a temperature of 1800 ° C. and an applied pressure of 30 MPa, which is invested for a period of approximately one hour.
  • the measured weight loss is 2.8 G%, so that 9.2 G% (this corresponds to 8 V%) of the grain boundary phase remains in the end product.
  • the end product has a specific electrical resistance of greater than 10 ⁇ 3 ohm cm.
  • the measured 4-point bending strength at room temperature is greater than 400 MPa, at 1400 ° C it is still 300 MPa.
  • the fracture toughness is 6 MPa m 1/2 and the thermal conductivity at room temperature is 70 W / mK and at 1200 ° C still 30 W / mK.
  • aluminum oxide A1 2 0 3 and yttrium oxide Y 2 0 3 are added in other amounts, namely 7.2 G & A1 2 0 3 and 4.8 G% Y 2 0 3 , so that a total of 14 G% additives are contained in the sintered mixture that form the liquid phase.
  • the sintering process takes place in an argon atmosphere at normal pressure.
  • the blanks are heated in a furnace to a temperature of 1800 ° C - 1900 ° C, the heating rate being 10 ° C / min. This maximum temperature is maintained for a certain period of time.
  • the measured weight loss is 4.5 G%, so that 9.5 G% of the grain boundary phase remains in the end product.
  • the theoretical density of the final product is not a constant but a function of the composition of the starting materials and the inorganic weight loss during the baking process. This function is shown in FIG. 1 for a mixture of 90 G% silicon carbide SiC, 6 G% aluminum oxide Al 2 0 3 and 4 G% yttrium oxide Y 2 0 3 . If there is no weight loss, the end product will have the same Density like the mixture before sintering, namely 3.296 g / cm 3 . When the liquid or grain boundary phase is completely evaporated, the density of the pure silicon carbide SiC is still 3.21 g / cm 3 . It has been shown that the maximum density and thus the minimum weight loss is obtained with a heating time of approximately one hour.
  • the weight loss increases linearly as a function of the heating period.
  • the period of time for the heating must therefore be optimized. If the bake is too short, the sintering process is not complete and the end product does not have the desired mechanical or chemical resistance. If the heating is too long, however, too many sintering additives are evaporated, so that the end product becomes an electrical semiconductor or conductor.
  • FIG. 2 shows a graphical representation of the specific resistance as a function of the volume content of the sintering additives mentioned.
  • the reference number A denotes pure silicon carbide SiC.
  • the range from A to B shows the specific resistance value for impurities due to the raw material, B to C the doping of the SiC crystal lattice due to the sintering additive.
  • C denotes the maximum solubility of the sintering additives in silicon carbide.
  • the grain boundary phase fractions increase in the area C to D, the individual SiC grains still being incompletely coated. At point D almost all SiC grains are coated. From point D to E, the grain boundary phase fractions increase, but this increase no longer affects the electrical resistance.
  • FIG. 3 A silicon carbide produced according to example 1 is shown in FIG. 3.
  • the grain boundary phase has a low surface tension and therefore a small wetting angle and good wetting. This results in an at least approximately complete encapsulation of all SiC grains by the three-component liquid phase melt D.
  • the electrically conductive SiC grains remain completely enveloped by the grain boundary phase even after the sintered body has cooled, so that a high-resistance electrical insulator is produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

In a process for fabricating electrically insulating silicon carbide by means of liquid-phase sintering, wherein the sintering additives are added prior to sintering, the quantity of sintering additives, the sintering temperature and the duration of sintering are selected as process parameters. With the aid of these parameters, the quantity of intercrystalline phase remaining in the sintered silicon carbide is predetermined. This yields as end product a high-resistance electrical insulator.

Description

Verfahren zur Herstellung von elektrisch isolierendem Siliziumkarbid Process for the production of electrically insulating silicon carbide
Die vorliegende Erfindung betrifft ein Verfahren zur Herstel¬ lung von elektrisch isolierendem Siliziumkarbid mittels Flüssigphasen-Sintern.The present invention relates to a method for the manufacture of electrically insulating silicon carbide by means of liquid phase sintering.
Gesintertes Siliziumkarbid ist eine bekannte Industriekeramik, die wegen ihrer guten mechanischen wie chemischen Belastbarkeit vielseitige Anwendung findet. Siliziumkarbid weist vorallem eine gute Hochtemperaturbeständigkeit, Thermoschockresistenz, Säurebeständigkeit und mechanische Festigkeit auf.Sintered silicon carbide is a well-known industrial ceramic, which is used in a variety of ways due to its good mechanical and chemical resilience. Silicon carbide above all has good high-temperature resistance, thermal shock resistance, acid resistance and mechanical strength.
Keramiken aus Siliziumkarbid können durch Solid-State-Sintern oder mittels Flüssigphasensintern hergestellt werden. Verfahren für die Flüssigphasensinterung von Siliziumkarbid sind seit Mitte der achtziger Jahre bekannt. Flüssigphasengesintertes Siliziumkarbid weist zusätzlich zu den obenerwähnten Eigen¬ schaften eine hohe Bruchzähigkeit auf, die ungefähr derjenigen von Siliziumnitrid entspricht.Silicon carbide ceramics can be produced by solid state sintering or by liquid phase sintering. Methods for the liquid phase sintering of silicon carbide have been known since the mid-eighties. In addition to the properties mentioned above, liquid phase sintered silicon carbide has a high fracture toughness, which corresponds approximately to that of silicon nitride.
Ein derartiges Flüssigphasensinter-Verfahren ist beispielsweise in US-A-4 ' 564 ' 490 beschrieben. Das pulverförmige Siliziumkarbid wird mit Metalloxyden, Sinteradditive genannt, vermischt. Beim Erhitzen der Mischung auf die Sintertemperatur bildet sich eine Flüssigphase und Kapillarkräfte verursachen den gewünschten Verdichtungsprozess. Ueblicherweise werden als Sinteradditive Alumiuniumoxyd A1203 und Yttriumoxyd Y203 bis zu 10 G% (Gewichtsprozent) verwendet, wobei auch die Verwendung von Aluminiumnitrid A1N bekannt ist. Ferner kann als weiteres Additiv Kohlenstoff C beigemengt werden, wodurch das Benetzungsverhalten zwischen der Flüssigphase und den Silizium¬ karbid-Körnern beeinflusst wird.Such a liquid phase sintering process is described, for example, in US Pat. No. 4,564,490. The powdered silicon carbide is mixed with metal oxides, called sintering additives. When the mixture is heated to the sintering temperature, a liquid phase forms and capillary forces cause the desired compression process. Usually used as sintering additives Aluminum oxide A1 2 0 3 and yttrium oxide Y 2 0 3 up to 10 G% (weight percent) are used, the use of aluminum nitride A1N also being known. Furthermore, carbon C can be added as a further additive, which influences the wetting behavior between the liquid phase and the silicon carbide grains.
Die Herstellung von gesintertem Siliziumkarbid mittels Flüssig¬ phase hat den Vorteil, dass durch Zugabe von bestimmten Sinteradditiven gezielt Keramiken mit bevorzugten mechanischen oder thermomechanischen Eigenschaften hergestellt werden können. Dabei wird stets nur eine geringe Menge an Sinter¬ additiven zugegeben, wobei eine untere Grenze vorhanden ist, deren Unterschreitung ein ungenügendes Sinterverhalten zur Folge hat.The production of sintered silicon carbide by means of the liquid phase has the advantage that ceramics with preferred mechanical or thermomechanical properties can be produced by adding certain sintering additives. In this case, only a small amount of sintering additives is always added, there being a lower limit, the undershoot of which results in an insufficient sintering behavior.
Die Mengen der zugegebenen Sinteradditive wurden so gewählt, dass die gewünschten mechanischen Eigenschaften erzielt werden konnten. Dabei wurde von einer Maximalmenge der Sinteradditive ausgegangen, deren Ueberschreitung keine Verbesserung der Eigenschaften mehr hervorruft, sondern eher die Hochtemperatur- und Korrosionseigenschaften verschlechtert.The amounts of sintering additives added were chosen so that the desired mechanical properties could be achieved. A maximum amount of sintering additives was assumed, the exceeding of which no longer leads to an improvement in the properties, but rather deteriorates the high-temperature and corrosion properties.
Die elektrischen Eigenschaften des Endproduktes wurden nicht gezielt optimiert, sie wurden im Gegenteil im allgemeinen gar nicht berücksichtigt. Reines Siliziumkarbid ist ein elektri¬ scher Isolator. Reines Siliziumkarbid wird jedoch kaum herge¬ stellt, da im allgemeinen Rohstoffe verwendet werden, die ver¬ unreinigt sind. Diese Verunreinigungen verringern den elektri¬ schen Widerstand beträchtlich. Zudem führt die Zugabe der bekannten Sinteradditive zu einer weiteren Verringerung des elektrischen Widerstandes, da die Silizium-Kristalle mit den Sinteradditiven dotiert werden. Die bekannten Keramiken aus flüssiggesintertem Siliziumkarbid sind deshalb Halbleiter. Der erreichte spezifische Widerstand wird vorallem durch die Art und die Quantität der beigemengten Sinteradditive bestimmt. Der Einfluss der Sinteradditive auf die elektrischen Eigenschaften ist ebenfalls nicht unbegrenzt, sondern durch die Löslichkeit der Additive im Siliziumkarbid bestimmt.The electrical properties of the end product were not specifically optimized; on the contrary, they were generally not taken into account. Pure silicon carbide is an electrical insulator. However, pure silicon carbide is hardly produced, since raw materials are used which are not contaminated. These impurities considerably reduce the electrical resistance. In addition, the addition of the known sintering additives leads to a further reduction in the electrical resistance, since the silicon crystals are doped with the sintering additives. The known ceramics made of liquid sintered silicon carbide are therefore semiconductors. The The specific resistance achieved is primarily determined by the type and quantity of the added sintering additives. The influence of the sintering additives on the electrical properties is also not unlimited, but is determined by the solubility of the additives in silicon carbide.
Im Journal Am. Ceram. Soc, 70[10] C 266-267, Y. Takeda et al. , wird gesintertes Siliziumkarbid beschrieben, das ein elektri¬ scher Isolator ist. Als Sinteradditiv wird dabei Berylliumoxid verwendet. Die isolatorische Wirkung wird durch das in den Siliziumkristallen gelöste Beryllium oder Berylliumoxyd bedingt. Berylliumoxid ist jedoch stark toxisch und deshalb für die meisten Anwendungen der Keramiken ungeeignet.In the journal Am. Ceram. Soc, 70 [10] C 266-267, Y. Takeda et al. , sintered silicon carbide is described, which is an electrical insulator. Beryllium oxide is used as a sintering additive. The isolating effect is caused by the beryllium or beryllium oxide dissolved in the silicon crystals. However, beryllium oxide is highly toxic and therefore unsuitable for most ceramics applications.
Ein weiteres Sinteradditiv, das zu einer elektrisch isolieren¬ den Keramik mit einem spezifischen Widerstand von 108 Ohm cm bei Raumtemperatur führt, ist aus US-A-4 '701 ' 427 bekannt. Als Sinteradditiv wird hier Bor B verwendet. Zusätzlich wird Kohlenstoff C beigemengt oder der Sinterprozess wird in einer Stickstoffatmosphäre durchgeführt. Die für die Erzielung des gewünschten Resultates notwendige Temperatur beträgt zwischen 2250°C und 2350°C. Bei diesem Verfahren werden die Silizium¬ karbid-Kristalle mit Stickstoff dotiert, wodurch eine Erhöhung der Dichte des Produktes erzielt wird. Dabei wurde fest¬ gestellt, dass das Endprodukt eine Dichte von mindestens 95% der theoretischen Dichte von reinem Siliziumkarbid aufweisen muss, um einen elektrischen Isolator zu erhalten. Nur so ist gewährleistet, dass genügend Stickstoff eingelagert worden ist, um eine elektrisch isolierende Wirkung zu erzielen. Auch dieses Verfahren ist einer Sättigung unterworfen. Zudem muss wie bei den anderen bekannten Verfahren mit relativ hohen Temperaturen gearbeitet werden, so dass die Herstellungskosten hoch sind. Es ist deshalb Aufgabe der Erfindung, ein alternatives Verfahren zur Herstellung von elektrisch isolierendem Silizium¬ karbid zu schaffen.Another sintering additive which leads to an electrically insulating ceramic with a specific resistance of 10 8 ohm cm at room temperature is known from US-A-4'701'427. Boron B is used here as a sintering additive. In addition, carbon C is added or the sintering process is carried out in a nitrogen atmosphere. The temperature required to achieve the desired result is between 2250 ° C and 2350 ° C. In this process, the silicon carbide crystals are doped with nitrogen, as a result of which an increase in the density of the product is achieved. It was found that the end product must have a density of at least 95% of the theoretical density of pure silicon carbide in order to obtain an electrical insulator. This is the only way to ensure that enough nitrogen has been stored to achieve an electrically insulating effect. This process is also subject to saturation. In addition, as with the other known methods, relatively high temperatures have to be used, so that the production costs are high. It is therefore an object of the invention to provide an alternative method for producing electrically insulating silicon carbide.
Diese Aufgabe löst ein Verfahren zur Herstellung von gesinter¬ tem Siliziumkarbid mittels Flüssigphase, wobei vor dem Sintern Sinteradditive zugegeben werden, das dadurch gekennzeichnet ist, dass die Menge der zugegebenen Sinteradditive, die Sinter¬ temperatur und die Sinterzeitspanne als Prozessparameter gewählt werden und dass mittels dieser Parameter die Menge der im gesinterten Siliziumkarbid verbleibenden Korngrenzphase vor¬ definiert wird.This object is achieved by a process for the production of sintered silicon carbide by means of a liquid phase, sintering additives being added before the sintering, which is characterized in that the quantity of sintering additives added, the sintering temperature and the sintering time period are selected as process parameters and by means of these The quantity of the grain boundary phase remaining in the sintered silicon carbide is predefined.
Das erfindungsgemässe Flüssigsinterverfahren ermöglicht die Herstellung von Keramiken aus Siliziumkarbid mit spezifischen elektrischen Widerständen im Bereich von grösser als IO13 Ohm cm bei Raumtemperatur.The liquid sintering method according to the invention enables the production of ceramics from silicon carbide with specific electrical resistances in the range of greater than 10 13 ohm cm at room temperature.
Der wesentliche Unterschied zu den bekannten Verfahren besteht darin, dass nicht die Löslichkeit der Sinteradditive im Siliziumkarbid wesentlich ist, sondern dass die Prozess¬ parameter so gewählt werden, dass eine bestimmte Menge an ver¬ bleibender Korngrenzphase im Endprodukt erhalten bleibt. Zwar verringern die im Kristall gelösten Sinteradditive den elektrischen Widerstand des einzelnen Kornes. Die verbleibende Korngrenzphase erhöht jedoch den elektrischen Gesamtwiderstand des Siliziumkarbid-Körpers.The main difference from the known methods is that the solubility of the sintering additives in silicon carbide is not essential, but that the process parameters are selected so that a certain amount of remaining grain boundary phase is retained in the end product. The sintering additives dissolved in the crystal reduce the electrical resistance of the individual grain. However, the remaining grain boundary phase increases the overall electrical resistance of the silicon carbide body.
Das nach dem erfindungsgemässen Verfahren hergestellte Siliziumkarbid verfügt nicht zwingend über gleich gute mechanische und chemische Eigenschaften wie die bekannten Keramiken aus Siliziumkarbid. Für die meisten Anwendungs- bereiche sind sie jedoch noch immer ausreichend. In der Schweizer Anmeldung CH 02 854/94-1 sind mögliche Anwendungen im mittleren Temperaturbereich beschrieben.The silicon carbide produced by the method according to the invention does not necessarily have the same good mechanical and chemical properties as the known ceramics made of silicon carbide. For most application areas, however, they are still sufficient. The Swiss application CH 02 854 / 94-1 describes possible applications in the medium temperature range.
In einer bevorzugten Variante des Verfahrens werden als Sinteradditive Aluminiumoxyd A1203 und Yttriumoxyd Y:03 verwen¬ det. Damit hochohmiges Siliziumkarbid erhalten wird, muss bei Verwendung dieser Sinteradditive nach dem Sinterungsprozess mindestens 8 V% (Volumenprozent) Korngrenzphase vorhanden sein. Sind weniger als 5 V% vorhanden, so ist der spezifische elektrische Widerstand kleiner als 10" Ohm cm. Die Menge der beigemengten Sinteradditive muss deshalb so gross gewählt werden, dass trotz des Gewichtsverlustes beim Sintern eine aus¬ reichende Menge an Korngrenzphase in der Keramik verbleibt, die eine vollständige Umhüllung sämtlicher Siliziumkarbid-Körner gewährleistet.In a preferred variant of the process, aluminum oxide A1 2 0 3 and yttrium oxide Y : 0 3 are used as sintering additives. In order to obtain high-resistance silicon carbide, at least 8 V% (volume percent) grain boundary phase must be present when using these sintering additives after the sintering process. If less than 5 V% is present, the specific electrical resistance is less than 10 "ohm cm. The amount of the added sintering additives must therefore be chosen so large that, despite the weight loss during sintering, a sufficient amount of grain boundary phase remains in the ceramic , which ensures a complete coating of all silicon carbide grains.
Im Gegensatz dazu wurde bei den bekannten Verfahren versucht, den Gehalt an Sinteradditiven im Endprodukt so gering wie möglich zu halten, um möglichst reines Siliziumkarbid zu erhalten. Die Sinteradditive dienten lediglich dazu, das Sinterverhalten zu verbessern oder grundsätzlich einen Sinterungsprozess zu bewirken.In contrast, attempts have been made in the known processes to keep the content of sintering additives in the end product as low as possible in order to obtain silicon carbide which is as pure as possible. The sintering additives only served to improve the sintering behavior or basically to effect a sintering process.
Ein weiterer Vorteil des erfindungsgemässen Verfahrens liegt darin, dass in einem tieferen Temperaturbereich, bevorzugter¬ weise 1800°C - 1900°C gearbeitet werden kann. Dadurch werden die Herstellungskosten erheblich gesenkt.Another advantage of the method according to the invention is that it is possible to work in a lower temperature range, preferably 1800 ° C.-1900 ° C. This significantly reduces manufacturing costs.
Die Verwendung von anderen Ξinteradditiven und/oder anderen Mischungsverhältnissen ist möglich. Dadurch kann sich auch die minimal erforderliche Restmenge an Korngrenzphase und/oder die erforderlicher Sintertemperatur und Sinterzeitspanne ändern. Beiliegende graphische Darstellungen dienen zur Erläuterung des erfindungsgemässen Verfahrens. Es zeigenThe use of other intermediate additives and / or other mixing ratios is possible. As a result, the minimum required residual amount of grain boundary phase and / or the required sintering temperature and sintering period can also change. The enclosed graphical representations serve to explain the method according to the invention. Show it
Figur 1 die theoretische Dichte des Sinterkörpers als Funktion des Gewichtsverlustes beim Sinterungs¬ prozess;Figure 1 shows the theoretical density of the sintered body as a function of weight loss in the sintering process;
Figur 2 der spezifische elektrische Widerstand als Funktion der Menge der Korngrenzphase;FIG. 2 shows the specific electrical resistance as a function of the amount of the grain boundary phase;
Figur 3 eine schematische Darstellung der Korngrenzphasen eines erfindungsgemässen Sinter-Körpers und .Figure 3 is a schematic representation of the grain boundary phases of a sintered body according to the invention and.
Figur 4 eine schematische Darstellung der Korngrenzphasen eines Sinter-Körpers gemäss dem Stand der Technik.Figure 4 is a schematic representation of the grain boundary phases of a sintered body according to the prior art.
Im folgenden werden einige bevorzugte Varianten des erfindungs¬ gemässen Verfahrens beschrieben:Some preferred variants of the method according to the invention are described below:
Als Ausgangsmaterial wird Siliziumkarbid SiC in Pulverform verwendet. Das Siliziumkarbid-Pulver weist bevorzugterweise eine grösse Oberfläche, grösser als 10 m2/g, auf. In diesem Beispiel wird ein Pulver mit einem mittleren Korndurchmesser von 0.7 my verwendet.Silicon carbide SiC in powder form is used as the starting material. The silicon carbide powder preferably has a large surface area, greater than 10 m 2 / g. In this example, a powder with an average grain diameter of 0.7 my is used.
Diesem Siliziumkarbid-Pulver werden Aluminiumoxyd AI-O3 und Yttriumoxyd Y203 als Sinteradditive beigemischt. Als weitere Komponente ist Siliziumoxyd Si02 vorhanden, das stets an der Oberfläche von feinkörnigem oder pulvrigem Siliziumkarbid SiC anwesend ist und deshalb nicht als Additiv bezeichnet wird. Diese drei Komponenten A1203, Y203 und Si02 bilden im Sinter- prozess die Flüssig- oder Korngrenzphase. Die Sintermischung wird mittels bekannten Methoden vermischt und homogenisiert, beispielsweise in einer Reibungsmühle mit einer wässrigen Emulsion, die einen Festkörperanteil von ungefähr 50 G% und einen Anteil von 2 G% an organischen Stoffen aufweist. Anschliessend wird die Mischung getrocknet und in eine gewünschte Form gepresst. In den hier beschriebenen Testreihen wurden dabei zylinderförmige Tabletten mit einem Durchmesser von 20 mm und einer Höhe von 5-7 mm unter einem uniaxialen Druck von 150 MPa geformt. Die Dichte der Rohlinge wird bestimmt.Aluminum oxide Al-O3 and yttrium oxide Y 2 0 3 are added to this silicon carbide powder as sintering additives. Silicon oxide Si0 2 is present as a further component, which is always present on the surface of fine-grained or powdery silicon carbide SiC and is therefore not referred to as an additive. These three components A1 2 0 3 , Y 2 0 3 and Si0 2 form the liquid or grain boundary phase in the sintering process. The sintered mixture is mixed and homogenized using known methods, for example in an attritor with an aqueous emulsion which has a solids content of approximately 50% by weight and a proportion of 2% by weight of organic substances. The mixture is then dried and pressed into a desired shape. In the test series described here, cylindrical tablets with a diameter of 20 mm and a height of 5-7 mm were formed under a uniaxial pressure of 150 MPa. The density of the blanks is determined.
Anschliessend werden diese Rohlinge gesintert. Der Sinterungs¬ prozess kann drucklos durch Erhitzung in einem Ofen oder mittels Heisspressen erfolgen. Als Atmosphäre wird bevorzugter¬ weise Argon eingesetzt. Die Sintertemperatur und die Sinter¬ zeitspanne bestimmen im wesentlichen den Gewichtsverlust. Beide Parameter werden so gewählt, dass nach dem Sintern noch mindestens 8 V% Korngrenzphase vorhanden ist.These blanks are then sintered. The sintering process can be carried out without pressure by heating in an oven or by means of hot presses. Argon is preferably used as the atmosphere. The sintering temperature and the sintering period essentially determine the weight loss. Both parameters are selected so that at least 8 V% grain boundary phase remains after sintering.
In einem ersten Beispiel wurden die folgenden Sinteradditive beigegeben:In a first example, the following sintering additives were added:
6 G% Aluminiumoxyd A1203 (G% = Gewichtsprozent) 4 G% Yttriumoxyd Y203.6 G% aluminum oxide A1 2 0 3 (G% = weight percent) 4 G% yttrium oxide Y 2 0 3 .
Als weiterer Zusatz ist 2 G% Siliziumoxyd Si02 vorhanden, das bereits auf der Oberfläche des Siliziumkarbid-Pulvers anwesend sind.As a further additive, 2 G% silicon oxide Si0 2 is present, which are already present on the surface of the silicon carbide powder.
Die durch diese drei Komponenten gebildete Flüssig- oder Korn¬ grenzphase umfasst somit 12 G% der Sintermischung.The liquid or grain boundary phase formed by these three components thus comprises 12 G% of the sinter mixture.
Der Sinterungsprozess erfolgt mittels Heisspressen bei einer Temperatur von 1800°C und einem angelegten Druck von 30 MPa, der während einer Zeitspanne von annähernd einer Stunde angelegt wird. Der gemessene Gewichtsverlust beträgt 2.8 G%, so dass noch 9.2 G% (dies entspricht 8 V%) an Korngrenzphase im Endprodukt übrig bleibt. Das Endprodukt weist einen spezifi¬ schen elektrischen Widerstand von grösser als 10±3 Ohm cm auf. Ferner ist die gemessene 4-Punkt-Biegefestigkeit bei Raum¬ temperatur grösser als 400 MPa, bei 1400°C beträgt sie noch 300 MPa. Die Bruchzähigkeit beträgt 6 MPa m1/2 und die thermi¬ sche Leitfähigkeit bei Raumtemperatur 70 W/mK und bei 1200°C noch 30 W/mK.The sintering process takes place using hot presses at a temperature of 1800 ° C. and an applied pressure of 30 MPa, which is invested for a period of approximately one hour. The measured weight loss is 2.8 G%, so that 9.2 G% (this corresponds to 8 V%) of the grain boundary phase remains in the end product. The end product has a specific electrical resistance of greater than 10 ± 3 ohm cm. Furthermore, the measured 4-point bending strength at room temperature is greater than 400 MPa, at 1400 ° C it is still 300 MPa. The fracture toughness is 6 MPa m 1/2 and the thermal conductivity at room temperature is 70 W / mK and at 1200 ° C still 30 W / mK.
In einem zweiten Beispiel werden Aluminiumoxyd A1203 und Yttriumoxyd Y203 in anderen Mengen beigegeben, nämlich 7.2 G& A1203 und 4.8 G% Y203, so dass insgesamt 14 G% Zusatzstoffe in der Sintermischung enthalten sind, die die Flüssigphase bilden. Der Sinterprozess verläuft in einer Argonatmosphäre bei Normaldruck. Die Rohlinge werden in einem Ofen bis auf eine Temperatur von 1800°C - 1900°C erhitzt, wobei die Heizrate 10°C/min beträgt. Diese Maximaltemperatur wird während einer bestimmten Zeitspanne gehalten. Bei einer Heiztemperatur von 1875°C, die während einer Zeitspanne von einer Stunde anliegt, beträgt der gemessene Gewichtsverlust 4.5 G%, so dass noch 9.5 G% der Korngrenzphase im Endprodukt bestehen bleibt.In a second example, aluminum oxide A1 2 0 3 and yttrium oxide Y 2 0 3 are added in other amounts, namely 7.2 G & A1 2 0 3 and 4.8 G% Y 2 0 3 , so that a total of 14 G% additives are contained in the sintered mixture that form the liquid phase. The sintering process takes place in an argon atmosphere at normal pressure. The blanks are heated in a furnace to a temperature of 1800 ° C - 1900 ° C, the heating rate being 10 ° C / min. This maximum temperature is maintained for a certain period of time. At a heating temperature of 1875 ° C, which is present for a period of one hour, the measured weight loss is 4.5 G%, so that 9.5 G% of the grain boundary phase remains in the end product.
Die theoretische Dichte des Endproduktes ist nicht eine Konstante sondern eine Funktion der Zusammensetzung der Ausgangsmaterialien und des anorganischen Gewichtsverlustes während dem Ausheizungsprozess. Diese Funktion ist in der Figur 1 dargestellt für eine Mischung aus 90 G% Siliziumkarbid SiC, 6 G% Aluminiumoxyd Al203 und 4 G% Yttriumoxyd Y203. Falls kein Gewichtsverlust eintritt, so weist das Endprodukt dieselbe Dichte auf wie die Mischung vor dem Sintern, nämlich 3,296 g/cm3. Bei einer vollständigen Verdampfung der Flüssig¬ oder Korngrenzphase beträgt die Dichte des somit reinen Siliziumkarbids SiC noch 3.21 g/cm3. Es hat sich gezeigt, dass mit einer Heizdauer von ungefähr einer Stunde die maximalste Dichte und somit der minimalste Gewichtsverlust erhalten wird. Der Gewichtsverlust nimmt als Funktion der Zeitdauer der Aus¬ heizung linear zu. Um einen elektrischen Isolator mit den gewünschten guten mechanischen und thermomechanischen Eigen¬ schaften zu erhalten muss deshalb die Zeitspanne der Ausheizung optimiert werden. Eine zu kurze Ausheizung hat zur Folge, dass der Sinterungsprozess nicht abgeschlossen ist und somit das Endprodukt nicht die gewünschte mechanische oder chemische Resistenz aufweist. Bei einer zu langen Ausheizung werden jedoch zu viele Sinteradditive verdampft, so dass das End¬ produkt zu einem elektrischen Halbleiter oder Leiter wird.The theoretical density of the final product is not a constant but a function of the composition of the starting materials and the inorganic weight loss during the baking process. This function is shown in FIG. 1 for a mixture of 90 G% silicon carbide SiC, 6 G% aluminum oxide Al 2 0 3 and 4 G% yttrium oxide Y 2 0 3 . If there is no weight loss, the end product will have the same Density like the mixture before sintering, namely 3.296 g / cm 3 . When the liquid or grain boundary phase is completely evaporated, the density of the pure silicon carbide SiC is still 3.21 g / cm 3 . It has been shown that the maximum density and thus the minimum weight loss is obtained with a heating time of approximately one hour. The weight loss increases linearly as a function of the heating period. In order to obtain an electrical insulator with the desired good mechanical and thermomechanical properties, the period of time for the heating must therefore be optimized. If the bake is too short, the sintering process is not complete and the end product does not have the desired mechanical or chemical resistance. If the heating is too long, however, too many sintering additives are evaporated, so that the end product becomes an electrical semiconductor or conductor.
In Figur 2 ist in einer graphischen Darstellung der spezifische Widerstand in Funktion des Volumengehaltes an den genannten Sinteradditiven dargestellt. Die Bezugszahl A bezeichnet reines Siliziumkarbid SiC. Der Bereich von A bis B zeigt den spezifi¬ schen Widerstandswert für rohstoffbedingte Verunreinigungen, B bis C die sinteradditivbedingte Dotierung der SiC-Kristall- gitter. C kennzeichnet die maximale Loeslichkeit der Sinter¬ additive in Siliziumkarbid. Im Bereich C bis D nehmen die Korn¬ grenzphasen-Anteile zu, wobei die einzelnen SiC-Körner noch un¬ vollständig umhüllt sind. Im Punkt D sind annähernd alle SiC- Körner umhüllt. Ab Punkt D bis zu E nehmen zwar die Korngrenz- phasenanteile noch zu, diese Zunahme wirkt sich jedoch nicht mehr auf den elektrischen Widerstand aus.FIG. 2 shows a graphical representation of the specific resistance as a function of the volume content of the sintering additives mentioned. The reference number A denotes pure silicon carbide SiC. The range from A to B shows the specific resistance value for impurities due to the raw material, B to C the doping of the SiC crystal lattice due to the sintering additive. C denotes the maximum solubility of the sintering additives in silicon carbide. The grain boundary phase fractions increase in the area C to D, the individual SiC grains still being incompletely coated. At point D almost all SiC grains are coated. From point D to E, the grain boundary phase fractions increase, but this increase no longer affects the electrical resistance.
Aus Figur 2 ist ersichtlich, dass bei einem Gehalt von kleiner als 5 V% an Sinteradditiven das Endprodukt kein elektrischer Isolator mehr ist. Folgende Erklärung ist möglich: bei einem Korngrenzphasenanteil von 8 V% sind sämtliche Siliziumkarbid- Körner annähernd vollständig von Korngrenzphasen umgeben, bei 5 V% jedoch erst teilweise. Messungen haben ergeben, dass die mittlere Dicke der mit 9.2 G% beteiligten Korngrenzphase rund 30 nm beträgt und der mittlere Abstand zwischen den zwei SiC- Körnern im Bereich von 60 nm liegt.It can be seen from FIG. 2 that with a content of less than 5 V% of sintering additives, the end product is no longer an electrical insulator. The following explanation is possible: for one Grain boundary phase fraction of 8 V%, all silicon carbide grains are almost completely surrounded by grain boundary phases, but only partially at 5 V%. Measurements have shown that the average thickness of the grain boundary phase involved with 9.2 G% is around 30 nm and the average distance between the two SiC grains is in the range of 60 nm.
Ein gemäss Beispiel 1 hergestelltes Siliziumkarbid ist in Figur 3 dargestellt. Die Korngrenzphase weist eine geringe Ober¬ flächenspannung und dadurch einen kleinen Benetzungswinkel und eine gute Benetzung auf. Dies bewirkt eine mindestens annähernd vollständige Umhüllung sämtlicher SiC-Körner durch die Drei- Komponenten-Flüssigphasenschmelze D. Die elektrisch leitenden SiC-Körner bleiben auch nach der Abkühlung des Sinterkörpers von der Korngrenzphase vollständig umhüllt, so dass ein hoch- ohmiger elektrischer Isolator entsteht.A silicon carbide produced according to example 1 is shown in FIG. 3. The grain boundary phase has a low surface tension and therefore a small wetting angle and good wetting. This results in an at least approximately complete encapsulation of all SiC grains by the three-component liquid phase melt D. The electrically conductive SiC grains remain completely enveloped by the grain boundary phase even after the sintered body has cooled, so that a high-resistance electrical insulator is produced.
In einem Sinterverfahren gemäss dem Stand der Technik wird jedoch als weiteres Sinteradditiv Kohlenstoff C beigemengt. Ein derartiger Sinter-Körper ist in Figur 4 dargestellt. Durch diese Beimengung wird das auf der Oberfläche vorhandene Si02 reduziert oder vollständig eliminiert. Die Zwei-Komponenten- Flüssigphasenschmelze Z, bestehend aus A1203 und Y20-,, weist eine hohe Oberflächenspannung und damit einen grossen Benetzungswinkel und eine schlechte Benetzung auf. Sie ermöglicht keine vollständige Umhüllung aller SiC-Körner. Beim Abkühlen des Sinter-Körpers zieht sich die Flüssigphase überwiegend in die Tripel-Punkte T, das heisst in die grössten Zwischenräume zwischen den SiC-Körnern, zurück. Ein bedeutender Teil der SiC-Körner bleibt im direkten Kontakt untereinander, so dass ein so gesinterter SiC-Körper kein elektrischer Isolator ist. In a sintering process according to the prior art, however, carbon C is added as a further sintering additive. Such a sintered body is shown in Figure 4. This admixture reduces or completely eliminates the Si0 2 present on the surface. The two-component liquid phase melt Z, consisting of A1 2 0 3 and Y 2 0- ,, has a high surface tension and thus a large wetting angle and poor wetting. It does not allow complete encapsulation of all SiC grains. When the sintered body cools, the liquid phase predominantly retracts into the triple points T, that is to say into the largest gaps between the SiC grains. A significant proportion of the SiC grains remain in direct contact with one another, so that a SiC body sintered in this way is not an electrical insulator.

Claims

Patentansprüche claims
1. Verfahren zur Herstellung von elektrisch isolierendem Siliziumkarbid mittels Flüssigphasen-Sintern, wobei vor dem Sintern einem Siliziumkarbid-Pulver Sinteradditive zugegeben werden, dadurch gekennzeichnet, dass die Menge der zugegebenen Sinteradditive, die Sintertemperatur und die Sinterungszeitspanne als Prozessparameter gewählt werden und dass mittels dieser Parameter die Menge der im gesinterten Siliziumkarbid verbleibenden Korngrenzphase vordefiniert wird.1. A process for the production of electrically insulating silicon carbide by means of liquid phase sintering, sintering additives being added to a silicon carbide powder prior to sintering, characterized in that the amount of sintering additives added, the sintering temperature and the sintering time period are selected as process parameters and by means of these parameters the amount of the grain boundary phase remaining in the sintered silicon carbide is predefined.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die eine derartige Menge an Korngrenzphase im gesinterten Siliziumkarbid behalten wird, dass mindestens annähernd alle im gesinterten Siliziumkarbid enthaltenen Silizium¬ karbid-Körner vollständig umhüllt werden.2. The method according to claim 1, characterized in that such an amount of grain boundary phase is retained in the sintered silicon carbide that at least approximately all of the silicon carbide grains contained in the sintered silicon carbide are completely encased.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Sinteradditive Aluminiumoxyd A1203 und Yttriumoxyd Y203 verwendet werden und dass mit der an der Oberfläche des Siliziumkarbidpulvers vorhandenen Siliziumoxid Si02 eine Drei-Komponenten-Korngrenzphase gebildet wird.3. The method according to claim 1, characterized in that aluminum oxide A1 2 0 3 and yttrium oxide Y 2 0 3 are used as sintering additives and that a three-component grain boundary phase is formed with the silicon oxide Si0 2 present on the surface of the silicon carbide powder.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die Menge der im gesinterten Siliziumkarbid verbleibenden Korn¬ grenzphase mindestens 8 Volumenprozent beträgt.4. The method according to claim 3, characterized in that the amount of grain boundary phase remaining in the sintered silicon carbide is at least 8 percent by volume.
5. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass annähernd 6 Gewichtsprozent Aluminiumoxyd A1203 und annähernd 4 Gewichtsprozent Yttriumoxyd Y203 als Sinter¬ additive zugegeben wird. 5. The method according to claim 3, characterized in that approximately 6 weight percent aluminum oxide A1 2 0 3 and approximately 4 weight percent yttrium oxide Y 2 0 3 is added as a sintering additive.
6. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass annähernd 7.2 Gewichtsprozent Aluminiumoxyd Al203 und annähernd 4.8 Gewichtsprozent Yttriumoxyd Y203 als Sinter¬ additive zugegeben werden.6. The method according to claim 3, characterized in that approximately 7.2 weight percent aluminum oxide Al 2 0 3 and approximately 4.8 weight percent yttrium oxide Y 2 0 3 are added as sintering additives.
7. Verfahren nach Anspruch 1 oder 6, dadurch gekennzeichnet, dass die Sintertemperatur 1800°C - 1900°C und die Sinterungszeitspanne annähernd eine Stunde beträgt.7. The method according to claim 1 or 6, characterized in that the sintering temperature is 1800 ° C - 1900 ° C and the sintering time period is approximately one hour.
8. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass in einer Argonatmosphäre gesintert wird.8. The method according to claim 1, characterized in that sintering in an argon atmosphere.
9. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass drucklos oder mittels Heisspressen gesintert wird.9. The method according to claim 1, characterized in that sintered without pressure or by means of hot presses.
10. Gesintertes Siliziumkarbid, hergestellt nach dem Verfahren nach einem der Ansprüche 1-9, dadurch gekennzeichnet, dass die Menge der im gesinterten Siliziumkarbid verbleibenden Korngrenzphase ausreicht, mindestens annähernd alle im gesinterten Siliziumkarbid enthaltenen Siliziumkarbid- Körner vollständig zu umhüllen.10. Sintered silicon carbide, produced by the method according to any one of claims 1-9, characterized in that the amount of the grain boundary phase remaining in the sintered silicon carbide is sufficient to completely encase at least approximately all of the silicon carbide grains contained in the sintered silicon carbide.
11. Gesintertes Siliziumkarbid, hergestellt nach dem Verfahren nach einem der Ansprüche 1-9, dadurch gekennzeichnet, dass mindestens 8 Volumenprozent an Korngrenzphase vorhanden ist. 11. Sintered silicon carbide, produced by the method according to one of claims 1-9, characterized in that at least 8 percent by volume of grain boundary phase is present.
PCT/CH1996/000253 1995-07-13 1996-07-09 Process for fabricating an electrically insulating silicon carbide WO1997003030A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP96920679A EP0837837A1 (en) 1995-07-13 1996-07-09 Process for fabricating an electrically insulating silicon carbide
AU61864/96A AU6186496A (en) 1995-07-13 1996-07-09 Process for fabricating an electrically insulating silicon carbide
JP9505388A JPH11508868A (en) 1995-07-13 1996-07-09 Manufacturing method of electrically insulating silicon carbide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH207095 1995-07-13
CH2070/95-7 1995-07-13

Publications (1)

Publication Number Publication Date
WO1997003030A1 true WO1997003030A1 (en) 1997-01-30

Family

ID=4225198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH1996/000253 WO1997003030A1 (en) 1995-07-13 1996-07-09 Process for fabricating an electrically insulating silicon carbide

Country Status (4)

Country Link
EP (1) EP0837837A1 (en)
JP (1) JPH11508868A (en)
AU (1) AU6186496A (en)
WO (1) WO1997003030A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19933194A1 (en) * 1999-07-15 2001-01-18 Kempten Elektroschmelz Gmbh Liquid phase sintered SiC moldings with improved fracture toughness and high electrical resistance and process for their production

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019039070A (en) * 2017-08-22 2019-03-14 三菱マテリアル株式会社 SiC sputtering target

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61227968A (en) * 1985-04-02 1986-10-11 京セラ株式会社 Silicon carbide base sintered body and manufacture
EP0251218A2 (en) * 1986-06-26 1988-01-07 Elektroschmelzwerk Kempten GmbH Electrically insulating substrate material of polycrystalline silicon carbide and process of manufacture by not isostatic pressing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61227968A (en) * 1985-04-02 1986-10-11 京セラ株式会社 Silicon carbide base sintered body and manufacture
EP0251218A2 (en) * 1986-06-26 1988-01-07 Elektroschmelzwerk Kempten GmbH Electrically insulating substrate material of polycrystalline silicon carbide and process of manufacture by not isostatic pressing

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 106, no. 16, 20 April 1987, Columbus, Ohio, US; abstract no. 124701, A. SAITO: "Manufacture of sintered silicon carbide articles" XP002017072 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19933194A1 (en) * 1999-07-15 2001-01-18 Kempten Elektroschmelz Gmbh Liquid phase sintered SiC moldings with improved fracture toughness and high electrical resistance and process for their production
US6531423B1 (en) 1999-07-15 2003-03-11 Wacker-Chemie Gmbh Liquid-phase-sintered SiC shaped bodies with improved fracture toughness and a high electric resistance

Also Published As

Publication number Publication date
AU6186496A (en) 1997-02-10
JPH11508868A (en) 1999-08-03
EP0837837A1 (en) 1998-04-29

Similar Documents

Publication Publication Date Title
EP0351004B1 (en) Non-linear voltage-dependent resistor
DE1558662A1 (en) Ceramic composite material
DE3918964A1 (en) CERAMIC HEATING ELEMENT
DE3927083C2 (en)
DE2749215C2 (en) Process for the production of a copper-containing iron powder
DE2642567A1 (en) METAL OXYDE VARISTOR WITH IMPROVED ELECTRICAL PROPERTIES
DE102013224308B4 (en) Sintered boron nitride body and method of making a sintered boron nitride body
DE2525441C3 (en) Electrically insulating filling for an electric tubular heater
DE2934968A1 (en) Sintered silicon carbide product and process for its manufacture
DE60301463T2 (en) Semi-conductive glaze product, method of making the glaze product and insulator coated therewith
DE69707247T2 (en) CERAMIC MULTILAYER CAPACITOR
DE60220773T2 (en) PROCESS FOR PRODUCING A SINTER PRODUCT
DE4233602C2 (en) Process for the production of a dense Si¶3¶N¶4¶ material and its use
DE69708353T2 (en) Sintered body made of silicon nitride
DE69832430T2 (en) PTC material
EP0837837A1 (en) Process for fabricating an electrically insulating silicon carbide
EP0065806B1 (en) Voltage-dependent resistor and its manufacturing process
DE1906522A1 (en) Aluminium nitride yttrium oxide sintered - materials
DE60111915T2 (en) Sintered material of silicon nitride and process for its preparation
DE19834423B4 (en) Use of a sintered ceramic for highly stable NTC inrush current limiters and low-resistance NTC thermistors
DE1257436B (en) Manufacture of a superconducting component from niobium stannide
DE10056734A1 (en) Non-linear voltage-dependent resistor used in switching circuits contains silicon carbide particles doped with aluminum or boron
DE4015358A1 (en) High strength silicon carbide body - contg. dispersed acicular silicon carbide particles
DE1765424A1 (en) CTR semiconductor resistor and process for its manufacture
DE102018200548B3 (en) Ceramic thermocouple and method for its production

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 1997 505388

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1996920679

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1996920679

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: CA

WWW Wipo information: withdrawn in national office

Ref document number: 1996920679

Country of ref document: EP