JP3089300B1 - Highly efficient method for producing titanium alloy by mechanical alloying - Google Patents

Highly efficient method for producing titanium alloy by mechanical alloying

Info

Publication number
JP3089300B1
JP3089300B1 JP11069578A JP6957899A JP3089300B1 JP 3089300 B1 JP3089300 B1 JP 3089300B1 JP 11069578 A JP11069578 A JP 11069578A JP 6957899 A JP6957899 A JP 6957899A JP 3089300 B1 JP3089300 B1 JP 3089300B1
Authority
JP
Japan
Prior art keywords
powder
alloy
magnesium
titanium
titanium alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11069578A
Other languages
Japanese (ja)
Other versions
JP2000265226A (en
Inventor
慶三 小林
明 杉山
章宏 松本
敏幸 西尾
公洋 尾崎
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP11069578A priority Critical patent/JP3089300B1/en
Application granted granted Critical
Publication of JP3089300B1 publication Critical patent/JP3089300B1/en
Publication of JP2000265226A publication Critical patent/JP2000265226A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

【要約】 【課題】 チタンを主成分とする合金粉末を機械的合金
化法により高効率で作製する技術を提供するとともに、
合金の機能性を低下しない固化成形技術を提供する。 【解決手段】 合金を構成する金属あるいは非金属の粉
末にマグネシウム粉末を5重量%以下添加して機械的合
金化処理することを特徴とする50原子%以上のチタン
を含む合金粉末の合成方法とその粉末を減圧雰囲気にて
加圧下で成形することによりマグネシウムを除去した緻
密な成形材料。さらに、成形した材料を融点以下の温度
で不活性ガスあるいは減圧雰囲気にて熱処理した材料。
Abstract: [PROBLEMS] To provide a technique for producing an alloy powder containing titanium as a main component with high efficiency by a mechanical alloying method,
To provide a solidification molding technique that does not reduce the functionality of an alloy. SOLUTION: A method for synthesizing an alloy powder containing 50 atom% or more of titanium, wherein magnesium powder is added to metal or non-metal powder constituting the alloy in an amount of 5 wt% or less and mechanical alloying treatment is performed. A compact molding material from which magnesium is removed by molding the powder under pressure in a reduced-pressure atmosphere. Further, a material obtained by subjecting a molded material to a heat treatment at a temperature equal to or lower than the melting point in an inert gas or reduced pressure atmosphere.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、機械的合金化によ
るチタン合金の作製方法に関する。さらに詳しくは、本
発明は、チタンを主成分とする合金材料を合金を構成す
る金属あるいは非金属の粉末にマグネシウムを添加して
機械的合金化処理法により合金化し、高効率でチタン合
金粉末を作製する方法であって、マグネシウムを添加す
ることによって合金粉末を高効率に回収するとともに、
該粉末を加圧下で成形することによって混入したマグネ
シウムを除去して緻密な成形体を作製する方法に関す
る。
The present invention relates to a method for producing a titanium alloy by mechanical alloying. More specifically, the present invention provides an alloy material containing titanium as a main component, which is alloyed by adding a magnesium to a metal or non-metal powder constituting the alloy and mechanically alloying the alloy material, thereby producing a titanium alloy powder with high efficiency. A method of producing, while recovering the alloy powder with high efficiency by adding magnesium,
The present invention relates to a method for producing a dense compact by removing the mixed magnesium by molding the powder under pressure.

【0002】[0002]

【従来の技術】チタンを主成分とする合金は活性である
ため、雰囲気や耐火材料からの汚染が激しく、溶解によ
る作製は特殊な設備を必要とする。一方、機械的合金化
法によるチタン合金の合成では、容器やボールへの付着
が多く、粉末回収量が少ないという問題があった。
2. Description of the Related Art Since an alloy containing titanium as a main component is active, it is heavily contaminated from the atmosphere or a refractory material, and production by melting requires special equipment. On the other hand, in the synthesis of a titanium alloy by a mechanical alloying method, there is a problem that adhesion to a container or a ball is large, and the amount of recovered powder is small.

【0003】また、機械的合金化法で得られた粉末は粗
い粉末が多く含まれ、粉末の成形性が悪いという問題が
ある。
Further, the powder obtained by the mechanical alloying method has a problem that it contains a large amount of coarse powder and the powder has poor moldability.

【0004】[0004]

【発明が解決しようとする課題】本発明は、チタンを主
成分とする合金を機械的合金化法により高効率に作製す
るとともに、緻密な成形体を得るためになされたもので
ある。本発明者らは、上記の問題点を解決するため鋭意
研究した結果、チタンを主成分とする合金を構成する金
属あるいは非金属の粉末に10重量%以下のマグネシウ
ムの粉末を添加して機械的合金化処理を行うことにより
微細な合金粉末を高効率で回収できることおよび加圧下
にて成形することによりマグネシウムを除去した緻密な
成形体を作製できることを見いだし、本発明を完成し
た。本発明は従来の溶解法では雰囲気や耐火材料からの
汚染が大きかったチタン合金を機械的合金化法により高
効率で粉末を合成するとともに緻密な成形体を得ること
を目的とするものである。
DISCLOSURE OF THE INVENTION The present invention has been made to produce an alloy containing titanium as a main component with high efficiency by a mechanical alloying method and to obtain a dense compact. The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, added 10% by weight or less of magnesium powder to a metal or non-metal powder constituting an alloy containing titanium as a main component to obtain a mechanical effect. The present inventors have found that a fine alloy powder can be recovered with high efficiency by performing an alloying treatment, and that a dense molded body from which magnesium has been removed can be produced by molding under pressure, thereby completing the present invention. SUMMARY OF THE INVENTION An object of the present invention is to synthesize a powder of a titanium alloy, which is largely contaminated from the atmosphere or a refractory material by a conventional melting method, with a high efficiency by a mechanical alloying method and to obtain a dense compact.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
の本発明は、以下の技術的手段から構成される。 (1)マグネシウムが微細に分散した50ミクロン以下
の微細な合金粉末を形成した後、得られた粉末を固化成
形して上記マグネシウムを0.5重量%以下に除去した
緻密なチタン合金成形材料を作製する方法であって、次
の工程;チタンを主成分とする合金を構成する金属ある
いは非金属の粉末にマグネシウム粉末を5重量%以下添
加して機械的合金化処理により50原子%以上のチタン
を含む合金粉末を合成する工程、 上記合金粉末を10T
orr以下の真空もしくは大気圧以下の不活性ガス雰囲
気中で加圧焼結して固化成形することによりマグネシウ
ムを除去した成形体を作製する工程、からなることを特
徴とするチタン合金成形材料の作製方法。 (2)前記(1)に記載の方法で作製したマグネシウム
0.5重量%以下に除去した緻密なチタン合金成形材
料。 (3)前記(2)に記載のチタン合金成形材料を該チタ
ン合金の融点以下の温度で不活性ガスあるいは減圧雰囲
気にて熱処理した材料。
The present invention for solving the above-mentioned problems comprises the following technical means. (1) 50 microns or less in which magnesium is finely dispersed
After forming a fine alloy powder, the obtained powder is solidified
To remove the above magnesium to 0.5% by weight or less
A method for producing a dense titanium alloy molding material, comprising:
Step; step of synthesizing the alloy powder containing 50 atomic% or more titanium by alloy powder magnesium powder metal or nonmetal constituting added 5 wt% or less mechanical alloying process mainly comprising titanium , 10T of the above alloy powder
Vacuum below orr or inert gas atmosphere below atmospheric pressure
Magnesium by pressure sintering in the air and solidifying and forming
The method for manufacturing a titanium alloy molding material characterized by comprising the step, to prepare a molded body to remove beam. (2) the dense titanium alloy molding material was removed magnesium to 0.5% by weight or less prepared by the method described in (1). (3) a titanium alloy molding material according to (2) the Chita
A material that has been heat-treated in an inert gas or reduced-pressure atmosphere at a temperature below the melting point of the alloy .

【0006】[0006]

【発明の実施の形態】次に、本発明について更に詳細に
説明する。本発明に用いる材料には、市販のチタン粉末
および目的の合金を構成する金属あるいは非金属の粉末
を利用できる。これらの金属あるいは非金属の粉末の混
合粉末の総重量の5重量%以下のマグネシウム粉末を添
加し、機械的合金化法により合金化処理を行う。マグネ
シウム粉末としては市販されている試薬特級程度の純度
の粉末が利用できる。5重量%より多いマグネシウム粉
末を添加すると、機械的合金化粉末が粗大化するととも
に、焼結時の除去が困難になる。
Next, the present invention will be described in more detail. As the material used in the present invention, commercially available titanium powder and metal or non-metal powder constituting the target alloy can be used. Magnesium powder of 5% by weight or less of the total weight of the mixed powder of these metal or nonmetal powders is added, and alloying is performed by a mechanical alloying method. As the magnesium powder, a commercially available powder having a reagent grade purity can be used. If more than 5% by weight of magnesium powder is added, the mechanical alloying powder becomes coarse and difficult to remove during sintering.

【0007】合金を構成するチタン粉末、金属粉末、非
金属粉末の割合はチタン粉末が50原子%以上含まれて
いることが望ましい。チタン粉末が50原子%未満の場
合には機械的合金化処理時に添加したマグネシウムと金
属粉末あるいは非金属粉末の反応が促進され、粉末が微
細化しない場合がある。それぞれの粉末の性状について
は特に指定しないが、500ミクロン以下の微細な粉末
が好ましい。
It is desirable that the ratio of titanium powder, metal powder, and nonmetal powder constituting the alloy should be 50 atomic% or more. If the titanium powder content is less than 50 atomic%, the reaction between the magnesium powder added during the mechanical alloying process and the metal powder or nonmetal powder is promoted, and the powder may not be finely divided. The properties of each powder are not particularly specified, but a fine powder of 500 microns or less is preferable.

【0008】機械的合金化処理には乾式の粉砕機が利用
でき、振動型ボールミル、遊星型ボールミル、転動型ボ
ールミル、アトライターなどが利用できる。機械的合金
化時の雰囲気は、大気圧以下のアルゴンガス雰囲気にし
なければならない。大気圧より高い圧力では粉末の混合
状態が悪く、焼結時にマグネシウムを除去することが難
しい。
For the mechanical alloying treatment, a dry pulverizer can be used, and a vibrating ball mill, a planetary ball mill, a rolling ball mill, an attritor, and the like can be used. The atmosphere during mechanical alloying must be an argon gas atmosphere at or below atmospheric pressure. At a pressure higher than the atmospheric pressure, the mixing state of the powder is poor, and it is difficult to remove magnesium during sintering.

【0009】機械的合金化に供する時間は特に指定しな
いが、50時間から300時間が一般的である。また、
圧力伝達媒体としては鉄を主成分とする鋼球が利用でき
る。なお、機械的合金化時には一般的に添加されるステ
アリン酸やアルコールなどの潤滑剤は使用してはいけな
い。
The time for mechanical alloying is not specified, but is generally 50 to 300 hours. Also,
Steel balls containing iron as a main component can be used as the pressure transmission medium. Note that lubricants such as stearic acid and alcohol which are generally added during mechanical alloying should not be used.

【0010】機械的合金化法により合成された粉末は、
マグネシウムが微細に分散した状態の粉末であり、合成
する合金組成によらず50ミクロン以下の微細な粉末を
形成する。一般に、機械合金化法で得られた粉末は粗い
粉末が多く含まれ、粉末の成形性が悪いという問題があ
るが、本発明により、上記微細な粉末を形成できるの
で、上記のような問題がない。
The powder synthesized by the mechanical alloying method is as follows:
This is a powder in which magnesium is finely dispersed, and forms a fine powder of 50 μm or less regardless of the alloy composition to be synthesized. Generally, the powder obtained by the mechanical alloying method contains a large amount of coarse powder and has a problem that the formability of the powder is poor. However, according to the present invention, the above-described problem can be solved because the fine powder can be formed. Absent.

【0011】得られた粉末は、加圧下にて焼結すること
により緻密な成形体を得ることができる。加熱方法は特
に指定しないが、加圧を容易に行える通電加熱、ホット
プレス、赤外線イメージ炉、高周波加熱などが利用でき
る。焼結温度は合成する合金組成によって変化するが、
およそ600℃から1300℃で焼結することができ
る。添加したマグネシウムは、1000℃まで加熱する
とほぼ完全に除去することができる。
The obtained powder is sintered under pressure to obtain a dense compact. The heating method is not particularly specified, but electric heating, hot press, infrared image furnace, high frequency heating, etc., which can easily pressurize, can be used. The sintering temperature varies depending on the alloy composition to be synthesized.
It can be sintered at about 600 to 1300 ° C. The added magnesium can be almost completely removed by heating to 1000 ° C.

【0012】焼結の雰囲気は、粉末の酸化を防止するた
め10Torr以下の真空もしくは大気圧以下の不活性
ガス雰囲気にする必要がある。また、焼結用の治具には
黒鉛や炭化物セラミックス材料など非酸化物系材料が利
用できる。焼結時の加圧力は特に指定しないが、一般的
には20MPa以上である。
The sintering atmosphere must be a vacuum of 10 Torr or less or an inert gas atmosphere of not more than atmospheric pressure in order to prevent oxidation of the powder. Further, non-oxide-based materials such as graphite and carbide ceramic materials can be used for the sintering jig. The pressure during sintering is not particularly specified, but is generally 20 MPa or more.

【0013】得られた成形体にはほとんど気孔が残存し
ておらず、マグネシウムも0.5重量%以下しか残存し
ていない。この成形体は組織の調整あるいは真密度化の
ために合成した合金の融点より低い温度で熱処理を行う
ことができる。合金中の残存するマグネシウム量が少な
いため、加熱速度や加熱温度の制限を受けずに熱処理を
行うことができる。なお、熱処理時の雰囲気は、合金の
酸化あるいは窒化を防止するため、真空中や不活性ガス
雰囲気が好ましい。
[0013] In the obtained molded body, almost no pores remain, and only 0.5% by weight or less of magnesium remains. This compact can be subjected to a heat treatment at a temperature lower than the melting point of the alloy synthesized for the purpose of adjusting the structure or increasing the true density. Since the amount of magnesium remaining in the alloy is small, heat treatment can be performed without being limited by the heating rate or the heating temperature. The atmosphere during the heat treatment is preferably in a vacuum or an inert gas atmosphere in order to prevent oxidation or nitridation of the alloy.

【0014】成形体あるいは熱処理した材料は、マグネ
シウム含有量がきわめて少ないため、チタン合金と同じ
加工や組織制御を行うことができる。また、合成した合
金が機能性材料の場合にもその性能はほとんど劣化しな
い。
Since the compact or the heat-treated material has an extremely low magnesium content, the same processing and structure control as the titanium alloy can be performed. Also, when the synthesized alloy is a functional material, its performance hardly deteriorates.

【0015】[0015]

【実施例】以下実施例で本発明をさらに詳細に説明す
る。しかし、該実施例は本発明の好適な例を示すもので
あり、本発明は該実施例によって限定されるものではな
い。 実施例1 チタン粉末(ナカライテスク製試薬)13.8gに還元
鉄粉末(和光純薬製試薬)16.2g、マグネシウム粉
末(和光純薬製試薬)0.6gを添加して遊星型ボール
ミルによる100時間の機械的合金化処理を施した。機
械的合金化の雰囲気は500Torrの減圧アルゴンと
し、粉末とボール重量比が約0.1になるようにした。
容器と10mm径の粉砕球にはクロム鋼を用いた。回収
できた粉末は25gであり、マグネシウムを添加しなか
った場合の7倍以上であった。
The present invention will be described in more detail with reference to the following examples. However, the embodiment shows a preferred example of the present invention, and the present invention is not limited by the embodiment. Example 1 16.2 g of reduced iron powder (reagent manufactured by Wako Pure Chemical Industries) and 0.6 g of magnesium powder (reagent manufactured by Wako Pure Chemical Industries) were added to 13.8 g of titanium powder (reagent manufactured by Nacalai Tesque), and 100 g of a planetary ball mill was added. Time mechanical alloying treatment was applied. The atmosphere for the mechanical alloying was argon under a reduced pressure of 500 Torr so that the weight ratio between the powder and the ball was about 0.1.
Chromium steel was used for the container and the crushing balls having a diameter of 10 mm. The recovered powder weighed 25 g, which was 7 times or more that when no magnesium was added.

【0016】得られた粉末を15φ×3(mm)の試験
片がとれる黒鉛型に充填し、0.01Torrの真空中
で通電加熱により800℃で5分保持することにより固
化成形した。得られた成形体にはマグネシウムが0.3
重量%残存しており、成形体は主にTiFe相で構成さ
れていた。
The obtained powder was filled into a graphite mold from which a test piece of 15φ × 3 (mm) could be taken, and was solidified by heating at 800 ° C. for 5 minutes by heating in a vacuum of 0.01 Torr. The obtained molded body contains 0.3% of magnesium.
% By weight, and the compact was mainly composed of a TiFe phase.

【0017】実施例2 チタン粉末(ナカライテスク製試薬)12.8gにアル
ミニウム粉末(和光純薬製試薬)7.2gとマグネシウ
ム粉末(和光純薬製試薬)0.4gを添加して遊星型ボ
ールミルによる150時間の機械的合金化処理を施し
た。機械的合金化の雰囲気は100Torrの減圧アル
ゴンガスとし、粉末とボールの重量比が約0.05にな
るようにした。容器と10mm径の粉砕球にはクロム鋼
を用いた。回収された粉末は16gであり、マグネシウ
ムを添加しなかった場合の3倍以上であった。
Example 2 A planetary ball mill was prepared by adding 7.2 g of aluminum powder (Wako Pure Chemical Reagent) and 0.4 g of magnesium powder (Wako Pure Chemical Reagent) to 12.8 g of titanium powder (Nacalai Tesque reagent). For 150 hours. The atmosphere for the mechanical alloying was an argon gas under a reduced pressure of 100 Torr, and the weight ratio between the powder and the ball was about 0.05. Chromium steel was used for the container and the crushing balls having a diameter of 10 mm. The recovered powder weighed 16 g, which was more than three times that when no magnesium was added.

【0018】得られた粉末を15φ×3(mm)の試験
片がとれる黒鉛型に充填し、0.01Torrの真空中
で通電加熱により800℃で5分保持することにより固
化成形した。得られた成形体を1000℃にてHIP処
理を施すと、マグネシウムを0.1重量%含有するTi
Al相を主成分とする固化成形体が得られた。
The obtained powder was filled in a graphite mold from which a test piece of 15φ × 3 (mm) could be taken and solidified and formed by heating at 800 ° C. for 5 minutes by heating in a vacuum of 0.01 Torr. When the obtained molded body is subjected to HIP treatment at 1000 ° C., Ti containing 0.1% by weight of magnesium is obtained.
A solidified compact having an Al phase as a main component was obtained.

【0019】実施例3 チタン粉末(ナカライテスク製試薬)3.7gにシリコ
ン粉末(和光純薬製試薬)1.3gとマグネシウム粉末
(和光純薬製試薬)0.05gを添加して振動型ボール
ミルによる100時間の機械的合金化処理を施した。機
械的合金化の雰囲気は大気圧のアルゴンガスとし、粉末
とボールの重量比が約0.1になるようにした。容器に
はステンレス鋼を用い、10mm径の粉砕球にはクロム
鋼を用いた。回収された粉末は3.9gであり、マグネ
シウムを添加しなかった場合の2倍弱であった。
Example 3 A vibration type ball mill was prepared by adding 1.3 g of silicon powder (reagent made by Wako Pure Chemical Industries) and 0.05 g of magnesium powder (reagent made by Wako Pure Chemical Industries) to 3.7 g of titanium powder (reagent made by Nacalai Tesque). For 100 hours. The atmosphere for the mechanical alloying was argon gas at atmospheric pressure, and the weight ratio between the powder and the ball was about 0.1. Stainless steel was used for the container, and chrome steel was used for the crushing balls having a diameter of 10 mm. The recovered powder weighed 3.9 g, which was slightly less than twice that when no magnesium was added.

【0020】得られた粉末を15φ×3(mm)の試験
片がとれる黒鉛型に充填し、0.01Torrの真空中
で通電加熱を行った。焼結は800℃で5分間保持し、
35MPaの加圧力で成形した。
The obtained powder was filled in a graphite mold from which a test piece of 15 mm × 3 (mm) could be taken, and was heated by applying electric current in a vacuum of 0.01 Torr. Sintering is held at 800 ° C for 5 minutes,
Molding was performed at a pressure of 35 MPa.

【0021】得られた成形体をアルゴンガス雰囲気中で
750℃に加熱し、1時間保持した。得られた熱処理材
は、マグネシウムを0.2重量%含有するTi−Si系
金属間化合物相で構成されていた。
The obtained compact was heated to 750 ° C. in an argon gas atmosphere and kept for 1 hour. The obtained heat-treated material was composed of a Ti-Si-based intermetallic compound phase containing 0.2% by weight of magnesium.

【0022】[0022]

【発明の効果】以上詳述したように、本発明は、合金を
構成する金属あるいは非金属の粉末にマグネシウム粉末
を5重量%以下添加して機械的合金化処理により50原
子%以上のチタンを含む合金粉末を合成することを特徴
とするチタン合金の作製方法に係るものであり、本発明
の機械的合金化による高効率なチタン合金の作製方法を
用いることにより、1)従来合成が困難であった高機能
性を有するチタン合金粉末を大量に作製することができ
る、2)実用レベルでの機械的合金化方法を提案できる
とともに、実用部材形状に固化成形できる粉末を作製す
ることができる、3)本発明で得られる成形体には添加
したマグネシウムがほとんど残存しておらず、チタン合
金の特性を損なうことがないうえ、添加したマグネシウ
ムは回収することが可能でありクローズドシステムとし
て、環境融合型の製造プロセスとすることができる、
4)固化成形時には液化したマグネシウムが粉末の焼結
を促進する役割をはたすため、一般に難加工性とされる
チタン合金の焼結性を改善することができる、5)本技
術は形状記憶合金や水素吸蔵合金などのエネルギー、環
境材料を含めた広い産業分野において、展開することが
できる、という効果が奏される。
As described above in detail, according to the present invention, magnesium powder is added to a metal or non-metal powder constituting an alloy in an amount of 5% by weight or less, and mechanically alloying treatment is performed to add 50% by atom or more of titanium. The present invention relates to a method for producing a titanium alloy characterized by synthesizing an alloy powder containing the same. By using the highly efficient method for producing a titanium alloy by mechanical alloying of the present invention, 1) conventional synthesis is difficult. It is possible to produce a large amount of titanium alloy powder having high performance, and 2) it is possible to propose a mechanical alloying method at a practical level, and to produce a powder which can be solidified and molded into a practical member shape. 3) The added magnesium hardly remains in the molded article obtained by the present invention, so that the properties of the titanium alloy are not impaired and the added magnesium is recovered. As possible and closed system can be a environmental fused manufacturing process,
4) During solidification and molding, liquefied magnesium plays a role in promoting sintering of powder, so that it is possible to improve the sinterability of titanium alloy, which is generally difficult to process. The present invention has an effect that it can be applied to a wide range of industrial fields including energy and environmental materials such as hydrogen storage alloys.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI B22F 9/02 B22F 9/02 A (72)発明者 西尾 敏幸 愛知県名古屋市名東区平和が丘1丁目70 番地 猪子石住宅1棟501号 (72)発明者 尾崎 公洋 愛知県名古屋市名東区平和が丘1丁目70 番地 猪子石住宅6棟503号 (56)参考文献 特開 平3−138325(JP,A) 特公 昭31−703(JP,B1) (58)調査した分野(Int.Cl.7,DB名) C22C 1/04 B22F 1/00 B22F 3/02 B22F 3/10 B22F 9/02 ────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 7 Identification code FI B22F 9/02 B22F 9/02 A (72) Inventor Toshiyuki 1-70 Heiwagaoka, Meito-ku, Nagoya-shi, Aichi Prefecture Inokoishi House 1 Building No. 501 (72) Inventor Kimihiro Ozaki 1-70 Heiwagaoka, Meito-ku, Nagoya City, Aichi Prefecture Inokoishi House 6 Building 503 (56) References JP-A-3-138325 (JP, A) 703 (JP, B1) (58) Fields investigated (Int. Cl. 7 , DB name) C22C 1/04 B22F 1/00 B22F 3/02 B22F 3/10 B22F 9/02

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 マグネシウムが微細に分散した50ミク
ロン以下の微細な合金粉末を形成した後、得られた粉末
を固化成形して上記マグネシウムを0.5重量%以下に
除去した緻密なチタン合金成形材料を作製する方法であ
って、次の工程; チタンを主成分とする 合金を構成する金属あるいは非金
属の粉末にマグネシウム粉末を5重量%以下添加して機
械的合金化処理により50原子%以上のチタンを含む合
金粉末を合成する工程、 上記合金粉末を10Torr以下の真空もしくは大気圧
以下の不活性ガス雰囲気中で加圧焼結して固化成形する
ことによりマグネシウムを除去した成形体を作製する工
程、 からなること を特徴とするチタン合金成形材料の作製方
法。
(1)50 micron with magnesium finely dispersed
After forming a fine alloy powder of less than
Solidified to reduce the above magnesium to 0.5% by weight or less
This is a method for producing a dense titanium alloy molding material that has been removed.
The next step; Mainly composed of titanium Metals or non-gold that make up the alloy
Magnesium powder added to powder of the genus
Alloy containing more than 50 atomic% titanium by mechanical alloying
Synthesize gold powderProcess, Vacuum or atmospheric pressure of the alloy powder above 10 Torr
Solidification molding by pressure sintering in the following inert gas atmosphere
To produce a compact from which magnesium has been removed
About Consisting of Titanium alloy characterizedMolding materialHow to make
Law.
【請求項2】 請求項1に記載の方法で作製したマグネ
シウムを0.5重量%以下に除去した緻密なチタン合金
成形材料。
2. A dense titanium alloy <br/> molding material removed Ma Gune <br/> Siumu prepared in 0.5 wt% or less The method of claim 1.
【請求項3】 請求項2に記載のチタン合金成形材料を
該チタン合金の融点以下の温度で不活性ガスあるいは減
圧雰囲気にて熱処理した材料。
3. The titanium alloy molding material according to claim 2 ,
A material that has been heat-treated in an inert gas or reduced-pressure atmosphere at a temperature equal to or lower than the melting point of the titanium alloy .
JP11069578A 1999-03-16 1999-03-16 Highly efficient method for producing titanium alloy by mechanical alloying Expired - Lifetime JP3089300B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11069578A JP3089300B1 (en) 1999-03-16 1999-03-16 Highly efficient method for producing titanium alloy by mechanical alloying

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11069578A JP3089300B1 (en) 1999-03-16 1999-03-16 Highly efficient method for producing titanium alloy by mechanical alloying

Publications (2)

Publication Number Publication Date
JP3089300B1 true JP3089300B1 (en) 2000-09-18
JP2000265226A JP2000265226A (en) 2000-09-26

Family

ID=13406837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11069578A Expired - Lifetime JP3089300B1 (en) 1999-03-16 1999-03-16 Highly efficient method for producing titanium alloy by mechanical alloying

Country Status (1)

Country Link
JP (1) JP3089300B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103341631A (en) * 2013-07-25 2013-10-09 丹阳市裕桥精密元件有限公司 Manufacturing technique of T-junction for optical communications

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012192016A (en) * 2011-03-16 2012-10-11 Nihon Univ Titanium-magnesium material having high strength and low elasticity
ITMO20130084A1 (en) * 2013-03-29 2014-09-30 K4Sint S R L METAL MECHANICAL ALLOCATION PROCEDURE

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103341631A (en) * 2013-07-25 2013-10-09 丹阳市裕桥精密元件有限公司 Manufacturing technique of T-junction for optical communications
CN103341631B (en) * 2013-07-25 2015-12-09 丹阳市裕桥精密元件有限公司 A kind of manufacture craft of optic communication three-way connection

Also Published As

Publication number Publication date
JP2000265226A (en) 2000-09-26

Similar Documents

Publication Publication Date Title
US6312643B1 (en) Synthesis of nanoscale aluminum alloy powders and devices therefrom
JP5826219B2 (en) Method for making a metal article having other additive components without melting
US3999952A (en) Sintered hard alloy of multiple boride containing iron
JPH0617524B2 (en) Magnesium-titanium sintered alloy and method for producing the same
JP2012132100A (en) Method for fabricating metallic article without any melting
JPH0583624B2 (en)
JPS6289803A (en) Powdery particle for fine granular hard alloy and its production
JP3089300B1 (en) Highly efficient method for producing titanium alloy by mechanical alloying
JP2801370B2 (en) Method for producing molded metal article with low oxygen content
US5261941A (en) High strength and density tungsten-uranium alloys
JPH05171321A (en) Titanium alloy for high density powder sintering
US11085109B2 (en) Method of manufacturing a crystalline aluminum-iron-silicon alloy
Zhu et al. Microstructure and mechanical properties of mechanically alloyed and HIP-consolidated Fe3Al
JP3032818B2 (en) Titanium boride dispersed hard material
JP3793813B2 (en) High strength titanium alloy and method for producing the same
US3963485A (en) Method of producing sintered titanium base articles
JP3054703B2 (en) Manufacturing method of iron-chromium alloy with excellent strength
US5193605A (en) Techniques for preparation of ingot metallurgical discontinuous composites
JP2818860B2 (en) Low-temperature molding synthesis of aluminide intermetallic compounds
JP2737487B2 (en) Method for producing titanium alloy for high-density powder sintering
JPH09202901A (en) Production of sintered compact of titanium-nickel alloy
JP3225252B2 (en) Method for producing particle-dispersed sintered titanium-based composite material
JP2905878B1 (en) Manufacturing method of composite thermoelectric material
JP2716886B2 (en) Method for producing Ti-Al intermetallic compound
JP2006176802A (en) Method for manufacturing high-strength magnesium alloy using solid-state reaction by hydrogenation and dehydrogenation

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term