JP2003049206A - Sintering assistant for aluminum containing copper based alloy powder and alloy powder for sintering containing same sintering assistant - Google Patents

Sintering assistant for aluminum containing copper based alloy powder and alloy powder for sintering containing same sintering assistant

Info

Publication number
JP2003049206A
JP2003049206A JP2001239184A JP2001239184A JP2003049206A JP 2003049206 A JP2003049206 A JP 2003049206A JP 2001239184 A JP2001239184 A JP 2001239184A JP 2001239184 A JP2001239184 A JP 2001239184A JP 2003049206 A JP2003049206 A JP 2003049206A
Authority
JP
Japan
Prior art keywords
sintering
aluminum
alloy powder
fluoride
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001239184A
Other languages
Japanese (ja)
Other versions
JP4532793B2 (en
Inventor
Shozo Nagai
省三 永井
Yoshiro Niimi
義朗 新見
Sachiko Masuoka
佐千子 益岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP2001239184A priority Critical patent/JP4532793B2/en
Publication of JP2003049206A publication Critical patent/JP2003049206A/en
Application granted granted Critical
Publication of JP4532793B2 publication Critical patent/JP4532793B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sintering assistant which can further promote the sintering of aluminum-containing copper based alloy powder without corroding a sintered compact and a sintering furnace, and to provide alloy powder for sintering. SOLUTION: The sintering assistant for aluminum-containing copper based alloy powder is prepared by mixing aluminum fluoride with 1 to 70 wt.% of at least one kind selected from calcium fluoride and magnesium fluoride. In particular, the aluminum-containing copper based alloy powder containing the above sintering assistant in the range of 0.02 to 0.5 wt.% becomes a sintered compact provided with excellent mechanical strength and corrosion resistance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、アルミニウム青銅
やアルミニウム黄銅等のアルミニウム含有銅系合金粉を
焼結するための焼結助剤に関する。また本発明は、この
焼結助剤を含む焼結用のアルミニウム含有銅系合金粉に
関する。
TECHNICAL FIELD The present invention relates to a sintering aid for sintering aluminum-containing copper alloy powder such as aluminum bronze and aluminum brass. The present invention also relates to an aluminum-containing copper-based alloy powder for sintering, which contains this sintering aid.

【0002】[0002]

【従来の技術】アルミニウム青銅やアルミニウム黄銅等
のアルミニウム含有銅系合金は、優れた機械的特定およ
び耐食性を有しており、種々の産業製品に用いられてい
る。このアルミニウム含有銅系合金の加工方法の一つと
して、従来より、合金粉を焼結する粉末冶金法が知られ
ている。しかしながら、一般的に、アルミニウム含有銅
系合金粉は、焼結時にその表面に生成する酸化アルミニ
ウムの皮膜が焼結を著しく阻害するので、十分な強度を
有する焼結体を得ることができない。そこで、従来よ
り、アルミニウム含有銅系合金粉の焼結を促進するため
の焼結助剤が検討されてきた。
2. Description of the Related Art Aluminum-containing copper alloys such as aluminum bronze and aluminum brass have excellent mechanical properties and corrosion resistance, and are used in various industrial products. As one of the processing methods for this aluminum-containing copper-based alloy, a powder metallurgy method of sintering alloy powder has been conventionally known. However, in general, the aluminum-containing copper-based alloy powder cannot obtain a sintered body having sufficient strength because the film of aluminum oxide formed on the surface of the aluminum-containing copper alloy powder significantly inhibits the sintering. Therefore, conventionally, a sintering aid for promoting the sintering of the aluminum-containing copper-based alloy powder has been investigated.

【0003】例えば、特公昭48−28246号には、
アルカリ金属又はアルカリ土類金属のフッ化物から選ば
れた1種又は2種以上から成るアルミニウム含有青銅合
金粉のための焼結助剤が開示されている。しかしなが
ら、特公昭48−28246号に記載の焼結助剤のう
ち、アルカリ金属のフッ化物は、焼結時に合金粉の表面
に生成する酸化アルミニウムの皮膜を分解して焼結を促
進するが、アルカリ金属のフッ化物は腐食性が高く、焼
結体や焼結炉を損傷させる。
For example, Japanese Patent Publication No. 48-28246 shows
Sintering aids for aluminum-containing bronze alloy powders comprising one or more selected from alkali metal or alkaline earth metal fluorides are disclosed. However, among the sintering aids described in JP-B-48-28246, the alkali metal fluoride decomposes the aluminum oxide film formed on the surface of the alloy powder during sintering to accelerate the sintering, Alkali metal fluoride is highly corrosive and damages the sintered body and the sintering furnace.

【0004】一方、アルカリ土類金属のフッ化物は、極
めて安定な化合物であり、その融点も高く、例えばフッ
化カルシウムの融点は1360℃であり、またフッ化マ
グネシウムの融点は1260である。従って、アルカリ
土類金属のフッ化物を単独でアルミニウム含有銅系合金
粉の焼結助剤として添加しても、その焼結温度ではこれ
らのフッ化物は溶融することはないので、合金粉の表面
に生成した酸化アルミニウムと反応し難く、その焼結を
十分に促進することは困難である。さらに、上記のよう
に、アルカリ土類金属のフッ化物は、融点も高く、酸化
アルミニウムとの反応も進み難いので、製品である焼結
体に焼結助剤が残存しやすい。
On the other hand, the fluoride of alkaline earth metal is an extremely stable compound and has a high melting point. For example, the melting point of calcium fluoride is 1360 ° C. and the melting point of magnesium fluoride is 1260. Therefore, even if a fluoride of an alkaline earth metal is added alone as a sintering aid for an aluminum-containing copper-based alloy powder, these fluorides do not melt at the sintering temperature. It is difficult to react with the aluminum oxide produced in the above, and it is difficult to sufficiently promote the sintering. Further, as described above, since the fluoride of alkaline earth metal has a high melting point and the reaction with aluminum oxide is difficult to proceed, the sintering aid is likely to remain in the sintered body as a product.

【0005】また、特許第2680832号には、Zn
を30〜50wt%含み残部がCuである−280メッ
シュのCu−Zn合金粉と、Alを30〜50wt%含
み残部がCuである−280メッシュCu−Al合金粉
と−250メッシュのCu粉とを所定の割合で配合し、
それに焼結助剤としてフッ化物を0.05〜1wt%混
合し、得られた混合物を成形した圧粉体を850℃〜9
50℃で焼結し、ついで、得られた焼結部材を500〜
850℃に加熱後103℃/s以上の冷却速度で急冷
し、その後焼結部材に1〜3%の残留歪が生じる範囲で
引張応力を加え、再度500〜850℃に加熱後、10
3℃/s以上の冷却速度で急冷することを特徴とするC
u−Zn−Al焼結超弾性合金の製造方法が記載されて
いる。
Japanese Patent No. 2680832 discloses Zn
-280 mesh Cu-Zn alloy powder containing 30 to 50 wt% of Cu and the balance Cu, -280 mesh Cu-Al alloy powder containing 30 to 50 wt% of Al and the balance of Cu, and Cu powder of -250 mesh Blended in a predetermined ratio,
Fluoride was mixed with 0.05 to 1 wt% as a sintering aid, and the resulting mixture was molded into a green compact at 850 ° C to 9 ° C.
Sintering is performed at 50 ° C., then the obtained sintered member is
After heating to 850 ° C., it is rapidly cooled at a cooling rate of 103 ° C./s or more, then tensile stress is applied to the sintered member within a range in which a residual strain of 1 to 3% occurs, and after heating to 500 to 850 ° C. again,
C characterized by rapid cooling at a cooling rate of 3 ° C / s or more
A method of making a u-Zn-Al sintered superelastic alloy is described.

【0006】しかしながら、特許第2680832号に
記載のフッ化アルミニウムは、超弾性のアルミニウム含
有黄銅合金を製造するために所定割合で混合された銅亜
鉛合金粉と銅アルミニウム合金粉との混合粉に対しては
有効な焼結助剤となり得るが、一般的には、フッ化アル
ミニウム単独ではアルミニウム含有銅系合金粉の焼結を
十分に促進することはできない。即ち、フッ化アルミニ
ウムもそれ自身は安定な化合物であるが、昇華性を有し
ているため、アルミニウム含有銅系合金粉に単独で添加
されたフッ化アルミニウムは、その焼結時において昇華
し、合金粉の表面を保護して酸化アルミニウムの生成を
防止する役割を果たす。しかしながら蒸気圧が高いた
め、気化したフッ化アルミニウムは比較的早期に系外に
排出されてしまう。従って、フッ化アルミニウム単独で
は、アルミニウム含有銅系合金粉の焼結を十分に促進す
ることはできない。
However, the aluminum fluoride described in Japanese Patent No. 2680832 is different from the mixed powder of copper-zinc alloy powder and copper-aluminum alloy powder mixed at a predetermined ratio for producing a superelastic aluminum-containing brass alloy. However, in general, aluminum fluoride alone cannot sufficiently promote the sintering of the aluminum-containing copper-based alloy powder. That is, aluminum fluoride itself is a stable compound, but since it has sublimation properties, aluminum fluoride added alone to the aluminum-containing copper-based alloy powder sublimes during sintering, It serves to protect the surface of the alloy powder and prevent the formation of aluminum oxide. However, since the vapor pressure is high, vaporized aluminum fluoride is discharged out of the system relatively early. Therefore, aluminum fluoride alone cannot sufficiently promote the sintering of the aluminum-containing copper-based alloy powder.

【0007】[0007]

【発明が解決しようとする課題】そこで本発明は、焼結
体や焼結炉を腐食することなく、アルミニウム含有銅系
合金粉の焼結を更に促進することができる焼結助剤、並
びにこれを含む焼結用合金粉を提供することを課題とす
る。
Therefore, the present invention provides a sintering aid capable of further promoting the sintering of an aluminum-containing copper-based alloy powder without corroding the sintered body or the sintering furnace, and a sintering aid therefor. An object is to provide an alloy powder for sintering containing

【0008】[0008]

【課題を解決するための手段】本発明者らは上記の課題
を解決すべく種々検討を重ねた結果、フッ化アルミニウ
ムに、フッ化カルシウムおよびフッ化マグネシウムから
選択される少なくとも1種類を1〜70重量%混合して
なるアルミニウム含有銅系合金粉のための焼結助剤とす
ることによって解決されることを見出した。特に、上記
の焼結助剤を0.02〜0.5重量%の範囲で含むアル
ミニウム含有銅系合金粉は、優れた機械的強度と耐腐食
性とを備えた焼結体となる。以下に、本発明を更に詳細
に説明する。
As a result of various studies to solve the above-mentioned problems, the present inventors have found that aluminum fluoride contains 1 to at least one selected from calcium fluoride and magnesium fluoride. It has been found that the problem can be solved by using a sintering aid for an aluminum-containing copper-based alloy powder formed by mixing 70% by weight. Particularly, the aluminum-containing copper-based alloy powder containing the above-mentioned sintering aid in the range of 0.02 to 0.5% by weight becomes a sintered body having excellent mechanical strength and corrosion resistance. Hereinafter, the present invention will be described in more detail.

【0009】[0009]

【発明の実施の形態】即ち、本発明の焼結助剤は、フッ
化アルミニウムと、フッ化カルシウムおよびフッ化マグ
ネシウムから選択される少なくとも1種類とから成る混
合物である。このような混合物からなる焼結助剤は、8
50〜900℃程度の融点を有することに加え、その蒸
気圧もフッ化アルミニウム単体の場合に比べて低くな
る。一般に、アルミニウム含有銅系合金粉の焼結温度は
850〜950℃であるので、この焼結温度で本発明の
焼結助剤は溶融しながら徐々に蒸発し、アルミニウム含
有銅系合金粉の表面を保護して酸化アルミニウムの生成
を抑制する。しかもフッ化アルミニウム単体の場合より
も蒸気圧が低いため、上記合金粉表面を保護する効果が
持続する。これによって、合金粉は、その表面に生成す
る酸化アルミニウムの皮膜によって阻害されることな
く、強固に焼結して、所定の機械的強度および耐腐食性
を有する焼結体となる。しかも、本発明の焼結助剤は、
最終的にはフッ化アルミニウム単独の場合と同様に、蒸
発・揮散するので、製品としての焼結体中には焼結助剤
は殆ど残存しない。
BEST MODE FOR CARRYING OUT THE INVENTION That is, the sintering aid of the present invention is a mixture of aluminum fluoride and at least one selected from calcium fluoride and magnesium fluoride. The sintering aid composed of such a mixture is 8
In addition to having a melting point of about 50 to 900 ° C., its vapor pressure is also lower than that of aluminum fluoride alone. Generally, the sintering temperature of the aluminum-containing copper-based alloy powder is 850 to 950 ° C., so that at this sintering temperature, the sintering aid of the present invention is gradually evaporated while melting, and the surface of the aluminum-containing copper-based alloy powder is To suppress the formation of aluminum oxide. Moreover, since the vapor pressure is lower than that of aluminum fluoride alone, the effect of protecting the alloy powder surface is maintained. As a result, the alloy powder is strongly sintered without being hindered by the aluminum oxide film formed on the surface thereof, and becomes a sintered body having predetermined mechanical strength and corrosion resistance. Moreover, the sintering aid of the present invention is
Eventually, as in the case of aluminum fluoride alone, it evaporates and volatilizes, so that the sintering aid hardly remains in the sintered body as a product.

【0010】このように、本発明による焼結助剤は、合
金粉の焼結温度においては液体となって合金紛との接触
を向上するので、特公昭48−28246号に記載のア
ルカリ土類金属のフッ化物の単体からなる焼結助剤や、
特許第2680832号に記載のフッ化アルミニウムの
単体からなる焼結助剤よりも、合金粉の焼結を遥かに促
進する。
As described above, the sintering aid according to the present invention becomes a liquid at the sintering temperature of the alloy powder and improves the contact with the alloy powder. Therefore, the alkaline earth material described in Japanese Patent Publication No. 48-28246. A sintering aid consisting of a simple substance of metal fluoride,
Sintering of alloy powder is promoted far more than the sintering aid composed of the simple substance of aluminum fluoride described in Japanese Patent No. 2680832.

【0011】本発明によると、フッ化アルミニウムとし
て、50μmを超えない粒径を有する粉末を使用するこ
とが好ましい。また、フッ化カルシウムおよびフッ化マ
グネシウムとしても、同じく50μmを超えない粒径を
有する粉末を使用することが好ましい。
According to the invention, it is preferred to use, as aluminum fluoride, a powder with a particle size not exceeding 50 μm. Also, as the calcium fluoride and the magnesium fluoride, it is preferable to use a powder having a particle size not exceeding 50 μm.

【0012】フッ化アルミニウム中に含まれるフッ化カ
ルシウムおよびフッ化マグネシウムの合計量は、1〜7
0重量%、更には5〜50重量%、最適には10〜30
重量%である。上記の範囲で混合された本発明の焼結助
剤は、酸化アルミニウムの生成抑制効果が大きく、85
0〜900℃程度の融点を有するので、アルミニウム含
有銅系合金粉の焼結助剤として特に好ましい。
The total amount of calcium fluoride and magnesium fluoride contained in aluminum fluoride is 1 to 7
0% by weight, further 5 to 50% by weight, optimally 10 to 30%
% By weight. The sintering aid of the present invention mixed in the above range has a large effect of suppressing the generation of aluminum oxide, and
Since it has a melting point of about 0 to 900 ° C., it is particularly preferable as a sintering aid for the aluminum-containing copper alloy powder.

【0013】本発明によると、アルミニウム含有銅系合
金粉の組成については、特に限定されず、従来周知のア
ルミニウム青銅合金およびアルミニウム黄銅合金などの
粉末の焼結に有用である。合金中のアルミニウム含有量
も特に限定されないが、高強度で高耐食性の焼結体を得
るためには、合金中のアルミニウム含有量は1〜13重
量%になっていることが好ましい。
According to the present invention, the composition of the aluminum-containing copper-based alloy powder is not particularly limited, and it is useful for sintering powders of conventionally known aluminum bronze alloys and aluminum brass alloys. The aluminum content in the alloy is not particularly limited either, but in order to obtain a sintered body having high strength and high corrosion resistance, the aluminum content in the alloy is preferably 1 to 13% by weight.

【0014】本発明で使用される粉末状の焼結用合金
は、更なる他の金属成分を含んでいてもよい。例えば、
アルミニウム青銅合金は、1〜13重量%のアルミニウ
ム、および残部の銅から成る合金であるが、更に鉄、ニ
ッケルおよびマンガンから選択される金属を、それぞれ
1〜10重量%含んでいてもよい。またアルミニウム黄
銅合金は、1〜13重量%のアルミニウム、10〜40
重量%の亜鉛、および残部の銅からなる合金であるが、
更に、鉄、ニッケル、マンガンおよび錫から選択される
金属を、それぞれ0.5〜5重量%含んでいてもよい。
The powdery sintering alloy used in the present invention may contain further other metal components. For example,
The aluminum bronze alloy is an alloy consisting of 1 to 13% by weight of aluminum and the balance of copper, but may further contain a metal selected from iron, nickel and manganese in an amount of 1 to 10% by weight, respectively. Aluminum brass alloy is 1 to 13% by weight of aluminum, 10 to 40
An alloy composed of zinc by weight and the balance of copper,
Further, the metal selected from iron, nickel, manganese, and tin may be contained in an amount of 0.5 to 5% by weight, respectively.

【0015】また、本発明において使用される焼結用合
金は、単一組成を有する単一粉であっても、2種以上の
合金粉を混合した混合粉であってもよい。なお、一般的
に、機械部品のように高密度が要求される用途には単一
粉が適している。また、軸受などの低密度の用途には、
例えば電解法で調製された銅粉のような低見掛密度で成
形性に優れた粉末を含む混合粉が適している。
The sintering alloy used in the present invention may be a single powder having a single composition or a mixed powder obtained by mixing two or more kinds of alloy powders. In addition, in general, a single powder is suitable for applications that require high density, such as mechanical parts. For low density applications such as bearings,
For example, a mixed powder containing a powder having a low apparent density and excellent moldability, such as copper powder prepared by an electrolytic method, is suitable.

【0016】本発明によると、焼結用合金紛中には、上
記の焼結助剤が、0.02〜0.5重量%添加されてい
る。これによって、焼結時に、焼結助剤が合金粉の表面
を覆って酸化アルミニウムの生成を阻害する。
According to the present invention, the above-mentioned sintering aid is added to the sintering alloy powder in an amount of 0.02 to 0.5% by weight. As a result, during sintering, the sintering aid covers the surface of the alloy powder and inhibits the production of aluminum oxide.

【0017】更に、本発明において使用される焼結用合
金粉の粒度も特に限定されないが、通常の粉末冶金にお
けるハンドリング性の見地より、−150〜−75μm
程度の粒度を有する合金粉の使用が好ましい。
Further, the particle size of the alloy powder for sintering used in the present invention is not particularly limited either, but from the viewpoint of handling property in ordinary powder metallurgy, -150 to -75 μm.
It is preferable to use alloy powder having a certain particle size.

【0018】本発明の焼結用合金粉は、一般的に、10
0〜1000MPaで金型成型した後に、水素や窒素等
の非酸化性雰囲気中での焼結により、優れた機械的特性
および耐腐食性を有する焼結体となる。
The sintering alloy powder of the present invention is generally 10
After die-molding at 0 to 1000 MPa, sintering in a non-oxidizing atmosphere such as hydrogen or nitrogen gives a sintered body having excellent mechanical properties and corrosion resistance.

【0019】焼結は、焼結助剤の融点よりも高く、基質
である合金の融点よりも低い温度で実施される。
Sintering is carried out at a temperature higher than the melting point of the sintering aid and lower than the melting point of the matrix alloy.

【0020】次に本発明を実施例に基づいて更に詳細に
説明する。
Next, the present invention will be described in more detail based on examples.

【0021】(実施例1)噴霧法で製造した粒度−15
0μmの銅‐7重量%アルミニウム合金粉を用意した。
この銅アルミニウム合金粉中に、表1に示す焼結助剤を
添加して十分に混合した。なお、銅アルミニウム合金粉
中に占める焼結助剤の割合は0.1重量%とした。そし
て、この銅アルミニウム合金粉を、成型圧力500MP
aで成型して、外径20mm、内径12mmおよび高さ
10mmの円筒形状の成型物を得た。この成型物を、ス
テンレス製ボートに載せて水素気流中にて950℃で3
0min間加熱して焼結体を得た。得られた焼結体につ
いて測定した密度、硬さおよび圧環強さを表1に併せて
示す。
(Example 1) Particle size-15 produced by spraying method
0 μm copper-7 wt% aluminum alloy powder was prepared.
The sintering aid shown in Table 1 was added to this copper aluminum alloy powder and mixed sufficiently. The proportion of the sintering aid in the copper-aluminum alloy powder was 0.1% by weight. And, this copper aluminum alloy powder is molded at a pressure of 500MP
Molded in a, a cylindrical molded product having an outer diameter of 20 mm, an inner diameter of 12 mm and a height of 10 mm was obtained. This molded product was placed on a stainless steel boat and heated in a hydrogen stream at 950 ° C for 3 hours.
It heated for 0 min and obtained the sintered compact. Table 1 also shows the density, hardness and radial crushing strength measured for the obtained sintered body.

【0022】表1に示す結果より明らかなように、本発
明に従う焼結助剤1〜21を添加して焼結された焼結体
は、本発明の範囲から外れる焼結助剤22〜27および
31〜36を添加して焼結された焼結体に比べて、より
高い密度、硬さおよび圧環強さを示している。従って、
本発明による焼結助剤が、従来の焼結助剤よりも、銅ア
ルミニウム合金粉の焼結を促進することが証明された。
As is clear from the results shown in Table 1, the sintered bodies sintered by adding the sintering aids 1 to 21 according to the present invention are outside the scope of the present invention. And higher densities, hardnesses and radial crushing strengths as compared with the sintered bodies sintered by adding Nos. 31 and 36. Therefore,
It has been demonstrated that the sintering aid according to the present invention promotes the sintering of the copper-aluminum alloy powder more than conventional sintering aids.

【0023】また、焼結助剤1〜27、および31〜3
4の場合には、ステンレス製ボートや得られた焼結体に
目立った腐食は検出されなかったが、フッ化ナトリウム
またはフッ化カリウムからなる焼結助剤35および36
を用いた場合には、ステンレス製ボートや焼結体に明ら
かな腐食が観察された。
Further, sintering aids 1-27 and 31-3
In the case of No. 4, no noticeable corrosion was detected in the stainless steel boat or the obtained sintered body, but the sintering aids 35 and 36 made of sodium fluoride or potassium fluoride were used.
When was used, obvious corrosion was observed in the stainless steel boat and the sintered body.

【0024】[0024]

【表1】 [Table 1]

【0025】(実施例2)電解法で製造した粒度−15
0μmの銅粉と、搗砕法で製造した粒度−63μmの銅
‐50重量%アルミニウム合金粉との混合粉を用意し
た。この混合粉の混合比率は、重量比で、銅粉:銅アル
ミニウム合金粉=86:14である。この混合粉中に表
2に示す焼結助剤を添加して十分に混合した。なお、混
合粉中に占める焼結助剤の割合は0.1重量%とした。
この混合粉を、成型圧力500MPaで成型して、外径
20mm、内径12mmおよび高さ10mmの円筒形状
の成型物を得た。そして、この成型物を、ステンレス製
ボートに載せて水素気流中にて950℃で30min間
加熱して焼結体を得た。得られた焼結体について測定し
た密度、硬さおよび圧環強さを表2に併せて示す。
(Example 2) Particle size-15 produced by electrolysis method
A mixed powder of 0 μm copper powder and copper-50 wt% aluminum alloy powder with a particle size of −63 μm produced by the milling method was prepared. The mixing ratio of the mixed powder is copper powder: copper aluminum alloy powder = 86: 14 by weight. The sintering aids shown in Table 2 were added to this mixed powder and thoroughly mixed. The proportion of the sintering aid in the mixed powder was 0.1% by weight.
This mixed powder was molded at a molding pressure of 500 MPa to obtain a cylindrical molded product having an outer diameter of 20 mm, an inner diameter of 12 mm and a height of 10 mm. Then, this molded product was placed on a stainless steel boat and heated in a hydrogen stream at 950 ° C. for 30 minutes to obtain a sintered body. Table 2 also shows the density, hardness and radial crushing strength measured for the obtained sintered body.

【0026】表2に示す結果より明らかなように、本発
明に従う焼結助剤1〜21を添加して焼結された焼結体
は、本発明の範囲から外れる焼結助剤22〜27および
31〜36を添加して焼結された焼結体に比べて、より
高い密度、硬さおよび圧環強さを示している。従って、
本発明による焼結助剤が、従来の焼結助剤よりも、銅粉
と銅アルミニウム合金粉との混合粉に対する焼結を促進
することが証明された。
As is clear from the results shown in Table 2, the sintered bodies sintered by adding the sintering aids 1 to 21 according to the present invention are outside the scope of the present invention. And higher densities, hardnesses and radial crushing strengths as compared with the sintered bodies sintered by adding Nos. 31 and 36. Therefore,
It has been proved that the sintering aid according to the present invention promotes the sintering of the mixed powder of the copper powder and the copper-aluminum alloy powder more than the conventional sintering aid.

【0027】また、焼結助剤1〜27、および31〜3
4の場合には、ステンレス製ボートや得られた焼結体に
目立った腐食は検出されなかったが、フッ化ナトリウム
またはフッ化カリウムからなる焼結助剤35および36
を用いた場合には、ステンレス製ボートや焼結体に明ら
かな腐食が観察された。
Further, sintering aids 1-27 and 31-3
In the case of No. 4, no noticeable corrosion was detected in the stainless steel boat or the obtained sintered body, but the sintering aids 35 and 36 made of sodium fluoride or potassium fluoride were used.
When was used, obvious corrosion was observed in the stainless steel boat and the sintered body.

【0028】[0028]

【表2】 [Table 2]

【0029】(実施例3)噴霧法で製造した粒度100
μmの銅‐9重量%アルミニウム‐2重量%ニッケル‐
3.5重量%鉄の合金粉を用意した。このアルミニウム
青銅粉中に、表3に示す焼結助剤を添加して十分に混合
した。なお、このアルミニウム青銅粉中に占める焼結助
剤の割合は0.1重量%とした。このアルミニウム青銅
粉を、成型圧力500MPaで成型して、外径20m
m、内径12mmおよび高さ10mmの円筒形状の成型
物を得た。この成型物を、ステンレス製ボートに載せて
水素気流中にて950℃で30min間加熱して焼結体
を得た。得られた焼結体について測定した密度、硬さお
よび圧環強さを表3に併せて示す。
Example 3 Particle size 100 produced by the spraying method
μm copper-9% by weight aluminum-2% by weight nickel-
An alloy powder of 3.5 wt% iron was prepared. The sintering aids shown in Table 3 were added to this aluminum bronze powder and mixed thoroughly. The proportion of the sintering aid in the aluminum bronze powder was 0.1% by weight. This aluminum bronze powder is molded at a molding pressure of 500 MPa and has an outer diameter of 20 m.
A cylindrical molded product having m, an inner diameter of 12 mm and a height of 10 mm was obtained. This molded product was placed on a stainless steel boat and heated in a hydrogen stream at 950 ° C. for 30 minutes to obtain a sintered body. Table 3 also shows the density, hardness and radial crushing strength measured for the obtained sintered body.

【0030】表3に示す結果より明らかなように、本発
明に従う焼結助剤1〜21を添加して焼結された焼結体
は、本発明の範囲から外れる焼結助剤22〜27および
31〜36を添加して焼結された焼結体に比べて、より
高い密度、硬さおよび圧環強さを示している。従って、
本発明による焼結助剤が、従来の焼結助剤よりも、アル
ミニウム青銅粉の焼結を促進することが証明された。
As is clear from the results shown in Table 3, the sintered bodies sintered by adding the sintering aids 1 to 21 according to the present invention are outside the scope of the present invention. And higher densities, hardnesses and radial crushing strengths as compared with the sintered bodies sintered by adding Nos. 31 and 36. Therefore,
It has been demonstrated that the sintering aid according to the invention promotes the sintering of aluminum bronze powder more than conventional sintering aids.

【0031】また、焼結助剤1〜27、および31〜3
4の場合には、ステンレス製ボートや得られた焼結体に
目立った腐食は検出されなかったが、フッ化ナトリウム
またはフッ化カリウムからなる焼結助剤35および36
を用いた場合には、ステンレス製ボートや焼結体に明ら
かな腐食が観察された。
Further, sintering aids 1-27 and 31-3
In the case of No. 4, no noticeable corrosion was detected in the stainless steel boat or the obtained sintered body, but the sintering aids 35 and 36 made of sodium fluoride or potassium fluoride were used.
When was used, obvious corrosion was observed in the stainless steel boat and the sintered body.

【0032】[0032]

【表3】 [Table 3]

【0033】(実施例4)噴霧法で製造した粒度−10
0μmの銅‐35重量%亜鉛‐3重量%アルミニウムの
合金粉を用意した。このアルミニウム黄銅粉中に、表4
に示す焼結助剤を添加して十分に混合した。なお、この
アルミニウム黄銅粉中に占める焼結助剤の割合は0.1
重量%とした。焼結助剤を添加したアルミニウム黄銅粉
を、成型圧力500MPaで成型して、外径20mm、
内径12mmおよび高さ10mmの円筒形状の成型物を
得た。この成型物を、ステンレス製ボートに載せて水素
気流中にて900℃で30min間加熱して焼結体を得
た。得られた焼結体について測定した密度、硬さおよび
圧環強さを表4に併せて示す。
(Example 4) Particle size-10 produced by spraying method
An alloy powder of 0 μm copper-35 wt% zinc-3 wt% aluminum was prepared. In this aluminum brass powder, Table 4
The sintering aid shown in 1 was added and thoroughly mixed. The proportion of the sintering aid in the aluminum brass powder was 0.1.
It was set to% by weight. Aluminum brass powder added with a sintering aid was molded at a molding pressure of 500 MPa to give an outer diameter of 20 mm,
A cylindrical molded product having an inner diameter of 12 mm and a height of 10 mm was obtained. This molded product was placed on a stainless steel boat and heated in a hydrogen stream at 900 ° C. for 30 minutes to obtain a sintered body. Table 4 also shows the density, hardness, and radial crushing strength measured for the obtained sintered body.

【0034】表4に示す結果より明らかなように、本発
明に従う焼結助剤1〜21を添加して焼結された焼結体
は、本発明の範囲から外れる焼結助剤22〜27および
31〜36を添加して焼結された焼結体に比べて、より
高い密度、硬さおよび圧環強さを示している。従って、
本発明による焼結助剤が、従来の焼結助剤よりも、アル
ミニウム黄銅粉の焼結を促進することが証明された。
As is clear from the results shown in Table 4, the sintered bodies sintered by adding the sintering aids 1 to 21 according to the present invention are outside the scope of the present invention. And higher densities, hardnesses and radial crushing strengths as compared with the sintered bodies sintered by adding Nos. 31 and 36. Therefore,
It has been demonstrated that the sintering aid according to the invention promotes the sintering of aluminum brass powder more than conventional sintering aids.

【0035】また、焼結助剤1〜27、および31〜3
4の場合には、ステンレス製ボートや得られた焼結体に
目立った腐食は検出されなかったが、フッ化ナトリウム
またはフッ化カリウムからなる焼結助剤35および36
を用いた場合には、ステンレス製ボートや焼結体に明ら
かな腐食が観察された。
Further, sintering aids 1-27 and 31-3
In the case of No. 4, no noticeable corrosion was detected in the stainless steel boat or the obtained sintered body, but the sintering aids 35 and 36 made of sodium fluoride or potassium fluoride were used.
When was used, obvious corrosion was observed in the stainless steel boat and the sintered body.

【0036】[0036]

【表4】 [Table 4]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 益岡 佐千子 京都府京都市山科区椥辻草海道町12−1− 308 Fターム(参考) 4K018 CA07 DA01    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Sachiko Masuoka             12-1 Tsujikusa-kaido-cho, Yamashina-ku, Kyoto-shi, Kyoto Prefecture             308 F-term (reference) 4K018 CA07 DA01

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 フッ化アルミニウムに、フッ化カルシウ
ムおよびフッ化マグネシウムから選択される少なくとも
1種類を1〜70重量%混合してなるアルミニウム含有
銅系合金粉のための焼結助剤。
1. A sintering aid for aluminum-containing copper-based alloy powder, which is obtained by mixing 1 to 70% by weight of at least one selected from calcium fluoride and magnesium fluoride with aluminum fluoride.
【請求項2】 アルミニウム含有銅系合金から成る焼結
用合金粉であって、前記合金粉は、フッ化アルミニウム
に、フッ化カルシウムおよびフッ化マグネシウムから選
択される少なくとも1種類を1〜70重量%混合して成
る焼結助剤を0.02〜0.5重量%含んでいることを
特徴とする焼結用合金粉。
2. A sintering alloy powder made of an aluminum-containing copper-based alloy, wherein the alloy powder is 1 to 70 parts by weight of aluminum fluoride and at least one selected from calcium fluoride and magnesium fluoride. % Of the sintering aid formed by mixing 0.02 to 0.5% by weight, and a sintering alloy powder for sintering.
JP2001239184A 2001-08-07 2001-08-07 Sintering aid for aluminum-containing copper-based alloy powder, and sintering alloy powder containing the same Expired - Fee Related JP4532793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001239184A JP4532793B2 (en) 2001-08-07 2001-08-07 Sintering aid for aluminum-containing copper-based alloy powder, and sintering alloy powder containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001239184A JP4532793B2 (en) 2001-08-07 2001-08-07 Sintering aid for aluminum-containing copper-based alloy powder, and sintering alloy powder containing the same

Publications (2)

Publication Number Publication Date
JP2003049206A true JP2003049206A (en) 2003-02-21
JP4532793B2 JP4532793B2 (en) 2010-08-25

Family

ID=19069970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001239184A Expired - Fee Related JP4532793B2 (en) 2001-08-07 2001-08-07 Sintering aid for aluminum-containing copper-based alloy powder, and sintering alloy powder containing the same

Country Status (1)

Country Link
JP (1) JP4532793B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009114486A (en) * 2007-11-02 2009-05-28 Fukuda Metal Foil & Powder Co Ltd Sintering assistant, aluminum-containing copper-based alloy powder to be sintered, and sintered compact formed by sintering the aluminum-containing copper-based alloy powder

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497106A (en) * 1972-05-14 1974-01-22
JPS52115708A (en) * 1976-09-17 1977-09-28 Fukuda Metal Foil Powder Powder for production of sintered copper alloy
JPH01219062A (en) * 1988-02-29 1989-09-01 Toyota Motor Corp Production of silicon nitride sintered body
JPH05286762A (en) * 1992-04-10 1993-11-02 Kurosaki Refract Co Ltd Manufacture of polycrystalline transparent yag ceramic for solid laser
JPH05294724A (en) * 1992-04-10 1993-11-09 Kurosaki Refract Co Ltd Production of polycrystalline transparent yag ceramic for solid laser

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497106A (en) * 1972-05-14 1974-01-22
JPS52115708A (en) * 1976-09-17 1977-09-28 Fukuda Metal Foil Powder Powder for production of sintered copper alloy
JPH01219062A (en) * 1988-02-29 1989-09-01 Toyota Motor Corp Production of silicon nitride sintered body
JPH05286762A (en) * 1992-04-10 1993-11-02 Kurosaki Refract Co Ltd Manufacture of polycrystalline transparent yag ceramic for solid laser
JPH05294724A (en) * 1992-04-10 1993-11-09 Kurosaki Refract Co Ltd Production of polycrystalline transparent yag ceramic for solid laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009114486A (en) * 2007-11-02 2009-05-28 Fukuda Metal Foil & Powder Co Ltd Sintering assistant, aluminum-containing copper-based alloy powder to be sintered, and sintered compact formed by sintering the aluminum-containing copper-based alloy powder

Also Published As

Publication number Publication date
JP4532793B2 (en) 2010-08-25

Similar Documents

Publication Publication Date Title
KR101367892B1 (en) Magnesium alloy for high temperature and manufacturing method thereof
JP5524257B2 (en) Method for producing metal articles without melting
CA1174083A (en) Process for the preparation of alloy powders which can be sintered and which are based on titanium
JP4974591B2 (en) Graphite spheroidizing agent and method for producing spheroidal graphite cast iron using the same
JP4461080B2 (en) Aluminum powder alloy composite material for neutron absorption, method for manufacturing the same, and basket manufactured therewith
WO2011152359A1 (en) Titanium alloy composite powder containing ceramics and manufacturing method thereof, and densified titanium alloy and manufacturing method thereof using the same
KR101214939B1 (en) Grain refiner of magnesium alloys and method for grain refining, method for manufacturing of magnesium alloys using the same, and magnesium alloys prepared thereby
KR20120080097A (en) Magnesium alloy for normal temperature
JP3030338B1 (en) Method for producing high-strength flame-retardant magnesium alloy
JPH0617524B2 (en) Magnesium-titanium sintered alloy and method for producing the same
US20240132994A1 (en) Method for recovery of metal-containing material from a composite material
JP2009007648A (en) Powder for infiltration
JP4730338B2 (en) COMPOSITE MATERIAL FOR INJECTION MOLDING COMPRISING CERAMIC DISPERSED MAGNESIUM COMPOSITE MATERIAL AND ITS MANUFACTURING METHOD
JPH07166321A (en) Surface-nitrided aluminum material, nitriding treatment of its surface and auxiliary for nitriding treatment thereof
JP2003049206A (en) Sintering assistant for aluminum containing copper based alloy powder and alloy powder for sintering containing same sintering assistant
KR20150112341A (en) Method of fabricating Ti-6Al-4V alloy
EP2374905B1 (en) Manufacturing method of magnesium based alloy for high temperature
KR101147650B1 (en) Magnesium alloy for high temperature and manufacturing method thereof
US3595608A (en) Method of increasing rate of dissolution of aluminum in acid chloride solutions
JP3089300B1 (en) Highly efficient method for producing titanium alloy by mechanical alloying
JP2020084246A (en) Graphite spheroidizing agent for cast iron
CN109355539A (en) A kind of high-performance magnesium-alloy
KR101428593B1 (en) Grain refiner for aluminum contained magnesium alloys, method for producing magnesium alloys and magnesium alloys produced by the method
EP2374906B1 (en) Manufacturing method of a magnesium alloy for room temperature applications
KR100983823B1 (en) Grain refiner added during casting of magnesium alloy and grain refinement method of magnesium alloy using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080701

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080701

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100611

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4532793

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140618

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees