JPS6346029B2 - - Google Patents
Info
- Publication number
- JPS6346029B2 JPS6346029B2 JP54054483A JP5448379A JPS6346029B2 JP S6346029 B2 JPS6346029 B2 JP S6346029B2 JP 54054483 A JP54054483 A JP 54054483A JP 5448379 A JP5448379 A JP 5448379A JP S6346029 B2 JPS6346029 B2 JP S6346029B2
- Authority
- JP
- Japan
- Prior art keywords
- silicon nitride
- sintered body
- weight
- tungsten
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 28
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 28
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 claims description 10
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 8
- 150000003658 tungsten compounds Chemical class 0.000 claims description 8
- 238000002156 mixing Methods 0.000 claims description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 2
- 230000035939 shock Effects 0.000 description 13
- 239000000843 powder Substances 0.000 description 9
- 239000002994 raw material Substances 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- WQJQOUPTWCFRMM-UHFFFAOYSA-N tungsten disilicide Chemical compound [Si]#[W]#[Si] WQJQOUPTWCFRMM-UHFFFAOYSA-N 0.000 description 7
- 239000000203 mixture Substances 0.000 description 6
- 238000000465 moulding Methods 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 5
- 238000005452 bending Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 3
- 229910010271 silicon carbide Inorganic materials 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 3
- 229910021342 tungsten silicide Inorganic materials 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000007731 hot pressing Methods 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 238000001272 pressureless sintering Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- WNUPENMBHHEARK-UHFFFAOYSA-N silicon tungsten Chemical compound [Si].[W] WNUPENMBHHEARK-UHFFFAOYSA-N 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Ceramic Products (AREA)
Description
本発明は、改善された特性を有する窒化珪素質
焼結体に関する。
窒化珪素質焼結体は高温強度が大きい、耐熱衝
撃性が優れている等の好ましい特性を有するた
め、高温ガスターピン用部品、デイーゼルエンジ
ン用部品等の高強度耐熱性部品に積極的に利用さ
れている。
従来、ホツトプレス法により高密度の窒化珪素
質焼結体を製造する方法はよく知られているが、
成形体の寸法、形状に制約があり、比較的単純な
形状のものしか作れないため、工業的方法として
満足できるものとは言えない。
そこで、ホツトプレス法に代えて無加圧焼成法
により、高密度の窒化珪素焼結体を得る種々の方
法が提案されており、高密度化の点でほぼ満足し
得る成果が得られ始めている。
しかしながら、熱的に極めて過酷な条件下で使
用される高強度耐熱性部品としては、耐熱衝撃性
の点で未だ満足し得るものではない。
したがつて、本発明は高密度、高強度でかつ熱
的に過酷な条件下でも充分使用に耐える優れた耐
熱衝撃性を有する窒化珪素質焼結体を提供するこ
とを目的とするものである。
本発明によれば、窒化珪素70〜95重量%と酸化
アルミニウム及び酸化イツトリウムの合量5〜30
重量%(但しAl2O3/Y2O3=1:1〜5:1)に
タングステン化合物1.5〜15重量%が配合されて
得られた焼結体で、二珪化タングステンを、β相
窒化珪素に対するX線強度比(WSi2/β−
Si3N4)で5%以上含有し、かつ対理論密度比が
95%以上であることを特徴とする窒化珪素質焼結
体が提供される。
該窒化珪素質焼結体の製造方法の具体例を挙げ
ると、まず主成分の窒化珪素粉末、副成分の酸化
アルミニウムと酸化イツトリウムを所定の配合量
で混合する。
次に、この混合物に対して炭化タングステン、
酸化タングステン等のタングステン化合物を所定
量添加し、平均粒径が2μm以下になるようにボ
ールミル又は振動ミルで混合粉枠する。次いで、
乾式粉枠の場合には粉枠後に有機質の粘結剤例え
ばステアリン酸を加え、湿式粉枠の場合には2μ
m以下に粉枠できた時点で溶解性の粘結剤例えば
ポリエチレングリコールを更に加え数時間混合し
た後、噴霧乾燥並びに造粒を行つて、それぞれ成
形用原料を得る。
その後、この成形用原料を用いて、例えば加圧
成形し所望の成形体にした後、これを非酸化性雰
囲気中で1500〜1850℃の温度範囲で焼成して窒化
珪素質焼結体を得るのである。
このようにして製造された焼結体は、理論密度
比、曲げ強度も優れており、しかも耐熱衝撃性が
向上し、これにより高強度耐熱性部品として有効
に適用することができる。
上記諸特性は窒化珪素と金属酸化物からなる焼
結体組織中に生成される珪素−タングステン化合
物(タングステンシリサイド)の量によつて影響
され、タングステンシリサイドの一種である二珪
化タングステン(WSi2)をX線粉末法によつて
検出できる限界値以上、すなわちWSi2のβ−
Si3N4に対する割合が焼結体のX線回折による最
高強度回折線の強度比(X線強度比)で2%以
上、好ましくは5%以上となるように積極的に生
成させた場合、特に耐熱衝撃性が向上することを
実験により確認した。
本発明においては、その焼成時には従来法で使
用されるようなカーボン又は黒鉛製の容器あるい
はモールドを用いず、炭化珪素製等の遊離炭素の
ないものを使用する。その理由は、遊離炭素の存
在は、二珪化タングステンの生成を阻害するため
好ましくないからである。
なお、焼結体組織中に金属化合物であるタング
ステンシリサイドが生成されることにより、セラ
ミツクの欠点である靭性も向上される。更に、本
発明において添加されるタングステン化合物は焼
結促進にも寄与すると考えられ、その結果、比較
的低温の領域での焼結が可能となり、かつ焼結時
間も短縮される。
本発明における原料主成分の窒化珪素には、α
相窒化珪素とβ相窒化珪素とがあり、WSi2を反
応生成させるにはどちらでもよいが、焼結体の高
強度化のためにはα相を70%以上含む窒化珪素を
用いるのがよい。
なお、α相窒化珪素を用いた場合でも、通常、
焼成時の加熱処理によつて、β相に変化するた
め、焼結体の窒化珪素は実質的にβ相窒化珪素と
なつている。
副成分として用いる酸化アルミニウムと酸化イ
ツトリウムの組合わせからなる金属酸化物の重量
比は1:1〜5:1、好ましく1:1〜3:1の
範囲に選ばれる。その理由は、酸化イツトリウム
量が酸化アルミニウム量より多くなると、WSi2
の生成量が極めて少なくなる結果、焼結体の靭
性、耐熱衝撃性が低下し、また酸化アルミニウム
量が酸化イツトリウム量の5倍を越えると耐熱衝
撃性の低下を招くからである。更に、両者の合量
として5〜30重量%の範囲を選んだ理由は、5重
量%未満になると焼結性が悪くなり、30重量%を
越えると、窒化珪素の本来の特性、即ち高温強
度、耐熱性、耐熱衝撃性が低下するからである。
なお、酸化イツトリウムはこれに代わつて酸化
イツトリウムを60%以上含んだ希土類の酸化物を
用いても、WSi2の生成には差し支えない。
次に、窒化珪素と金属酸化物との混合物に対し
て添加されるタングステン化合物の添加量は前記
混合物重量に対して1.5〜15重量%の範囲に選択
する必要がある。なぜならば、1.5重量%未満で
あれば所望の耐熱衝撃性、靭性が得られないし、
15重量%を越えると耐酸化性が低下するからであ
る。タングステン化合物の添加方法としては、原
料粉砕時に超硬ボール(WC製)を用い、所定量
の炭化タングステンを原料に混入させるようにし
てもよい。
上述した各成分からなる混合物の焼結は、窒
素、アルゴン等の非酸化性雰囲気中で1500〜1850
℃の温度領域で行われる。
次に、本発明の実施例について説明する。
α相を80%含有した窒化珪素粉末に酸化アルミ
ニウム、酸化イツトリウムを各種の割合で配合し
て得た混合粉末に、更に炭化タングステンを該混
合粉末重量に対して各種重量%を添加して種々の
原料粉末を調製した。
次いで、各原料粉末を振動ミルにより平均粒径
が2μm以下になるように粉砕した後、ポリエチ
レングリコールを5%添加し、スプレードライヤ
ーにより成形用原料を得た。かくして得られた各
成形用原料を1000Kg/cm2の成形圧で5mm×12mm×
35mmの棒状体に成形した後、脱粘結剤処理を行つ
た。
その後、各成形体を炭化珪素製ルツボに入れ、
遊離炭素を除去したカーボンヒータを用い窒素ガ
スで炉内を充分置換した後、保持温度の1650℃ま
で徐々に昇温させ、この温度で2時間保持した。
その後徐々に室温まで降温させて焼結体試料No.1
〜18を得た。また、炭化珪素製ルツボの代わり
に、従来から用いられている黒鉛製ルツボ内に成
形体を入れる以外は、前述と同様の方法で焼成
し、試料No.19の焼結体を得た。
各試料の特性は表1に示す。
The present invention relates to a silicon nitride sintered body having improved properties. Silicon nitride sintered bodies have favorable properties such as high high-temperature strength and excellent thermal shock resistance, so they are actively used for high-strength, heat-resistant parts such as high-temperature gas star pin parts and diesel engine parts. There is. Conventionally, the method of manufacturing high-density silicon nitride sintered bodies by hot pressing is well known;
Since there are restrictions on the size and shape of the molded body, and only relatively simple shapes can be produced, this cannot be said to be a satisfactory industrial method. Therefore, various methods have been proposed for obtaining a high-density silicon nitride sintered body using a pressureless sintering method instead of the hot pressing method, and almost satisfactory results in terms of increasing the density have begun to be obtained. However, as a high-strength, heat-resistant component used under extremely thermally severe conditions, it is still not satisfactory in terms of thermal shock resistance. Therefore, an object of the present invention is to provide a silicon nitride sintered body that has high density, high strength, and excellent thermal shock resistance that can sufficiently withstand use even under harsh thermal conditions. . According to the present invention, the total amount of silicon nitride is 70-95% by weight and aluminum oxide and yttrium oxide is 5-30% by weight.
A sintered body obtained by blending 1.5 to 15 weight % of a tungsten compound to the weight percentage (Al 2 O 3 /Y 2 O 3 = 1:1 to 5:1), tungsten disilicide is mixed with β-phase nitridation. X-ray intensity ratio to silicon (WSi 2 /β-
Si 3 N 4 ) containing 5% or more, and the theoretical density ratio is
Provided is a silicon nitride sintered body characterized in that the silicon nitride content is 95% or more. To give a specific example of the method for producing the silicon nitride sintered body, first, silicon nitride powder as a main component and aluminum oxide and yttrium oxide as subcomponents are mixed in predetermined amounts. Next, to this mixture, tungsten carbide,
A predetermined amount of a tungsten compound such as tungsten oxide is added, and the mixture is mixed in a powder frame using a ball mill or vibration mill so that the average particle size is 2 μm or less. Then,
In the case of a dry powder frame, an organic binder such as stearic acid is added after the powder frame, and in the case of a wet powder frame, 2μ
When a powder frame having a size of less than m is obtained, a soluble binder such as polyethylene glycol is further added and mixed for several hours, followed by spray drying and granulation to obtain molding raw materials. Thereafter, using this molding raw material, for example, pressure molding is performed to form a desired molded body, which is then fired at a temperature range of 1500 to 1850°C in a non-oxidizing atmosphere to obtain a silicon nitride sintered body. It is. The sintered body produced in this way has excellent theoretical density ratio and bending strength, and has improved thermal shock resistance, so that it can be effectively used as a high-strength heat-resistant component. The above characteristics are affected by the amount of silicon-tungsten compound (tungsten silicide) generated in the sintered body structure consisting of silicon nitride and metal oxide, and tungsten disilicide (WSi 2 ), a type of tungsten silicide, is above the limit value that can be detected by the X-ray powder method, that is, β- of WSi 2
When the ratio to Si 3 N 4 is actively generated so that the intensity ratio (X-ray intensity ratio) of the highest intensity diffraction line by X-ray diffraction of the sintered body is 2% or more, preferably 5% or more, In particular, it was confirmed through experiments that thermal shock resistance was improved. In the present invention, during firing, a container or mold made of carbon or graphite, which is used in conventional methods, is not used, but a container or mold made of silicon carbide or the like that does not contain free carbon is used. This is because the presence of free carbon is undesirable because it inhibits the formation of tungsten disilicide. In addition, since tungsten silicide, which is a metal compound, is generated in the structure of the sintered body, toughness, which is a drawback of ceramics, is also improved. Furthermore, it is believed that the tungsten compound added in the present invention also contributes to promoting sintering, and as a result, sintering can be performed at a relatively low temperature and the sintering time can also be shortened. Silicon nitride, which is the main component of the raw material in the present invention, includes α
There are two types of silicon nitride: phase silicon nitride and β-phase silicon nitride. Either one may be used to react and generate WSi 2 , but in order to increase the strength of the sintered body, it is better to use silicon nitride containing 70% or more of the α phase. . Note that even when α-phase silicon nitride is used, normally
The silicon nitride in the sintered body is substantially β-phase silicon nitride because it changes to the β-phase by the heat treatment during firing. The weight ratio of the metal oxide consisting of a combination of aluminum oxide and yttrium oxide used as a subcomponent is selected in the range of 1:1 to 5:1, preferably 1:1 to 3:1. The reason is that when the amount of yttrium oxide exceeds the amount of aluminum oxide, WSi 2
As a result, the toughness and thermal shock resistance of the sintered body are reduced, and if the amount of aluminum oxide exceeds 5 times the amount of yttrium oxide, the thermal shock resistance will be reduced. Furthermore, the reason why we chose a range of 5 to 30% by weight as the total amount of both is that if it is less than 5% by weight, sinterability will deteriorate, and if it exceeds 30% by weight, the original properties of silicon nitride, that is, high temperature strength, will deteriorate. This is because heat resistance and thermal shock resistance decrease. Note that even if a rare earth oxide containing 60% or more of yttrium oxide is used instead of yttrium oxide, there is no problem in producing WSi 2 . Next, the amount of the tungsten compound added to the mixture of silicon nitride and metal oxide must be selected in the range of 1.5 to 15% by weight based on the weight of the mixture. This is because if it is less than 1.5% by weight, the desired thermal shock resistance and toughness cannot be obtained.
This is because if it exceeds 15% by weight, oxidation resistance will decrease. As a method for adding the tungsten compound, a predetermined amount of tungsten carbide may be mixed into the raw material using a cemented carbide ball (made by WC) during raw material crushing. The mixture consisting of the above-mentioned components is sintered in a non-oxidizing atmosphere such as nitrogen or argon at a temperature of 1500 to 1850.
It is carried out in the temperature range of °C. Next, examples of the present invention will be described. To a mixed powder obtained by blending silicon nitride powder containing 80% α phase with aluminum oxide and yttrium oxide in various proportions, tungsten carbide was further added in various weight percentages based on the weight of the mixed powder. A raw material powder was prepared. Next, each raw material powder was pulverized using a vibration mill so that the average particle size was 2 μm or less, 5% of polyethylene glycol was added, and a molding material was obtained using a spray dryer. Each molding raw material obtained in this way was molded into 5mm x 12mm x molding pressure of 1000Kg/ cm2.
After molding into a 35 mm rod-shaped body, a debinding agent treatment was performed. After that, each molded body was placed in a silicon carbide crucible,
After the interior of the furnace was sufficiently purged with nitrogen gas using a carbon heater that had removed free carbon, the temperature was gradually raised to the holding temperature of 1650°C and held at this temperature for 2 hours.
After that, the temperature was gradually lowered to room temperature and the sintered body sample No.1
Got ~18. Further, the sintered body of sample No. 19 was obtained by firing in the same manner as described above, except that the molded body was placed in a conventionally used graphite crucible instead of the silicon carbide crucible. The characteristics of each sample are shown in Table 1.
【表】
*印の試料は本発明の範囲外である。
なお、表中の熱衝撃試験結果は、ある温度で20
分間保持後、水中(20℃)に投下して試料の曲げ
強度に劣化を来さない限界温度を示し、WSi2の
生成量は焼結体中の二珪化タングステンの(101)
面とβ相窒化珪素の210面とのX線強度比
(WSi2/β−Si3N4)の百分率で表したものであ
る。
表1の結果から、本発明実施例の試料No.1〜
9、及びNo.17〜18の焼結体は、WSi2/β−Si3N4
のX線強度比が5〜101.2%、理論密度比が95〜
99%、曲げ強度が40.0〜57.4Kg/mm2、そして耐熱
衝撃温度が420〜600℃であつて、本発明範囲外の
比較例のNo.10〜16、及びNo.19のものに比し、曲げ
強度、及び耐熱衝撃性の双方の特性が優れている
ことが判る。
以上詳述したように、本発明の窒化珪素質焼結
体は、窒化珪素と酸化アルミニウムと酸化イツト
リウムとのの混合物に対して所定量のタングステ
ン化合物を添加して、焼成体組織中に所定量比の
2珪化タングステンを反応生成させたもので、高
密度、高強度で、かつ耐熱衝撃性に優れたもので
ある。[Table] Samples marked with * are outside the scope of the present invention.
The thermal shock test results in the table are 20% at a certain temperature.
After holding the sample for 1 minute, it was dropped into water (20℃) to show the limit temperature at which the bending strength of the sample did not deteriorate.
It is expressed as a percentage of the X-ray intensity ratio (WSi 2 /β-Si 3 N 4 ) between the plane and the 210 plane of β-phase silicon nitride. From the results in Table 1, it can be seen that samples No. 1-
9 and Nos. 17 to 18 are WSi 2 /β-Si 3 N 4
X-ray intensity ratio is 5-101.2%, theoretical density ratio is 95-101.2%
99%, bending strength of 40.0 to 57.4 Kg/mm 2 , and thermal shock resistance temperature of 420 to 600°C, compared to Comparative Examples Nos. 10 to 16 and No. 19, which are outside the scope of the present invention. It can be seen that both the bending strength and thermal shock resistance properties are excellent. As detailed above, the silicon nitride sintered body of the present invention is produced by adding a predetermined amount of a tungsten compound to a mixture of silicon nitride, aluminum oxide, and yttrium oxide, and adding a predetermined amount of tungsten compound into the structure of the sintered body. It is a reaction product of tungsten disilicide with a high density and high strength, and has excellent thermal shock resistance.
Claims (1)
び酸化イツトリウムの合量5〜30重量%(但し
Al2O3/Y2O3=1:1〜5:1)に、タングステ
ン化合物1.5〜15重量%が配合されて得られた焼
結体で、二珪化タングステンを、β相窒化珪素に
対するX線強度比(WSi2/β−Si3N4)で5%以
上含有し、かつ対理論密度比が95%以上であるこ
とを特徴とする窒化珪素質焼結体。1 70-95% by weight of silicon nitride and 5-30% by weight of aluminum oxide and yttrium oxide (however,
A sintered body obtained by blending 1.5 to 15% by weight of a tungsten compound to Al 2 O 3 /Y 2 O 3 = 1: 1 to 5:1). A silicon nitride sintered body characterized by containing 5% or more in linear strength ratio (WSi 2 /β-Si 3 N 4 ) and having a theoretical density ratio of 95% or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5448379A JPS55149175A (en) | 1979-05-01 | 1979-05-01 | Manufacture of silicon nitride sintered body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5448379A JPS55149175A (en) | 1979-05-01 | 1979-05-01 | Manufacture of silicon nitride sintered body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS55149175A JPS55149175A (en) | 1980-11-20 |
JPS6346029B2 true JPS6346029B2 (en) | 1988-09-13 |
Family
ID=12971897
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5448379A Granted JPS55149175A (en) | 1979-05-01 | 1979-05-01 | Manufacture of silicon nitride sintered body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS55149175A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4280973A (en) * | 1979-11-14 | 1981-07-28 | Ford Motor Company | Process for producing Si3 N4 base articles by the cold press sinter method |
US5178647A (en) * | 1983-07-29 | 1993-01-12 | Kabushiki Kaisha Toshiba | Wear-resistant member |
JPS6051668A (en) * | 1983-07-29 | 1985-03-23 | 株式会社東芝 | Antiabrasive member |
US7402541B2 (en) * | 2005-04-06 | 2008-07-22 | Michael Cohen | Silicon nitride compositions |
-
1979
- 1979-05-01 JP JP5448379A patent/JPS55149175A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS55149175A (en) | 1980-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2842723B2 (en) | Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same | |
JP3559382B2 (en) | Method for producing silicon nitride based sintered body | |
JPS6346029B2 (en) | ||
JPS5919903B2 (en) | Hot press manufacturing method of SiC sintered body | |
JP2649220B2 (en) | Silicon nitride / silicon carbide composite powder, composite compact, method for producing them, and method for producing silicon nitride / silicon carbide composite sintered body | |
JPS6212663A (en) | Method of sintering b4c base fine body | |
JPH06116045A (en) | Silicon nitride sintered compact and its production | |
JP2980342B2 (en) | Ceramic sintered body | |
JPH07237971A (en) | Production of silicon nitride reaction sintered compact | |
JP3271123B2 (en) | Method for producing composite of silicon nitride and boron nitride | |
JP2746761B2 (en) | Method for producing silicon nitride-silicon carbide composite sintered body | |
JP3564164B2 (en) | Silicon nitride sintered body and method for producing the same | |
JP2892186B2 (en) | Method for producing silicon nitride-silicon carbide composite sintered body | |
JP3979680B2 (en) | Silicon nitride powder for silicon nitride sintered body, silicon nitride sintered body and method for producing the same | |
JP3241215B2 (en) | Method for producing silicon nitride based sintered body | |
JP2734755B2 (en) | Method for producing high-temperature high-strength silicon nitride sintered body | |
JPS59227776A (en) | Manufacture of silicon nitride sintered body | |
JP2826080B2 (en) | Silicon nitride / silicon carbide composite sintered body and method for producing composite powder | |
JPH01219062A (en) | Production of silicon nitride sintered body | |
JP2706304B2 (en) | Method for producing silicon nitride sintered body | |
JP3567001B2 (en) | Method for producing composite sintered body of silicon carbide and silicon nitride | |
JPH0559074B2 (en) | ||
JP2746760B2 (en) | Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same | |
JPH0559073B2 (en) | ||
JPS6121976A (en) | Manufacture of silicon nitride base sintered body |