JP4532793B2 - Sintering aid for aluminum-containing copper-based alloy powder, and sintering alloy powder containing the same - Google Patents

Sintering aid for aluminum-containing copper-based alloy powder, and sintering alloy powder containing the same Download PDF

Info

Publication number
JP4532793B2
JP4532793B2 JP2001239184A JP2001239184A JP4532793B2 JP 4532793 B2 JP4532793 B2 JP 4532793B2 JP 2001239184 A JP2001239184 A JP 2001239184A JP 2001239184 A JP2001239184 A JP 2001239184A JP 4532793 B2 JP4532793 B2 JP 4532793B2
Authority
JP
Japan
Prior art keywords
aluminum
sintering
alloy powder
powder
sintering aid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001239184A
Other languages
Japanese (ja)
Other versions
JP2003049206A (en
Inventor
省三 永井
義朗 新見
佐千子 益岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP2001239184A priority Critical patent/JP4532793B2/en
Publication of JP2003049206A publication Critical patent/JP2003049206A/en
Application granted granted Critical
Publication of JP4532793B2 publication Critical patent/JP4532793B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、アルミニウム青銅やアルミニウム黄銅等のアルミニウム含有銅系合金粉を焼結するための焼結助剤に関する。また本発明は、この焼結助剤を含む焼結用のアルミニウム含有銅系合金粉に関する。
【0002】
【従来の技術】
アルミニウム青銅やアルミニウム黄銅等のアルミニウム含有銅系合金は、優れた機械的特定および耐食性を有しており、種々の産業製品に用いられている。このアルミニウム含有銅系合金の加工方法の一つとして、従来より、合金粉を焼結する粉末冶金法が知られている。
しかしながら、一般的に、アルミニウム含有銅系合金粉は、焼結時にその表面に生成する酸化アルミニウムの皮膜が焼結を著しく阻害するので、十分な強度を有する焼結体を得ることができない。
そこで、従来より、アルミニウム含有銅系合金粉の焼結を促進するための焼結助剤が検討されてきた。
【0003】
例えば、特公昭48−28246号には、アルカリ金属又はアルカリ土類金属のフッ化物から選ばれた1種又は2種以上から成るアルミニウム含有青銅合金粉のための焼結助剤が開示されている。
しかしながら、特公昭48−28246号に記載の焼結助剤のうち、アルカリ金属のフッ化物は、焼結時に合金粉の表面に生成する酸化アルミニウムの皮膜を分解して焼結を促進するが、アルカリ金属のフッ化物は腐食性が高く、焼結体や焼結炉を損傷させる。
【0004】
一方、アルカリ土類金属のフッ化物は、極めて安定な化合物であり、その融点も高く、例えばフッ化カルシウムの融点は1360℃であり、またフッ化マグネシウムの融点は1260である。従って、アルカリ土類金属のフッ化物を単独でアルミニウム含有銅系合金粉の焼結助剤として添加しても、その焼結温度ではこれらのフッ化物は溶融することはないので、合金粉の表面に生成した酸化アルミニウムと反応し難く、その焼結を十分に促進することは困難である。さらに、上記のように、アルカリ土類金属のフッ化物は、融点も高く、酸化アルミニウムとの反応も進み難いので、製品である焼結体に焼結助剤が残存しやすい。
【0005】
また、特許第2680832号には、Znを30〜50wt%含み残部がCuである−280メッシュのCu−Zn合金粉と、Alを30〜50wt%含み残部がCuである−280メッシュCu−Al合金粉と−250メッシュのCu粉とを所定の割合で配合し、それに焼結助剤としてフッ化物を0.05〜1wt%混合し、得られた混合物を成形した圧粉体を850℃〜950℃で焼結し、ついで、得られた焼結部材を500〜850℃に加熱後103℃/s以上の冷却速度で急冷し、その後焼結部材に1〜3%の残留歪が生じる範囲で引張応力を加え、再度500〜850℃に加熱後、103℃/s以上の冷却速度で急冷することを特徴とするCu−Zn−Al焼結超弾性合金の製造方法が記載されている。
【0006】
しかしながら、特許第2680832号に記載のフッ化アルミニウムは、超弾性のアルミニウム含有黄銅合金を製造するために所定割合で混合された銅亜鉛合金粉と銅アルミニウム合金粉との混合粉に対しては有効な焼結助剤となり得るが、一般的には、フッ化アルミニウム単独ではアルミニウム含有銅系合金粉の焼結を十分に促進することはできない。
即ち、フッ化アルミニウムもそれ自身は安定な化合物であるが、昇華性を有しているため、アルミニウム含有銅系合金粉に単独で添加されたフッ化アルミニウムは、その焼結時において昇華し、合金粉の表面を保護して酸化アルミニウムの生成を防止する役割を果たす。しかしながら蒸気圧が高いため、気化したフッ化アルミニウムは比較的早期に系外に排出されてしまう。従って、フッ化アルミニウム単独では、アルミニウム含有銅系合金粉の焼結を十分に促進することはできない。
【0007】
【発明が解決しようとする課題】
そこで本発明は、焼結体や焼結炉を腐食することなく、アルミニウム含有銅系合金粉の焼結を更に促進することができる焼結助剤、並びにこれを含む焼結用合金粉を提供することを課題とする。
【0008】
【課題を解決するための手段】
本発明者らは上記の課題を解決すべく種々検討を重ねた結果、フッ化アルミニウムに、フッ化カルシウムおよびフッ化マグネシウムから選択される少なくとも1種類を1〜70重量%混合してなるアルミニウム含有銅系合金粉のための焼結助剤とすることによって解決されることを見出した。
特に、上記の焼結助剤を0.02〜0.5重量%の範囲で含むアルミニウム含有銅系合金粉は、優れた機械的強度と耐腐食性とを備えた焼結体となる。
以下に、本発明を更に詳細に説明する。
【0009】
【発明の実施の形態】
即ち、本発明の焼結助剤は、フッ化アルミニウムと、フッ化カルシウムおよびフッ化マグネシウムから選択される少なくとも1種類とから成る混合物である。このような混合物からなる焼結助剤は、850〜900℃程度の融点を有することに加え、その蒸気圧もフッ化アルミニウム単体の場合に比べて低くなる。一般に、アルミニウム含有銅系合金粉の焼結温度は850〜950℃であるので、この焼結温度で本発明の焼結助剤は溶融しながら徐々に蒸発し、アルミニウム含有銅系合金粉の表面を保護して酸化アルミニウムの生成を抑制する。しかもフッ化アルミニウム単体の場合よりも蒸気圧が低いため、上記合金粉表面を保護する効果が持続する。これによって、合金粉は、その表面に生成する酸化アルミニウムの皮膜によって阻害されることなく、強固に焼結して、所定の機械的強度および耐腐食性を有する焼結体となる。しかも、本発明の焼結助剤は、最終的にはフッ化アルミニウム単独の場合と同様に、蒸発・揮散するので、製品としての焼結体中には焼結助剤は殆ど残存しない。
【0010】
このように、本発明による焼結助剤は、合金粉の焼結温度においては液体となって合金紛との接触を向上するので、特公昭48−28246号に記載のアルカリ土類金属のフッ化物の単体からなる焼結助剤や、特許第2680832号に記載のフッ化アルミニウムの単体からなる焼結助剤よりも、合金粉の焼結を遥かに促進する。
【0011】
本発明によると、フッ化アルミニウムとして、50μmを超えない粒径を有する粉末を使用することが好ましい。
また、フッ化カルシウムおよびフッ化マグネシウムとしても、同じく50μmを超えない粒径を有する粉末を使用することが好ましい。
【0012】
フッ化アルミニウム中に含まれるフッ化カルシウムおよびフッ化マグネシウムの合計量は、1〜70重量%、更には5〜50重量%、最適には10〜30重量%である。上記の範囲で混合された本発明の焼結助剤は、酸化アルミニウムの生成抑制効果が大きく、850〜900℃程度の融点を有するので、アルミニウム含有銅系合金粉の焼結助剤として特に好ましい。
【0013】
本発明によると、アルミニウム含有銅系合金粉の組成については、特に限定されず、従来周知のアルミニウム青銅合金およびアルミニウム黄銅合金などの粉末の焼結に有用である。
合金中のアルミニウム含有量も特に限定されないが、高強度で高耐食性の焼結体を得るためには、合金中のアルミニウム含有量は1〜13重量%になっていることが好ましい。
【0014】
本発明で使用される粉末状の焼結用合金は、更なる他の金属成分を含んでいてもよい。
例えば、アルミニウム青銅合金は、1〜13重量%のアルミニウム、および残部の銅から成る合金であるが、更に鉄、ニッケルおよびマンガンから選択される金属を、それぞれ1〜10重量%含んでいてもよい。
またアルミニウム黄銅合金は、1〜13重量%のアルミニウム、10〜40重量%の亜鉛、および残部の銅からなる合金であるが、更に、鉄、ニッケル、マンガンおよび錫から選択される金属を、それぞれ0.5〜5重量%含んでいてもよい。
【0015】
また、本発明において使用される焼結用合金は、単一組成を有する単一粉であっても、2種以上の合金粉を混合した混合粉であってもよい。なお、一般的に、機械部品のように高密度が要求される用途には単一粉が適している。また、軸受などの低密度の用途には、例えば電解法で調製された銅粉のような低見掛密度で成形性に優れた粉末を含む混合粉が適している。
【0016】
本発明によると、焼結用合金紛中には、上記の焼結助剤が、0.02〜0.5重量%添加されている。これによって、焼結時に、焼結助剤が合金粉の表面を覆って酸化アルミニウムの生成を阻害する。
【0017】
更に、本発明において使用される焼結用合金粉の粒度も特に限定されないが、通常の粉末冶金におけるハンドリング性の見地より、−150〜−75μm程度の粒度を有する合金粉の使用が好ましい。
【0018】
本発明の焼結用合金粉は、一般的に、100〜1000MPaで金型成型した後に、水素や窒素等の非酸化性雰囲気中での焼結により、優れた機械的特性および耐腐食性を有する焼結体となる。
【0019】
焼結は、焼結助剤の融点よりも高く、基質である合金の融点よりも低い温度で実施される。
【0020】
次に本発明を実施例に基づいて更に詳細に説明する。
【0021】
(実施例1)
噴霧法で製造した粒度−150μmの銅‐7重量%アルミニウム合金粉を用意した。この銅アルミニウム合金粉中に、表1に示す焼結助剤を添加して十分に混合した。なお、銅アルミニウム合金粉中に占める焼結助剤の割合は0.1重量%とした。
そして、この銅アルミニウム合金粉を、成型圧力500MPaで成型して、外径20mm、内径12mmおよび高さ10mmの円筒形状の成型物を得た。この成型物を、ステンレス製ボートに載せて水素気流中にて950℃で30min間加熱して焼結体を得た。得られた焼結体について測定した密度、硬さおよび圧環強さを表1に併せて示す。
【0022】
表1に示す結果より明らかなように、本発明に従う焼結助剤1〜21を添加して焼結された焼結体は、本発明の範囲から外れる焼結助剤22〜27および31〜36を添加して焼結された焼結体に比べて、より高い密度、硬さおよび圧環強さを示している。従って、本発明による焼結助剤が、従来の焼結助剤よりも、銅アルミニウム合金粉の焼結を促進することが証明された。
【0023】
また、焼結助剤1〜27、および31〜34の場合には、ステンレス製ボートや得られた焼結体に目立った腐食は検出されなかったが、フッ化ナトリウムまたはフッ化カリウムからなる焼結助剤35および36を用いた場合には、ステンレス製ボートや焼結体に明らかな腐食が観察された。
【0024】
【表1】

Figure 0004532793
【0025】
(実施例2)
電解法で製造した粒度−150μmの銅粉と、搗砕法で製造した粒度−63μmの銅‐50重量%アルミニウム合金粉との混合粉を用意した。この混合粉の混合比率は、重量比で、銅粉:銅アルミニウム合金粉=86:14である。この混合粉中に表2に示す焼結助剤を添加して十分に混合した。なお、混合粉中に占める焼結助剤の割合は0.1重量%とした。
この混合粉を、成型圧力500MPaで成型して、外径20mm、内径12mmおよび高さ10mmの円筒形状の成型物を得た。そして、この成型物を、ステンレス製ボートに載せて水素気流中にて950℃で30min間加熱して焼結体を得た。得られた焼結体について測定した密度、硬さおよび圧環強さを表2に併せて示す。
【0026】
表2に示す結果より明らかなように、本発明に従う焼結助剤1〜21を添加して焼結された焼結体は、本発明の範囲から外れる焼結助剤22〜27および31〜36を添加して焼結された焼結体に比べて、より高い密度、硬さおよび圧環強さを示している。従って、本発明による焼結助剤が、従来の焼結助剤よりも、銅粉と銅アルミニウム合金粉との混合粉に対する焼結を促進することが証明された。
【0027】
また、焼結助剤1〜27、および31〜34の場合には、ステンレス製ボートや得られた焼結体に目立った腐食は検出されなかったが、フッ化ナトリウムまたはフッ化カリウムからなる焼結助剤35および36を用いた場合には、ステンレス製ボートや焼結体に明らかな腐食が観察された。
【0028】
【表2】
Figure 0004532793
【0029】
(実施例3)
噴霧法で製造した粒度100μmの銅‐9重量%アルミニウム‐2重量%ニッケル‐3.5重量%鉄の合金粉を用意した。このアルミニウム青銅粉中に、表3に示す焼結助剤を添加して十分に混合した。なお、このアルミニウム青銅粉中に占める焼結助剤の割合は0.1重量%とした。
このアルミニウム青銅粉を、成型圧力500MPaで成型して、外径20mm、内径12mmおよび高さ10mmの円筒形状の成型物を得た。この成型物を、ステンレス製ボートに載せて水素気流中にて950℃で30min間加熱して焼結体を得た。得られた焼結体について測定した密度、硬さおよび圧環強さを表3に併せて示す。
【0030】
表3に示す結果より明らかなように、本発明に従う焼結助剤1〜21を添加して焼結された焼結体は、本発明の範囲から外れる焼結助剤22〜27および31〜36を添加して焼結された焼結体に比べて、より高い密度、硬さおよび圧環強さを示している。従って、本発明による焼結助剤が、従来の焼結助剤よりも、アルミニウム青銅粉の焼結を促進することが証明された。
【0031】
また、焼結助剤1〜27、および31〜34の場合には、ステンレス製ボートや得られた焼結体に目立った腐食は検出されなかったが、フッ化ナトリウムまたはフッ化カリウムからなる焼結助剤35および36を用いた場合には、ステンレス製ボートや焼結体に明らかな腐食が観察された。
【0032】
【表3】
Figure 0004532793
【0033】
(実施例4)
噴霧法で製造した粒度−100μmの銅‐35重量%亜鉛‐3重量%アルミニウムの合金粉を用意した。このアルミニウム黄銅粉中に、表4に示す焼結助剤を添加して十分に混合した。なお、このアルミニウム黄銅粉中に占める焼結助剤の割合は0.1重量%とした。
焼結助剤を添加したアルミニウム黄銅粉を、成型圧力500MPaで成型して、外径20mm、内径12mmおよび高さ10mmの円筒形状の成型物を得た。この成型物を、ステンレス製ボートに載せて水素気流中にて900℃で30min間加熱して焼結体を得た。得られた焼結体について測定した密度、硬さおよび圧環強さを表4に併せて示す。
【0034】
表4に示す結果より明らかなように、本発明に従う焼結助剤1〜21を添加して焼結された焼結体は、本発明の範囲から外れる焼結助剤22〜27および31〜36を添加して焼結された焼結体に比べて、より高い密度、硬さおよび圧環強さを示している。従って、本発明による焼結助剤が、従来の焼結助剤よりも、アルミニウム黄銅粉の焼結を促進することが証明された。
【0035】
また、焼結助剤1〜27、および31〜34の場合には、ステンレス製ボートや得られた焼結体に目立った腐食は検出されなかったが、フッ化ナトリウムまたはフッ化カリウムからなる焼結助剤35および36を用いた場合には、ステンレス製ボートや焼結体に明らかな腐食が観察された。
【0036】
【表4】
Figure 0004532793
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sintering aid for sintering aluminum-containing copper-based alloy powders such as aluminum bronze and aluminum brass. The present invention also relates to an aluminum-containing copper-based alloy powder for sintering containing this sintering aid.
[0002]
[Prior art]
Aluminum-containing copper-based alloys such as aluminum bronze and aluminum brass have excellent mechanical identification and corrosion resistance, and are used in various industrial products. As one of processing methods for this aluminum-containing copper-based alloy, a powder metallurgy method for sintering an alloy powder has been conventionally known.
However, in general, the aluminum-containing copper-based alloy powder cannot obtain a sintered body having sufficient strength because the aluminum oxide film formed on the surface of the aluminum-containing copper powder significantly inhibits the sintering.
Therefore, conventionally, a sintering aid for promoting the sintering of the aluminum-containing copper-based alloy powder has been studied.
[0003]
For example, Japanese Patent Publication No. 48-28246 discloses a sintering aid for aluminum-containing bronze alloy powder composed of one or more selected from alkali metal or alkaline earth metal fluorides. .
However, among the sintering aids described in Japanese Patent Publication No. 48-28246, the alkali metal fluoride promotes the sintering by decomposing the aluminum oxide film formed on the surface of the alloy powder during sintering. Alkali metal fluorides are highly corrosive and damage sintered bodies and sintering furnaces.
[0004]
On the other hand, an alkaline earth metal fluoride is a very stable compound and has a high melting point. For example, calcium fluoride has a melting point of 1360 ° C., and magnesium fluoride has a melting point of 1260. Therefore, even if the alkaline earth metal fluoride is added alone as a sintering aid for the aluminum-containing copper-based alloy powder, the fluoride does not melt at the sintering temperature. It is difficult to react with the aluminum oxide produced in this, and it is difficult to sufficiently promote the sintering. Furthermore, as described above, the alkaline earth metal fluoride has a high melting point and does not easily react with aluminum oxide, so that the sintering aid tends to remain in the sintered product.
[0005]
Japanese Patent No. 2680832 discloses a -280 mesh Cu-Zn alloy powder containing 30 to 50 wt% Zn and the balance being Cu, and a -280 mesh Cu-Al powder containing 30 to 50 wt% Al and the balance being Cu. Alloy powder and -250 mesh Cu powder are blended at a predetermined ratio, and 0.05 to 1 wt% of fluoride is mixed as a sintering aid thereto, and a green compact obtained by molding the obtained mixture is 850 ° C to Sintered at 950 ° C., and then the obtained sintered member was heated to 500 to 850 ° C. and then rapidly cooled at a cooling rate of 103 ° C./s or more, and thereafter, a residual strain of 1 to 3% was generated in the sintered member A method for producing a Cu—Zn—Al sintered superelastic alloy is described, in which a tensile stress is applied and heated again to 500 to 850 ° C. and then rapidly cooled at a cooling rate of 103 ° C./s or more.
[0006]
However, the aluminum fluoride described in Japanese Patent No. 2680832 is effective for mixed powder of copper zinc alloy powder and copper aluminum alloy powder mixed at a predetermined ratio to produce a superelastic aluminum-containing brass alloy. In general, aluminum fluoride alone cannot sufficiently promote the sintering of aluminum-containing copper-based alloy powder.
That is, aluminum fluoride itself is a stable compound, but because it has sublimation properties, aluminum fluoride added alone to the aluminum-containing copper-based alloy powder sublimates during the sintering, It plays the role of protecting the surface of the alloy powder and preventing the formation of aluminum oxide. However, since the vapor pressure is high, the vaporized aluminum fluoride is discharged out of the system relatively early. Therefore, aluminum fluoride alone cannot sufficiently promote the sintering of the aluminum-containing copper-based alloy powder.
[0007]
[Problems to be solved by the invention]
Therefore, the present invention provides a sintering aid capable of further promoting the sintering of the aluminum-containing copper-based alloy powder without corroding the sintered body or the sintering furnace, and a sintering alloy powder containing the same. The task is to do.
[0008]
[Means for Solving the Problems]
As a result of various studies to solve the above-mentioned problems, the inventors of the present invention include aluminum containing 1 to 70% by weight of aluminum fluoride mixed with at least one selected from calcium fluoride and magnesium fluoride. It has been found that this problem can be solved by using a sintering aid for copper alloy powder.
In particular, the aluminum-containing copper-based alloy powder containing the above sintering aid in the range of 0.02 to 0.5% by weight is a sintered body having excellent mechanical strength and corrosion resistance.
Hereinafter, the present invention will be described in more detail.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
That is, the sintering aid of the present invention is a mixture composed of aluminum fluoride and at least one selected from calcium fluoride and magnesium fluoride. In addition to having a melting point of about 850 to 900 ° C., the sintering aid made of such a mixture has a lower vapor pressure than that of a single aluminum fluoride. In general, since the sintering temperature of the aluminum-containing copper-based alloy powder is 850 to 950 ° C., the sintering aid of the present invention gradually evaporates while melting, and the surface of the aluminum-containing copper-based alloy powder To prevent the formation of aluminum oxide. Moreover, since the vapor pressure is lower than in the case of aluminum fluoride alone, the effect of protecting the alloy powder surface is sustained. Thus, the alloy powder is strongly sintered without being inhibited by the aluminum oxide film formed on the surface thereof, and becomes a sintered body having a predetermined mechanical strength and corrosion resistance. In addition, since the sintering aid of the present invention finally evaporates and volatilizes as in the case of aluminum fluoride alone, almost no sintering aid remains in the sintered product as a product.
[0010]
Thus, since the sintering aid according to the present invention becomes liquid at the sintering temperature of the alloy powder and improves the contact with the alloy powder, the alkaline earth metal foot described in Japanese Patent Publication No. 48-28246. The sintering of the alloy powder is further promoted than the sintering aid made of a simple substance of a chemical compound or the sintering aid made of a simple substance of aluminum fluoride described in Japanese Patent No. 2680832.
[0011]
According to the invention, it is preferable to use a powder having a particle size not exceeding 50 μm as aluminum fluoride.
Moreover, it is preferable to use the powder which has a particle size which does not exceed 50 micrometers similarly as calcium fluoride and magnesium fluoride.
[0012]
The total amount of calcium fluoride and magnesium fluoride contained in the aluminum fluoride is 1 to 70% by weight, more preferably 5 to 50% by weight, and most preferably 10 to 30% by weight. The sintering aid of the present invention mixed in the above range has a great effect of suppressing the formation of aluminum oxide and has a melting point of about 850 to 900 ° C., and thus is particularly preferable as a sintering aid for aluminum-containing copper-based alloy powders. .
[0013]
According to the present invention, the composition of the aluminum-containing copper-based alloy powder is not particularly limited, and is useful for sintering powders such as conventionally known aluminum bronze alloys and aluminum brass alloys.
The aluminum content in the alloy is not particularly limited, but in order to obtain a sintered body having high strength and high corrosion resistance, the aluminum content in the alloy is preferably 1 to 13% by weight.
[0014]
The powdery sintering alloy used in the present invention may further contain other metal components.
For example, the aluminum bronze alloy is an alloy composed of 1 to 13% by weight of aluminum and the balance of copper, but may further contain 1 to 10% by weight of a metal selected from iron, nickel and manganese, respectively. .
The aluminum brass alloy is an alloy composed of 1 to 13% by weight of aluminum, 10 to 40% by weight of zinc, and the balance of copper, and further, a metal selected from iron, nickel, manganese and tin, You may contain 0.5 to 5weight%.
[0015]
The sintering alloy used in the present invention may be a single powder having a single composition or a mixed powder in which two or more kinds of alloy powders are mixed. In general, a single powder is suitable for applications where high density is required, such as mechanical parts. For low-density applications such as bearings, mixed powder containing powder with low apparent density and excellent moldability, such as copper powder prepared by electrolysis, is suitable.
[0016]
According to the present invention, 0.02 to 0.5% by weight of the sintering aid is added to the sintering alloy powder. As a result, during sintering, the sintering aid covers the surface of the alloy powder and inhibits the production of aluminum oxide.
[0017]
Furthermore, although the particle size of the sintering alloy powder used in the present invention is not particularly limited, the use of alloy powder having a particle size of about -150 to -75 μm is preferred from the viewpoint of handling properties in ordinary powder metallurgy.
[0018]
The alloy powder for sintering of the present invention generally exhibits excellent mechanical properties and corrosion resistance by being molded in a non-oxidizing atmosphere such as hydrogen and nitrogen after being molded at 100 to 1000 MPa. It becomes the sintered compact which has.
[0019]
Sintering is performed at a temperature higher than the melting point of the sintering aid and lower than the melting point of the alloy that is the substrate.
[0020]
Next, the present invention will be described in more detail based on examples.
[0021]
Example 1
A copper-7 wt% aluminum alloy powder having a particle size of −150 μm produced by a spraying method was prepared. In this copper aluminum alloy powder, the sintering aid shown in Table 1 was added and mixed well. The proportion of the sintering aid in the copper aluminum alloy powder was 0.1% by weight.
The copper aluminum alloy powder was molded at a molding pressure of 500 MPa to obtain a cylindrical molded product having an outer diameter of 20 mm, an inner diameter of 12 mm, and a height of 10 mm. This molded product was placed on a stainless steel boat and heated in a hydrogen stream at 950 ° C. for 30 minutes to obtain a sintered body. The density, hardness, and crushing strength measured for the obtained sintered body are also shown in Table 1.
[0022]
As is apparent from the results shown in Table 1, the sintered bodies sintered by adding the sintering aids 1 to 21 according to the present invention are sintered aids 22 to 27 and 31 to 31 which are out of the scope of the present invention. Compared with the sintered body sintered by adding 36, higher density, hardness and crushing strength are shown. Therefore, it has been proved that the sintering aid according to the present invention accelerates the sintering of the copper aluminum alloy powder than the conventional sintering aid.
[0023]
In the case of sintering aids 1-27 and 31-34, no noticeable corrosion was detected in the stainless steel boat or the obtained sintered body, but the sintering was made of sodium fluoride or potassium fluoride. When the binders 35 and 36 were used, obvious corrosion was observed on the stainless steel boat and the sintered body.
[0024]
[Table 1]
Figure 0004532793
[0025]
(Example 2)
A mixed powder of a copper powder having a particle size of −150 μm produced by an electrolytic method and a copper-50 wt% aluminum alloy powder having a particle size of −63 μm produced by a grinding method was prepared. The mixing ratio of the mixed powder is copper powder: copper aluminum alloy powder = 86: 14 in weight ratio. A sintering aid shown in Table 2 was added to the mixed powder and mixed thoroughly. The proportion of the sintering aid in the mixed powder was 0.1% by weight.
The mixed powder was molded at a molding pressure of 500 MPa to obtain a cylindrical molded product having an outer diameter of 20 mm, an inner diameter of 12 mm, and a height of 10 mm. Then, this molded product was placed on a stainless steel boat and heated in a hydrogen stream at 950 ° C. for 30 minutes to obtain a sintered body. Table 2 shows the density, hardness, and crushing strength measured for the obtained sintered body.
[0026]
As is clear from the results shown in Table 2, the sintered bodies sintered by adding the sintering aids 1 to 21 according to the present invention are sintered aids 22 to 27 and 31 to 31 which are out of the scope of the present invention. Compared with the sintered body sintered by adding 36, higher density, hardness and crushing strength are shown. Therefore, it was proved that the sintering aid according to the present invention promotes the sintering of the mixed powder of the copper powder and the copper aluminum alloy powder as compared with the conventional sintering aid.
[0027]
In the case of sintering aids 1-27 and 31-34, no noticeable corrosion was detected in the stainless steel boat or the obtained sintered body, but the sintering was made of sodium fluoride or potassium fluoride. When the binders 35 and 36 were used, obvious corrosion was observed on the stainless steel boat and the sintered body.
[0028]
[Table 2]
Figure 0004532793
[0029]
(Example 3)
An alloy powder of copper-9 wt% aluminum-2 wt% nickel-3.5 wt% iron with a particle size of 100 μm produced by the spray method was prepared. In this aluminum bronze powder, the sintering aid shown in Table 3 was added and mixed thoroughly. The proportion of the sintering aid in the aluminum bronze powder was 0.1% by weight.
This aluminum bronze powder was molded at a molding pressure of 500 MPa to obtain a cylindrical molded product having an outer diameter of 20 mm, an inner diameter of 12 mm, and a height of 10 mm. This molded product was placed on a stainless steel boat and heated in a hydrogen stream at 950 ° C. for 30 minutes to obtain a sintered body. The density, hardness and crushing strength measured for the obtained sintered body are also shown in Table 3.
[0030]
As is apparent from the results shown in Table 3, the sintered bodies sintered by adding the sintering aids 1 to 21 according to the present invention are sintered auxiliary materials 22 to 27 and 31 to 31 which are out of the scope of the present invention. Compared with the sintered body sintered by adding 36, higher density, hardness and crushing strength are shown. Therefore, it was proved that the sintering aid according to the present invention accelerates the sintering of aluminum bronze powder than the conventional sintering aid.
[0031]
In the case of sintering aids 1-27 and 31-34, no noticeable corrosion was detected in the stainless steel boat or the obtained sintered body, but the sintering was made of sodium fluoride or potassium fluoride. When the binders 35 and 36 were used, obvious corrosion was observed on the stainless steel boat and the sintered body.
[0032]
[Table 3]
Figure 0004532793
[0033]
Example 4
An alloy powder of copper-35 wt% zinc-3 wt% aluminum having a particle size of −100 μm and prepared by a spray method was prepared. A sintering aid shown in Table 4 was added to the aluminum brass powder and mixed thoroughly. The proportion of the sintering aid in the aluminum brass powder was 0.1% by weight.
Aluminum brass powder to which a sintering aid was added was molded at a molding pressure of 500 MPa to obtain a cylindrical molded product having an outer diameter of 20 mm, an inner diameter of 12 mm, and a height of 10 mm. This molded product was placed on a stainless steel boat and heated in a hydrogen stream at 900 ° C. for 30 minutes to obtain a sintered body. The density, hardness and crushing strength measured for the obtained sintered body are also shown in Table 4.
[0034]
As is apparent from the results shown in Table 4, the sintered bodies sintered by adding the sintering aids 1 to 21 according to the present invention are sintered aids 22 to 27 and 31 to 31 which are out of the scope of the present invention. Compared with the sintered body sintered by adding 36, higher density, hardness and crushing strength are shown. Therefore, it has been proved that the sintering aid according to the present invention promotes the sintering of aluminum brass powder than the conventional sintering aid.
[0035]
In the case of sintering aids 1-27 and 31-34, no noticeable corrosion was detected in the stainless steel boat or the obtained sintered body, but the sintering was made of sodium fluoride or potassium fluoride. When the binders 35 and 36 were used, obvious corrosion was observed on the stainless steel boat and the sintered body.
[0036]
[Table 4]
Figure 0004532793

Claims (2)

フッ化アルミニウムに、フッ化カルシウムおよびフッ化マグネシウムから選択される少なくとも1種類を1〜70重量%混合してなるアルミニウム含有銅系合金粉のための焼結助剤。A sintering aid for aluminum-containing copper-based alloy powder obtained by mixing aluminum fluoride with 1 to 70% by weight of at least one selected from calcium fluoride and magnesium fluoride. アルミニウム含有銅系合金から成る焼結用合金粉であって、前記合金粉は、フッ化アルミニウムに、フッ化カルシウムおよびフッ化マグネシウムから選択される少なくとも1種類を1〜70重量%混合して成る焼結助剤を0.02〜0.5重量%含んでいることを特徴とする焼結用合金粉。An alloy powder for sintering made of an aluminum-containing copper-based alloy, wherein the alloy powder is made by mixing aluminum fluoride with 1 to 70% by weight of at least one selected from calcium fluoride and magnesium fluoride. An alloy powder for sintering, comprising 0.02 to 0.5% by weight of a sintering aid.
JP2001239184A 2001-08-07 2001-08-07 Sintering aid for aluminum-containing copper-based alloy powder, and sintering alloy powder containing the same Expired - Fee Related JP4532793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001239184A JP4532793B2 (en) 2001-08-07 2001-08-07 Sintering aid for aluminum-containing copper-based alloy powder, and sintering alloy powder containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001239184A JP4532793B2 (en) 2001-08-07 2001-08-07 Sintering aid for aluminum-containing copper-based alloy powder, and sintering alloy powder containing the same

Publications (2)

Publication Number Publication Date
JP2003049206A JP2003049206A (en) 2003-02-21
JP4532793B2 true JP4532793B2 (en) 2010-08-25

Family

ID=19069970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001239184A Expired - Fee Related JP4532793B2 (en) 2001-08-07 2001-08-07 Sintering aid for aluminum-containing copper-based alloy powder, and sintering alloy powder containing the same

Country Status (1)

Country Link
JP (1) JP4532793B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4941236B2 (en) * 2007-11-02 2012-05-30 福田金属箔粉工業株式会社 Sintering aid, sintered aluminum-containing copper-based alloy powder, and sintered body obtained by sintering the sintered aluminum-containing copper-based alloy powder

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497106A (en) * 1972-05-14 1974-01-22
JPS52115708A (en) * 1976-09-17 1977-09-28 Fukuda Metal Foil Powder Powder for production of sintered copper alloy
JPH01219062A (en) * 1988-02-29 1989-09-01 Toyota Motor Corp Production of silicon nitride sintered body
JPH05286762A (en) * 1992-04-10 1993-11-02 Kurosaki Refract Co Ltd Manufacture of polycrystalline transparent yag ceramic for solid laser
JPH05294724A (en) * 1992-04-10 1993-11-09 Kurosaki Refract Co Ltd Production of polycrystalline transparent yag ceramic for solid laser

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497106A (en) * 1972-05-14 1974-01-22
JPS52115708A (en) * 1976-09-17 1977-09-28 Fukuda Metal Foil Powder Powder for production of sintered copper alloy
JPH01219062A (en) * 1988-02-29 1989-09-01 Toyota Motor Corp Production of silicon nitride sintered body
JPH05286762A (en) * 1992-04-10 1993-11-02 Kurosaki Refract Co Ltd Manufacture of polycrystalline transparent yag ceramic for solid laser
JPH05294724A (en) * 1992-04-10 1993-11-09 Kurosaki Refract Co Ltd Production of polycrystalline transparent yag ceramic for solid laser

Also Published As

Publication number Publication date
JP2003049206A (en) 2003-02-21

Similar Documents

Publication Publication Date Title
KR101367892B1 (en) Magnesium alloy for high temperature and manufacturing method thereof
JP4857206B2 (en) Infiltration powder
JP4941236B2 (en) Sintering aid, sintered aluminum-containing copper-based alloy powder, and sintered body obtained by sintering the sintered aluminum-containing copper-based alloy powder
JP2022513645A (en) Magnesium alloy material and its manufacturing method
JPH0617524B2 (en) Magnesium-titanium sintered alloy and method for producing the same
CN101760664A (en) Bronze powder for powder metallurgy and method of manufacturing the same
TW201130991A (en) Aluminum alloy and manufacturing method thereof
JP2008280565A (en) Magnesium alloy and its manufacturing method
JP6538713B2 (en) Aluminum alloy powder metal formulations containing silicon additives to improve mechanical properties
JPH0120215B2 (en)
JP4193958B2 (en) Molten metal member having excellent corrosion resistance against molten metal and method for producing the same
JP4532793B2 (en) Sintering aid for aluminum-containing copper-based alloy powder, and sintering alloy powder containing the same
JPH07166321A (en) Surface-nitrided aluminum material, nitriding treatment of its surface and auxiliary for nitriding treatment thereof
JP4730338B2 (en) COMPOSITE MATERIAL FOR INJECTION MOLDING COMPRISING CERAMIC DISPERSED MAGNESIUM COMPOSITE MATERIAL AND ITS MANUFACTURING METHOD
US5284527A (en) Method of making silver-metal oxide materials and electrical contacts
JP5403707B2 (en) Cu-based infiltration powder
JP4409067B2 (en) Molten metal member having excellent corrosion resistance against molten metal and method for producing the same
EP2374905B1 (en) Manufacturing method of magnesium based alloy for high temperature
JPH07166273A (en) Powder metallurgical product of injection molded copper
JP2010150573A (en) Powder of self-fluxing composite alloy having wc grain dispersed therein, and method for producing the same
KR101147650B1 (en) Magnesium alloy for high temperature and manufacturing method thereof
CN111417477B (en) Copper-based powder for infiltration
JP2024065278A (en) Cu-based powder for infiltration
CN117943537A (en) Cu-based powder for immersion
JP4158015B2 (en) Method for producing sintered body and sintered body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080701

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080701

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100611

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4532793

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140618

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees