JP2024065278A - Cu-based powder for infiltration - Google Patents
Cu-based powder for infiltration Download PDFInfo
- Publication number
- JP2024065278A JP2024065278A JP2022174049A JP2022174049A JP2024065278A JP 2024065278 A JP2024065278 A JP 2024065278A JP 2022174049 A JP2022174049 A JP 2022174049A JP 2022174049 A JP2022174049 A JP 2022174049A JP 2024065278 A JP2024065278 A JP 2024065278A
- Authority
- JP
- Japan
- Prior art keywords
- infiltration
- mass
- powder
- less
- based powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000008595 infiltration Effects 0.000 title claims abstract description 149
- 238000001764 infiltration Methods 0.000 title claims abstract description 149
- 239000000843 powder Substances 0.000 title claims abstract description 112
- 239000000126 substance Substances 0.000 claims abstract description 34
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 29
- 150000004767 nitrides Chemical class 0.000 claims abstract description 14
- 239000007790 solid phase Substances 0.000 claims abstract description 12
- 229910052742 iron Inorganic materials 0.000 claims abstract description 11
- 238000011282 treatment Methods 0.000 claims description 16
- 238000005204 segregation Methods 0.000 claims description 14
- 239000000314 lubricant Substances 0.000 claims description 11
- 238000004519 manufacturing process Methods 0.000 claims description 10
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 4
- 239000000463 material Substances 0.000 abstract description 72
- 229910045601 alloy Inorganic materials 0.000 abstract description 19
- 239000000956 alloy Substances 0.000 abstract description 19
- 230000003628 erosive effect Effects 0.000 abstract description 16
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 abstract description 8
- 229910007277 Si3 N4 Inorganic materials 0.000 abstract 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 97
- 239000000758 substrate Substances 0.000 description 32
- 238000000034 method Methods 0.000 description 18
- 239000011572 manganese Substances 0.000 description 14
- 239000011701 zinc Substances 0.000 description 11
- 230000007423 decrease Effects 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 230000002265 prevention Effects 0.000 description 9
- 239000002245 particle Substances 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 229910052581 Si3N4 Inorganic materials 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 238000005245 sintering Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 229910052748 manganese Inorganic materials 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 150000002894 organic compounds Chemical class 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 3
- 229910052582 BN Inorganic materials 0.000 description 2
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 229910000423 chromium oxide Inorganic materials 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 239000010721 machine oil Substances 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 239000011863 silicon-based powder Substances 0.000 description 2
- ZVWKZXLXHLZXLS-UHFFFAOYSA-N zirconium nitride Chemical compound [Zr]#N ZVWKZXLXHLZXLS-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910017827 Cu—Fe Inorganic materials 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005536 corrosion prevention Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000009692 water atomization Methods 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/12—Metallic powder containing non-metallic particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/10—Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/24—After-treatment of workpieces or articles
- B22F3/26—Impregnating
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
- C22C33/0242—Making ferrous alloys by powder metallurgy using the impregnating technique
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Powder Metallurgy (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
Description
本発明はFe系基材の溶浸材になる溶浸用Cu系粉末に関する。詳しくは、該溶浸用Cu系粉末からなる溶浸材は、溶浸率が高いため密度の高いFe系合金を製造でき、Fe系基材表面の浸食がなく、また、溶浸後にFe系基材表面に残滓を生成するためFe系基材を積層して溶浸処理をしてもFe系基材同士が接着することがなく、しかも、生成した残滓は容易に除去することができる溶浸用Cu系粉末に関する。 The present invention relates to a Cu-based powder for infiltration that can be used as an infiltration material for Fe-based substrates. More specifically, the infiltration material made of the Cu-based powder for infiltration has a high infiltration rate, so that a high-density Fe-based alloy can be produced, and there is no erosion of the Fe-based substrate surface. In addition, since residue is generated on the Fe-based substrate surface after infiltration, even if Fe-based substrates are stacked and infiltration treatment is performed, the Fe-based substrates do not adhere to each other, and the generated residue can be easily removed.
Fe系合金からなる機械部品には常に、高密度化、高強度化、高靱性化の要請がある。 There is a constant demand for mechanical parts made of Fe-based alloys to have higher density, strength, and toughness.
Fe系合金を高密度化する方法としては、Fe系金属粉の圧粉体や焼結体等(以下「Fe系基材」と言う)にCu又はCu合金を溶浸させる技術が確立されている。 As a method for densifying Fe-based alloys, a technique has been established in which Cu or a Cu alloy is infiltrated into a compact or sintered body of Fe-based metal powder (hereinafter referred to as the "Fe-based base material").
溶浸とは、気孔を有するFe系基材に該Fe系基材よりも融点の低いCuやCu合金の圧粉体(以下「溶浸材」と言う)をFe系基材と接触させて加熱し、加熱によって溶融した溶浸材が毛細管現象によってFe系基材に浸透してFe系基材内部の気孔を満たすことで気孔を減少させる技術である。 Infiltration is a technique in which a porous Fe-based base material is heated by contacting a compact of Cu or a Cu alloy (hereafter referred to as the "infiltration material"), which has a lower melting point than the Fe-based base material, with the Fe-based base material, and the infiltration material melts by heating and penetrates the Fe-based base material by capillary action, filling the pores inside the Fe-based base material and reducing the pores.
気孔が減少することでFe系基材の密度が上がるので緻密性が向上し、Fe系合金の高強度化、高靱性化が望める。 By reducing the number of pores, the density of the Fe-based base material increases, improving its compactness and enabling the Fe-based alloy to have higher strength and toughness.
一般に溶浸材には、溶浸率(基材と接触させた溶浸材の重量に対する基材に浸透した溶浸材の重量の比)が高いことが求められる。 In general, a high infiltration rate (the ratio of the weight of the infiltrant that has penetrated the substrate to the weight of the infiltrant in contact with the substrate) is required for the infiltrant.
また、Fe系基材中のFeが、接触させた溶浸材へ溶解するとFe系基材表面が荒れたり、窪みができたりする(以下「浸食」と言う)ため、溶浸材にはFeが溶解せず、Fe系基材表面を浸食しないことが求められる。 In addition, if the Fe in the Fe-based substrate dissolves in the infiltrating material that it comes into contact with, the surface of the Fe-based substrate will become rough or dents will form (hereinafter referred to as "erosion"). Therefore, it is required that the Fe does not dissolve in the infiltrating material and does not erode the surface of the Fe-based substrate.
また、溶浸後にFe系基材表面の残留物(以下「残滓」と言う)がFe系基材に固着せず容易に除去できることが求められる。 In addition, it is required that any residue on the surface of the Fe-based substrate after infiltration (hereinafter referred to as "residue") does not adhere to the Fe-based substrate and can be easily removed.
出願人は前記の要求を満たすべく、特許文献1及び2に開示される溶浸用Cu系粉末を開発している。 In order to meet the above requirements, the applicant has developed the Cu-based powder for infiltration disclosed in Patent Documents 1 and 2.
特許文献1には、Fe:1.5質量%~5.5質量%、Mn:1.0質量%~2.5質量%、Zn:1.0質量%~2.0質量%、Al:0.01質量%~0.1質量%、Si:0.1質量%~0.6質量%、残部がCuからなる溶浸用混合粉末が開示されている。 Patent Document 1 discloses a mixed powder for infiltration that contains 1.5% to 5.5% by mass of Fe, 1.0% to 2.5% by mass of Mn, 1.0% to 2.0% by mass of Zn, 0.01% to 0.1% by mass of Al, 0.1% to 0.6% by mass of Si, and the remainder is Cu.
特許文献2には、Fe:2質量%~7質量%、Mn:1質量%~7質量%、Zn:0.5質量%~5質量%、Al:0.03質量%~0.1質量%、残部がCuからなる組成の原料粉末に、Al、Si、Zr、Ti、Mgの少なくともいずれか1つの酸化物が0.1質量%~1質量%混合された溶浸用粉末が開示されている。 Patent Document 2 discloses a powder for infiltration in which a raw material powder with a composition of Fe: 2% by mass to 7% by mass, Mn: 1% by mass to 7% by mass, Zn: 0.5% by mass to 5% by mass, Al: 0.03% by mass to 0.1% by mass, and the remainder Cu is mixed with 0.1% by mass to 1% by mass of an oxide of at least one of Al, Si, Zr, Ti, and Mg.
特許文献1又は2に記載の溶浸用Cu系粉末は、溶浸率が高く、Fe系基材表面を浸食しないが、条件によっては、残滓の量が増減したり、残滓がFe系基材に固着したりする虞がある。 The Cu-based powder for infiltration described in Patent Documents 1 and 2 has a high infiltration rate and does not erode the surface of the Fe-based substrate, but depending on the conditions, the amount of residue may increase or decrease, or the residue may adhere to the Fe-based substrate.
本発明者は、前記の問題を解決すべく試行錯誤的な数多くの試作・実験を重ねた結果、Fe又はCoを1.5質量%以上、かつ、4.0質量%以下と、物質Aを0.3質量%以上、かつ、1.0質量%以下とを含有し、残部がCuと不可避不純物とからなり、前記物質Aは、1373K~1423Kの温度域におけるO21mol当たりの標準生成自由エネルギーが前記温度域におけるO21mol当たりのCr2O3の標準生成自由エネルギー以下であって1423K以下の温度において固相の酸化物、又は、前記温度域におけるN21mol当たりの標準生成自由エネルギーが前記温度域におけるN21mol当たりのSi3N4の標準生成自由エネルギー以下であって1423K以下の温度において固相の窒化物である溶浸用Cu系粉末であれば、溶浸率が高くてFe系基材表面を浸食せず、また、溶浸後に残滓を生成し、生成した残滓はFe系基材に固着せず、容易に除去できる溶浸材を製造することができるという知見を得て前記技術的課題を達成したものである。 The present inventors conducted numerous prototypes and experiments through trial and error in order to solve the above problems, and as a result, have found that the present invention provides an oxide which contains 1.5 mass % or more and 4.0 mass % or less of Fe or Co, 0.3 mass % or more and 1.0 mass % or less of substance A, with the remainder being Cu and unavoidable impurities, and which has a standard free energy of formation per 1 mol of O 2 in the temperature range of 1373K to 1423K not more than the standard free energy of formation of Cr 2 O 3 per mol of O 2 in said temperature range and is in a solid phase at temperatures not more than 1423K, or a standard free energy of formation per 1 mol of N 2 in said temperature range not more than the standard free energy of formation of Si 3 N 2 per mol of N 2 in said temperature range. The present inventors have found that if a Cu-based powder for infiltration is a nitride in the solid phase at a temperature of 1423K or less and has a standard free energy of formation of 4 or less, it is possible to manufacture an infiltration material that has a high infiltration rate and does not erode the surface of the Fe-based base material, and that generates a residue after infiltration, but the generated residue does not adhere to the Fe-based base material and can be easily removed, thereby achieving the above technical objective.
前記技術的課題は次のとおりの本発明によって解決できる。 The above technical problems can be solved by the present invention as follows:
本発明は、溶浸用Cu系粉末であって、前記Cu系粉末は、Fe又はCoを1.5質量%以上、かつ、4.0質量%以下と、物質Aを0.3質量%以上、かつ、1.0質量%以下とを含有し、残部がCuと不可避不純物とからなり、前記物質Aは、1373K~1423Kの温度域におけるO21mol当たりの標準生成自由エネルギーが前記温度域におけるO21mol当たりのCr2O3の標準生成自由エネルギー以下であって1423K以下の温度において固相の酸化物、又は、前記温度域におけるN21mol当たりの標準生成自由エネルギーが前記温度域におけるN21mol当たりのSi3N4の標準生成自由エネルギー以下であって1423K以下の温度において固相の窒化物である溶浸用Cu系粉末である。 The present invention is a Cu-based powder for infiltration, the Cu-based powder containing 1.5 mass % or more and 4.0 mass % or less of Fe or Co, 0.3 mass % or more and 1.0 mass % or less of substance A, with the remainder being Cu and unavoidable impurities, and the substance A being an oxide in a solid phase at a temperature of 1423 K or less, the standard free energy of formation per 1 mol of O 2 in a temperature range of 1373 K to 1423 K being equal to or less than the standard free energy of formation of Cr 2 O 3 per 1 mol of O 2 in said temperature range, or a nitride in a solid phase at a temperature of 1423 K or less, the standard free energy of formation per 1 mol of N 2 in said temperature range being equal to or less than the standard free energy of formation of Si 3 N 4 per 1 mol of N 2 in said temperature range.
また本発明は、Mnを0.1質量%以上、かつ、2.0質量%以下、及び/又は、Znを0.5質量%以上、かつ、3.0質量%以下含有する前記の溶浸用Cu系粉末である。 The present invention also relates to the above-mentioned Cu-based powder for infiltration, which contains 0.1 mass% or more and 2.0 mass% or less of Mn and/or 0.5 mass% or more and 3.0 mass% or less of Zn.
また本発明は、Siを0.4質量%以下含有する前記の溶浸用Cu系粉末である。 The present invention also relates to the above-mentioned Cu-based powder for infiltration, which contains 0.4 mass% or less of Si.
また本発明は、粉末の明度L値が35以上である前記の溶浸用Cu系粉末である。 The present invention also relates to the above-mentioned Cu-based powder for infiltration, in which the powder has a lightness L value of 35 or more.
また本発明は、潤滑剤を0.1質量%以上、かつ、1.0質量%以下含有する前記の溶浸用Cu系粉末である。 The present invention also relates to the above-mentioned Cu-based powder for infiltration, which contains 0.1% by mass or more and 1.0% by mass or less of a lubricant.
また本発明は、防錆処理又は偏析防止処理を行った前記の溶浸用Cu系粉末である。 The present invention also relates to the above-mentioned Cu-based powder for infiltration that has been subjected to anti-rust treatment or anti-segregation treatment.
また本発明は、前記の溶浸用Cu系粉末の製造方法である。 The present invention also relates to a method for producing the above-mentioned Cu-based powder for infiltration.
また本発明は、前記の溶浸用Cu系粉末の圧粉成形体である。 The present invention also relates to a compact of the above-mentioned Cu-based powder for infiltration.
本発明における溶浸用Cu系粉末には、予めFe又はCoを1.5質量%以上、かつ、4.0質量%以下添加しているので、Fe系基材表面の浸食を防止することができる。 The Cu-based powder for infiltration in the present invention contains at least 1.5 mass% and at most 4.0 mass% Fe or Co, which prevents erosion of the Fe-based substrate surface.
また、本発明における溶浸用Cu系粉末は、さらに物質Aを0.3質量%以上、かつ、1.0質量%以下含有するから、溶浸率が高く、また、溶浸後には残滓を生成し、生成した残滓は容易に除去できる溶浸材になる。 In addition, the Cu-based powder for infiltration in the present invention further contains 0.3 mass% or more and 1.0 mass% or less of substance A, so that the infiltration rate is high, and after infiltration, a residue is generated, which becomes an infiltration material that can be easily removed.
本発明における溶浸用Cu系粉末で製造した溶浸材は溶浸率が高く、Fe系基材を高密度化できるから、高強度であり、高靭性を備えるFe系合金の焼結部品を製造することができる。 The infiltration material produced from the Cu-based infiltration powder of the present invention has a high infiltration rate and can densify the Fe-based base material, making it possible to produce sintered Fe-based alloy parts that are high in strength and toughness.
また、溶浸後には残滓を生成するため、Fe系基材を積層して溶浸処理したとしてもFe系基材同士が接着し難く、しかも、生成した残滓は容易に除去できる。 In addition, since residues are generated after infiltration, even if Fe-based substrates are stacked and infiltrated, they are unlikely to adhere to each other, and the generated residues can be easily removed.
Fe系基材を積層して溶浸処理することができるので、焼結部品の単位時間当たりの生産量の向上が望める。 Since the Fe-based base material can be layered and then infiltrated, it is expected that the production volume of sintered parts per unit time can be improved.
また、Mnを0.1質量%以上、かつ、2.0質量%以下、及び/又は、Znを0.5質量%以上、かつ、3.0質量%以下含有すれば、さらに濡れ性や溶浸率が高い溶浸材になる。 Furthermore, if the material contains 0.1 mass% or more and 2.0 mass% or less of Mn and/or 0.5 mass% or more and 3.0 mass% or less of Zn, the material will have even higher wettability and infiltration rate.
また、粉末の明度L値が35以上であれば、溶浸用Cu系粉末の酸素量が低く、酸化に起因する濡れ性の低下を抑制できるため、濡れ性の良い溶浸材になる。 In addition, if the powder's lightness L value is 35 or more, the amount of oxygen in the Cu-based powder for infiltration is low, and the decrease in wettability caused by oxidation can be suppressed, resulting in an infiltration material with good wettability.
また、潤滑剤を0.1質量%以上、かつ、1.0質量%以下含有すれば潤滑性が向上するため成形し易い溶浸用Cu系粉末になる。 In addition, if the lubricant content is 0.1 mass% or more and 1.0 mass% or less, the lubricity is improved, resulting in a Cu-based powder for infiltration that is easy to mold.
また、防錆処理又は偏折防止処理を行えば、溶浸用Cu系粉末の各成分の分散性が向上するので、過剰な残滓が生成されたり、生成した残滓が固着したりすることをさらに抑制することができる。 In addition, by performing rust prevention or segregation prevention treatment, the dispersibility of each component of the Cu-based powder for infiltration is improved, which further suppresses the generation of excess residue and the adhesion of the generated residue.
一般的にFe系基材に対する溶浸用Cu系粉末の溶浸は、Cu-Fe二元系合金の包晶温度よりも高い1373K~1423Kの温度域(以下「溶浸温度域」と言う)で行われる。 In general, infiltration of Cu-based powder into Fe-based base materials is carried out in the temperature range of 1373K to 1423K (hereinafter referred to as the "infiltration temperature range"), which is higher than the peritectic temperature of Cu-Fe binary alloys.
溶浸温度域におけるFe(鉄)のCuへの飽和溶解度は約4.5質量%である。 The saturated solubility of Fe (iron) in Cu at the infiltration temperature range is approximately 4.5 mass%.
Fe系基材にCu単体を溶浸させると、基材中のFeが溶浸材側へ溶解するためにFe系基材表面に浸食による窪みができたり、表面が荒れたりすることがあるが、本発明における溶浸用Cu系粉末はFe又はCoと物質Aを含有し、残部はCuと不可避不純物とからなるから、Fe系基材表面の浸食を防止することができる。 When an Fe-based substrate is infiltrated with Cu alone, the Fe in the substrate dissolves into the infiltrating material, which can cause erosion of the Fe-based substrate surface, resulting in depressions and a rough surface. However, the Cu-based powder for infiltration in this invention contains Fe or Co and substance A, with the remainder consisting of Cu and unavoidable impurities, so it is possible to prevent erosion of the Fe-based substrate surface.
溶浸用Cu系粉末におけるFeの含有量は1.5質量%以上かつ4.0質量%以下が好ましく、さらに好ましくは、2.0質量%以上かつ3.5質量%以下である。 The Fe content in the Cu-based powder for infiltration is preferably 1.5% by mass or more and 4.0% by mass or less, and more preferably 2.0% by mass or more and 3.5% by mass or less.
1.5質量%未満では浸食防止効果が弱く、4.0質量%を超えて含有すると、溶浸温度域ではFeが溶浸材中に溶解し切れずに残滓となり、Fe系基材表面に固着する虞があるからである。 If the content is less than 1.5% by mass, the corrosion prevention effect is weak, and if the content exceeds 4.0% by mass, Fe does not completely dissolve in the infiltrating material at the infiltration temperature range, leaving residue that may adhere to the surface of the Fe-based substrate.
Feの形態は特に限定されず、単体粉末、合金粉末、部分合金化粉末のいずれでもよいが、合金粉末又は部分合金化粉末が好ましい。 The form of Fe is not particularly limited and may be any of a simple powder, an alloy powder, or a partially alloyed powder, with alloy powder or partially alloyed powder being preferred.
単体粉末は溶浸条件によってはCuに拡散し難くなるからである。 This is because the elemental powder may be difficult to diffuse into Cu depending on the infiltration conditions.
本発明における溶浸用Cu系粉末は、Feに代えてCoを含有してもよい。 The Cu-based powder for infiltration in the present invention may contain Co instead of Fe.
Coは、Feと同様にCuに溶解してFe系基材表面の浸食や荒れを防止することができる。 Like Fe, Co dissolves in Cu and can prevent erosion and roughening of the surface of Fe-based substrates.
Coの含有量はFeと同じく、1.5質量%以上かつ4.0質量%以下が好ましく、さらに好ましくは、2.0質量%以上かつ3.5質量%以下である。 The Co content, like Fe, is preferably 1.5% by mass or more and 4.0% by mass or less, and more preferably 2.0% by mass or more and 3.5% by mass or less.
1.5質量%未満では浸食防止効果が弱く、4.0質量%を超えると、溶浸温度域ではCoが溶浸材中に溶解し切れずに残滓となり、Fe系基材表面に固着する虞があるからである。 If it is less than 1.5% by mass, the erosion prevention effect is weak, and if it exceeds 4.0% by mass, Co does not completely dissolve in the infiltrating material at the infiltration temperature range, leaving residue that may adhere to the surface of the Fe-based base material.
Coの形態は特に限定されず、単体粉末、合金粉末、部分合金化粉末のいずれでもよいが、合金粉末又は部分合金化粉末が好ましい。 The form of Co is not particularly limited and may be any of a simple powder, alloy powder, or partially alloyed powder, with alloy powder or partially alloyed powder being preferred.
単体粉末は溶浸温度域ではCuに拡散し難いからである。 This is because the elemental powder does not easily diffuse into Cu at the infiltration temperature range.
本発明における溶浸用Cu系粉末は物質Aを含有する。 The Cu-based powder for infiltration in this invention contains substance A.
物質Aは水素を含む露点-30℃程度の雰囲気(以下「通常の溶浸雰囲気」と言う)において容易に還元されない物質であり、1423K以下の温度において固相の酸化物又は窒化物である。 Substance A is a substance that is not easily reduced in an atmosphere containing hydrogen with a dew point of approximately -30°C (hereinafter referred to as "normal infiltration atmosphere"), and is a solid-phase oxide or nitride at temperatures below 1423K.
物質Aが液相になると、Fe系基材表面に浸食が生じたり、残滓がFe系基材表面に固着して除去が困難になったりするからである。 When substance A becomes liquid, it may cause erosion of the surface of the Fe-based substrate, or residue may adhere to the surface of the Fe-based substrate, making it difficult to remove.
固相であると、Fe系基材表面上に残滓を生成するので、Fe系基材を積層して溶浸処理をしてもFe系基材同士が接着し難くなる。 If it is a solid phase, residues will be generated on the surface of the Fe-based substrate, making it difficult for the Fe-based substrates to adhere to each other even if the Fe-based substrates are stacked and infiltrated.
積層して溶浸処理を行うことができるので焼結部品の生産効率を向上させることができる。 The production efficiency of sintered parts can be improved by stacking and performing the infiltration process.
また、生じた残滓は容易に除去することができる。 In addition, any residue that is produced can be easily removed.
本発明における物質Aは、詳しくは、溶浸温度域におけるO2(酸素)1mol当たりの標準生成自由エネルギーが溶浸温度域におけるO21mol当たりのCr2O3(酸化クロム)の標準生成自由エネルギー以下の酸化物であって、1423K以下の温度において固相の酸化物である。 Specifically, the substance A in the present invention is an oxide having a standard free energy of formation per mol of O2 (oxygen) in the infiltration temperature range equal to or less than the standard free energy of formation of Cr2O3 (chromium oxide) per mol of O2 in the infiltration temperature range, and is a solid-phase oxide at temperatures of 1423K or less.
Ag(銀)、Bi(ビスマス)、Ni(ニッケル)、Sn(スズ)、In(インジウム)、P(リン)の酸化物のように、溶浸温度域におけるO21mol当たりの標準生成自由エネルギーが溶浸温度域におけるO21mol当たりのCr2O3の標準生成自由エネルギーよりも大きい酸化物は、通常の溶浸雰囲気において容易に還元されるため、溶浸材やFe系基材と反応して積層したFe系基材同士が接着したり、Fe系基材表面を浸食したりする虞がある。 Oxides such as Ag (silver), Bi (bismuth), Ni (nickel), Sn (tin), In (indium), and P (phosphorus) that have a standard free energy of formation per 1 mol of O2 in the infiltration temperature range greater than the standard free energy of formation of Cr2O3 per 1 mol of O2 in the infiltration temperature range are easily reduced in a normal infiltration atmosphere, and may react with the infiltration material or the Fe-based base material, causing adhesion between the laminated Fe-based base materials or eroding the surface of the Fe-based base material.
本発明における物質Aは、溶浸温度域におけるN2(窒素)1mol当たりの標準生成自由エネルギーが溶浸温度域におけるN21mol当たりのSi3N4(窒化ケイ素)の標準生成自由エネルギー以下の窒化物であって、1423K以下の温度において固相の窒化物でもよい。 The substance A in the present invention may be a nitride having a standard free energy of formation per mole of N2 (nitrogen) in the infiltration temperature range equal to or less than the standard free energy of formation of Si3N4 (silicon nitride) per mole of N2 in the infiltration temperature range, and may be a solid-phase nitride at temperatures equal to or less than 1423K.
Ga(ガリウム)、In(インジウム)の窒化物のように、溶浸温度域におけるN21mol当たりの標準生成自由エネルギーが、溶浸温度域におけるSi3N4の標準生成自由エネルギーよりも大きい窒化物は、溶浸温度域において標準生成自由エネルギーが正であり、系内の窒素分圧によっては窒化物が分解する等して残滓がFe系基材表面に固着する虞がある。 Nitrides such as Ga (gallium) and In (indium) nitrides, which have a standard free energy of formation per 1 mol of N2 in the infiltration temperature range that is greater than the standard free energy of formation of Si3N4 in the infiltration temperature range, have a positive standard free energy of formation in the infiltration temperature range, and depending on the nitrogen partial pressure in the system, the nitrides may decompose, etc., and the residue may adhere to the surface of the Fe-based substrate.
物質Aとして、Cr2O3(酸化クロム)、SiO2(酸化ケイ素)、TiO2(酸化チタン)、Al2O3(酸化アルミニウム)、MgO(酸化マグネシウム)、ZrO2(酸化ジルコニウム)、Si3N4(窒化ケイ素)、BN(窒化ホウ素)、ZrN(窒化ジルコニウム)を例示する。 Examples of material A include Cr2O3 ( chromium oxide ), SiO2 (silicon oxide), TiO2 (titanium oxide), Al2O3 ( aluminum oxide ), MgO (magnesium oxide), ZrO2 (zirconium oxide) , Si3N4 (silicon nitride), BN (boron nitride), and ZrN (zirconium nitride).
溶浸温度域におけるO21mol当たりの酸化物又はN21mol当たりの窒化物の標準生成自由エネルギーの値は文献から取得することができる。 Values for the standard free energy of formation of oxide per mole of O 2 or nitride per mole of N 2 in the infiltration temperature range can be obtained from the literature.
溶浸用Cu系粉末が含有する物質Aの含有量は0.3質量%以上かつ1.0質量%以下であり、さらに好ましくは0.4質量%以上かつ0.9質量%以下である。 The content of substance A in the Cu-based powder for infiltration is 0.3% by mass or more and 1.0% by mass or less, and more preferably 0.4% by mass or more and 0.9% by mass or less.
0.3質量%未満では、溶浸後の残滓が少ないため、複数のFe系基材と溶浸材を積層して溶浸処理を行った場合、Fe系基材同士が接着する虞があり、また、1.0質量%を超えると溶浸材の濡れ性が低下し、溶浸率が低下する虞があるからである。 If the content is less than 0.3% by mass, there will be little residue after infiltration, and if multiple Fe-based substrates and infiltration materials are stacked and infiltration treatment is performed, there is a risk that the Fe-based substrates will adhere to each other. Also, if the content exceeds 1.0% by mass, there is a risk that the wettability of the infiltration material will decrease, resulting in a decrease in the infiltration rate.
物質Aは複数の酸化物の混合物、複数の窒化物の混合物、複数の酸化物と窒化物の混合物であってもよい。 Substance A may be a mixture of oxides, a mixture of nitrides, or a mixture of oxides and nitrides.
本発明における溶浸用Cu系粉末は、Mn(マンガン)を0.1質量%以上かつ2.0質量%以下、及び/又は、Zn(亜鉛)を0.5質量%以上かつ3.0質量%以下を含有してもよい。 The Cu-based powder for infiltration in the present invention may contain 0.1% by mass or more and 2.0% by mass or less of Mn (manganese) and/or 0.5% by mass or more and 3.0% by mass or less of Zn (zinc).
MnはFeとCuの双方に固溶し、溶浸材とFe系基材の濡れ性が良くなって溶浸率が向上するから、濡れ性を低下させる物質Aを含有したとしても濡れ性や溶浸率が低下し難くなるからである。 Mn dissolves in both Fe and Cu, improving the wettability of the infiltrant and the Fe-based base material and increasing the infiltration rate, so even if substance A, which reduces wettability, is included, the wettability and infiltration rate are unlikely to decrease.
Mnの含有量は、0.1質量%以上かつ2.0質量%以下が好ましく、さらに好ましくは、0.3質量%以上かつ0.8質量%以下である。 The Mn content is preferably 0.1% by mass or more and 2.0% by mass or less, and more preferably 0.3% by mass or more and 0.8% by mass or less.
Mnが0.1質量%未満であれば、濡れ性や溶浸率の向上が見られなくなり、また、2.0質量%を超えて含有すると、Mn酸化物が生成されたり、MnがFe系基材や溶浸材中のFeに固溶することによってFe系基材表面を浸食したり、残滓が固着したりする虞があるからである。 If the Mn content is less than 0.1 mass%, no improvement in wettability or infiltration rate will be observed, and if it exceeds 2.0 mass%, Mn oxides may be generated, Mn may dissolve in the Fe-based base material or Fe in the infiltrant, causing corrosion of the Fe-based base material surface, or residues may adhere.
Znは、溶浸材の融点を下げる効果があり、また、溶浸材とFe系基材の濡れ性が良くなって溶浸率を向上させるから、濡れ性を低下させる物質Aを含有したとしても、濡れ性や溶浸率が低下し難くなるからである。 Zn has the effect of lowering the melting point of the infiltrant, and also improves the wettability of the infiltrant with the Fe-based base material, improving the infiltration rate, so even if substance A, which reduces wettability, is included, the wettability and infiltration rate are unlikely to decrease.
Znの含有量は、0.5質量%以上かつ3.0質量%以下が好ましく、さらに好ましくは、0.5質量%以上かつ2.0質量%以下である。 The Zn content is preferably 0.5% by mass or more and 3.0% by mass or less, and more preferably 0.5% by mass or more and 2.0% by mass or less.
Znが0.5質量%未満であれば、濡れ性の向上が見られなくなり、また、3.0質量%を超えて含有すると、溶浸処理におけるZnの蒸発量が多くなり溶浸材の歩留まりが悪くなって溶浸率が低下するからである。 If the Zn content is less than 0.5% by mass, no improvement in wettability is observed, and if it exceeds 3.0% by mass, the amount of Zn that evaporates during the infiltration process increases, resulting in a poor yield of the infiltration material and a decrease in the infiltration rate.
また、蒸発したZnは焼結炉を汚損する虞もある。 In addition, evaporated Zn may contaminate the sintering furnace.
本発明における溶浸用Cu系粉末は、Si(金属シリコン)を0.4質量%以下含有してもよい。 The Cu-based powder for infiltration in the present invention may contain 0.4 mass% or less of Si (metallic silicon).
微量のSiは溶浸材に固溶し、溶浸材同士の焼結阻害となることで残滓量や残滓の大きさを調整できるからである。 A small amount of Si dissolves in the infiltrating material and inhibits sintering between the infiltrating materials, allowing the amount and size of the residue to be adjusted.
Siの含有量は、0.4質量%以下が好ましく、さらに好ましくは、0.05質量%以上かつ0.1質量%以下である。 The Si content is preferably 0.4 mass% or less, and more preferably 0.05 mass% or more and 0.1 mass% or less.
Siを0.4質量%を超えて含有すると、溶浸率が低下する虞があるからである。 If the Si content exceeds 0.4 mass%, there is a risk of the infiltration rate decreasing.
本発明における溶浸用Cu系粉末は粉末の明度であるL値が35以上であることが好ましい。 In the present invention, it is preferable that the Cu-based powder for infiltration has an L value, which is the lightness of the powder, of 35 or more.
物質Aは溶浸材とFe系基材の濡れ性を低下させるため、含有量の上限を1.0質量%以下に限定しているが、経時変化による溶浸用Cu系粉末の酸素量の増加等の物質A以外の影響で濡れ性が低下する場合に意図せず低い溶浸率となって焼結部品の強度が低下することがある。 The upper limit of the content of substance A is set to 1.0 mass% or less because it reduces the wettability of the infiltrating material and the Fe-based base material. However, if the wettability is reduced due to factors other than substance A, such as an increase in the amount of oxygen in the Cu-based powder for infiltration due to changes over time, this can result in an unintentionally low infiltration rate and reduced strength of the sintered part.
粉末の明度であるL値が35以上であれば、物質A以外に含まれる酸素量の測定が困難な場合でも酸素量が低いことが推定でき、溶浸用Cu系粉末の酸化に起因する濡れ性の低下を抑制することができる。 If the L value, which is the brightness of the powder, is 35 or more, it can be estimated that the amount of oxygen is low even if it is difficult to measure the amount of oxygen contained in substances other than substance A, and the decrease in wettability caused by oxidation of the Cu-based powder for infiltration can be suppressed.
本発明における溶浸用Cu系粉末には、潤滑剤を添加することができる。 A lubricant can be added to the Cu-based powder for infiltration in the present invention.
潤滑剤を添加することにより潤滑性が向上するので成形し易い溶浸用Cu系粉末になる。 The addition of a lubricant improves lubricity, resulting in a Cu-based powder for infiltration that is easy to mold.
潤滑剤の添加量は0.1質量%以上かつ1.0質量%以下が好ましく、さらに好ましくは、0.2質量%以上かつ0.8質量%以下である。 The amount of lubricant added is preferably 0.1% by mass or more and 1.0% by mass or less, and more preferably 0.2% by mass or more and 0.8% by mass or less.
0.1質量%未満であると潤滑性向上の効果が弱く、また、1.0質量%を超えて添加したとしても、潤滑剤の蒸発量が多くなり溶浸材の歩留まりが悪くなって溶浸率が低下するからである。 If the amount is less than 0.1% by mass, the effect of improving lubricity is weak, and even if more than 1.0% by mass is added, the amount of lubricant that evaporates increases, the yield of the infiltrating material decreases, and the infiltration rate decreases.
また、蒸発した潤滑剤は焼結炉を汚損する虞もある。 In addition, evaporated lubricant may contaminate the sintering furnace.
潤滑剤は特に限定されるものではないが、ステアリン酸亜鉛等の金属セッケンやEBS系ワックスが好適である。 The lubricant is not particularly limited, but metal soaps such as zinc stearate and EBS-based waxes are suitable.
防錆処理又は偏析防止処理は、溶浸用Cu系粉末を構成する粉末の一部又は全部に施すことができる。 Anti-rust treatment or anti-segregation treatment can be applied to some or all of the powders that make up the Cu-based powder for infiltration.
溶浸用Cu系粉末に生じる偏析として、混合されている各粉末の流動性の違いに起因する堆積偏析がある。 Segregation that occurs in Cu-based powders for infiltration includes accumulation segregation caused by differences in the fluidity of the powders mixed together.
粉末の流動性は粉末の表面が酸化することで変化する場合があり、製造当初偏析がなかったとしても、保管環境によっては比較的短時間で偏析が顕著になることがある。 The flowability of a powder can change due to oxidation of the powder surface, and even if there is no segregation when it is first manufactured, segregation may become noticeable in a relatively short period of time depending on the storage environment.
本発明における溶浸用Cu系粉末に偏析が生じると、物質Aとそれ以外の溶浸材成分との質量比が局所的に異なってしまい、残滓が固着したり、過剰な残滓が生成したりする虞がある。 If segregation occurs in the Cu-based powder for infiltration in the present invention, the mass ratio between substance A and other infiltration material components will vary locally, and there is a risk that residue will adhere or excessive residue will be generated.
溶浸用Cu系粉末を構成する粉末の一部又は全部に防錆処理又は偏析防止処理を施すことで全体の偏析を防止し、残滓が固着したり、過剰な残滓が生成されたりすることを抑制できる。 By subjecting some or all of the powders that make up the Cu-based powder for infiltration to rust prevention or segregation prevention treatment, segregation can be prevented overall, and the adhesion of residues or the generation of excessive residues can be suppressed.
また、防錆処理であれば偏析だけでなく、酸化による残滓の生成も抑制することができる。 In addition, anti-rust treatment can suppress not only segregation but also the generation of residues due to oxidation.
防錆処理は特に限定されず、Cuに配位する元素を1分子当たり1つ以上含む有機化合物を使用することができ、好ましくは炭素数が3~30の前記有機化合物を使用することができる。 There are no particular limitations on the rust prevention treatment, and an organic compound containing one or more elements that coordinate with Cu per molecule can be used, and preferably the organic compound has 3 to 30 carbon atoms.
偏析防止処理は特に限定されず、粉末の造粒による比表面積の減少や酸化物を含む粉末の還元によるポーラス化等の流動性を低下させる表面改質処理や、機械油やバインダーの添加等の有機化合物との化学的反応や物理吸着による各種官能基の付加を挙げることができる。 There are no particular limitations on the segregation prevention treatment, and examples include surface modification treatments that reduce fluidity, such as reducing the specific surface area by granulating the powder or reducing oxide-containing powder to make it porous, and the addition of various functional groups by chemical reactions with organic compounds, such as the addition of machine oil or binders, or physical adsorption.
防錆処理や偏析防止処理には、ベンゾトリアゾール、機械油を使用することができる。 Benzotriazole and machine oil can be used for rust prevention and segregation prevention treatment.
本発明における溶浸用Cu系粉末は、Fe又はCo、及び、物質Aや他の元素の単体粉末又は合金粉末又は部分合金化粉末を混合して製造することができる。 The Cu-based powder for infiltration in the present invention can be produced by mixing Fe or Co with a simple powder, alloy powder, or partially alloyed powder of material A or other elements.
Fe又はCo及び物質Aや他の元素の粉末の製造方法は特に限定されず、アトマイズ法、還元法、電解法、粉砕法等の公知の方法で製造すればよい。 The method for producing the powder of Fe or Co and substance A or other elements is not particularly limited, and they may be produced by known methods such as atomization, reduction, electrolysis, and pulverization.
本発明を構成する物質A以外の粉末の平均粒子径は1μm以上かつ300μm以下であることが好ましい。 The average particle size of powders other than substance A constituting the present invention is preferably 1 μm or more and 300 μm or less.
平均粒子径が300μmを超える粒子は均一に混合せず成分が偏析する虞があり、1μm未満の粒子だとハンドリング性が悪くなると共に、粉末が高価になるからである。 Particles with an average particle size of more than 300 μm may not mix uniformly and may cause the components to segregate, while particles with an average particle size of less than 1 μm are difficult to handle and the powder is expensive.
物質Aの平均粒子径は300μm以下であることが好ましく、より好ましくは3μm以下である。 The average particle size of substance A is preferably 300 μm or less, and more preferably 3 μm or less.
平均粒子径が300μmを超える粒子は均一に混合せず成分が偏析する虞があるからである。 This is because particles with an average particle size of more than 300 μm will not mix uniformly and there is a risk of the components segregating.
本発明における溶浸用Cu系粉末は、圧粉成形等の公知の方法で溶浸材に成形することができる。 The Cu-based powder for infiltration in the present invention can be formed into an infiltration material by known methods such as powder compaction.
Fe系基材に溶浸材を溶浸させる溶浸法には、Fe系基材と溶浸材とを接触させて加熱することで焼結と溶浸とを同時に行う一段溶浸法と、Fe系基材をまず一次加熱して予備焼結し、この焼結体に溶浸材を接触させ二次加熱することで溶浸を行う二段溶浸法がある。 There are two types of infiltration methods for infiltrating an Fe-based base material with an infiltrant: the one-step infiltration method, in which the Fe-based base material and the infiltrant are brought into contact with each other and heated to simultaneously perform sintering and infiltration; and the two-step infiltration method, in which the Fe-based base material is first heated to pre-sinter, and then the infiltrant is brought into contact with the sintered body and heated a second time to perform infiltration.
本発明における溶浸用Cu系粉末からなる溶浸材は、溶浸率が高いため、二段溶浸法はもちろんのこと、一段溶浸法においても高密度のFe系合金になるので、高強度であり高靭性を備える焼結部品を製造することができる。 The infiltration material made of the Cu-based powder for infiltration in this invention has a high infiltration rate, so it becomes a high-density Fe-based alloy not only in the two-step infiltration method but also in the one-step infiltration method, making it possible to manufacture sintered parts that are high in strength and high in toughness.
本発明の実施例及び比較例を示すが、本発明はこれらに限定されるものではない。 Examples and comparative examples of the present invention are shown below, but the present invention is not limited to these.
<Fe系基材>
Cuが1.5質量%、Cが1.0質量%、残部がFeとなるように、電解Cu粉末、黒鉛粉末及びアトマイズFe粉末を混合した後、ステアリン酸亜鉛を0.8質量%添加した混合粉末13.7gを巾12mm×長さ30mm×厚さ6mmの角柱状で密度6.3g/cm3の圧粉体となるように成形してFe系基材を作製した。
<Fe-based substrate>
Electrolytic Cu powder, graphite powder, and atomized Fe powder were mixed to a content of 1.5 mass% Cu, 1.0 mass% C, and the remainder Fe, and then 13.7 g of the mixed powder to which 0.8 mass% zinc stearate had been added was molded into a compressed powder body having a width of 12 mm, length of 30 mm, and thickness of 6 mm and a density of 6.3 g/ cm3 to produce an Fe-based base material.
<溶浸用Cu系粉末>
(金属粉末の製造)
(イ)硫酸酸性浴中においてCu地金に直流電流を通電することで陰極板上に析出させたCuを回収し洗浄乾燥することでCu粉が得られる電解法で作製したCu粉末を200mesh以下に篩分することでCu粉末を作製した。
(ロ)表1記載の通りの組成(質量%)になるように調整された溶融状態の合金成分を落下させながら約15MPaの高圧水と接触させることで急冷凝固させる水アトマイズ法で作製し、作製したCu系合金又はFe粉末を200mesh以下に篩分することでCu系合金又はFe粉末を作製した。
(ハ)Mn又はSi地金を粉砕し、200mesh以下に篩分することでMn又はSi粉末を作製した。
<Cu-based powder for infiltration>
(Production of metal powder)
(a) In a sulfuric acid acid bath, a direct current is passed through Cu ingot to cause Cu to deposit on a cathode plate, which is then recovered, washed, and dried to obtain Cu powder. Cu powder produced by an electrolytic method is sieved to 200 mesh or smaller to produce Cu powder.
(b) The alloy components in a molten state, adjusted to have the composition (mass%) shown in Table 1, were dropped into high-pressure water of about 15 MPa and rapidly solidified by a water atomization method, and the Cu-based alloy or Fe powder thus produced was sieved to 200 mesh or less to produce the Cu-based alloy or Fe powder.
(c) Mn or Si ingot was crushed and sieved to 200 mesh or less to prepare Mn or Si powder.
(物質A)
1400KにおけるCr2O3と物質A(酸化物)のO21mol当たりの標準生成自由エネルギーを表1に、1400KにおけるSi3N4と物質A(窒化物)のN21mol当たりの標準生成自由エネルギーを表2に示す。
(Substance A)
Table 1 shows the standard free energy of formation per 1 mol of O 2 for Cr 2 O 3 and substance A (oxide) at 1,400 K, and Table 2 shows the standard free energy of formation per 1 mol of N 2 for Si 3 N 4 and substance A (nitride) at 1,400 K.
(溶浸用Cu系粉末の製造)
実施例20~27ではCu系合金粉末(ロ)とMn粉末(ハ)、実施例29と30ではCu系合金粉末(ロ)とSi粉末(ハ)、実施例34ではCu粉末(イ)とFe粉末(ロ)、その他の実施例、比較例及び参考例ではCu系合金粉末(ロ)のみを用いた。
(Production of Cu-based powder for infiltration)
In Examples 20 to 27, Cu-based alloy powder (B) and Mn powder (C), in Examples 29 and 30, Cu-based alloy powder (B) and Si powder (C), in Example 34, Cu powder (A) and Fe powder (B), and in the other Examples, Comparative Examples, and Reference Examples, only Cu-based alloy powder (B) was used.
(イ)~(ハ)の金属粉末を全体が表3記載の組成(質量%)となるようにロッキングミキサーで混合し、ICP発光分光分析装置iCAP7600(サーモフィッシャーサイエンティフィック株式会社製)で含有する元素を定量した後、物質Aを表3記載の割合(質量%)と、潤滑剤としてステアリン酸亜鉛を0.5質量%添加し、再度ロッキングミキサーで混合して各溶浸用Cu系粉末を作製した。 The metal powders (a) to (c) were mixed in a rocking mixer so that the overall composition (mass%) was as shown in Table 3. The elements contained were quantified using an ICP optical emission spectrometer iCAP7600 (manufactured by Thermo Fisher Scientific Co., Ltd.), and then substance A was added in the proportion (mass%) shown in Table 3 and 0.5 mass% zinc stearate was added as a lubricant. The mixture was mixed again in a rocking mixer to produce each Cu-based powder for infiltration.
粉末表面の明度L値は分光色彩計SE6000(日本電色工業株式会社製)を使用して測定した。 The lightness L value of the powder surface was measured using a spectrophotometer SE6000 (manufactured by Nippon Denshoku Industries Co., Ltd.).
<溶浸法>
Fe系基材の気孔に対し80体積%となる量の溶浸用Cu系粉末を巾12mm×長さ30mm×厚さ1mmの薄板状に圧粉した溶浸材を作製した。
<Infiltration method>
An infiltration material was prepared by pressing Cu-based powder for infiltration in an amount of 80 volume % relative to the pores of the Fe-based base material into a thin plate shape of 12 mm width x 30 mm length x 1 mm thickness.
Fe系基材の圧粉体上に溶浸材を載せて一段溶浸法により溶浸処理を行った。 The infiltration material was placed on the compact of the Fe-based base material and infiltration was performed using the one-step infiltration method.
溶浸条件としては、823Kで30分間加熱して溶浸材中の潤滑剤を脱ろうした後、1403Kで30分間加熱した。 The infiltration conditions were heating at 823K for 30 minutes to dewax the lubricant in the infiltrant, and then heating at 1403K for 30 minutes.
焼結炉内の雰囲気は水素:窒素が3:1の混合ガス雰囲気とした。 The atmosphere inside the sintering furnace was a mixed gas atmosphere of hydrogen:nitrogen at a ratio of 3:1.
<溶浸率>
溶浸率は、以下の数1に基づいて計算した。
The infiltration rate was calculated based on the following equation 1.
<残滓除去性>
残滓の有無と除去性を確認した。
<Residue removal>
The presence or absence of residue and removability were confirmed.
残滓が確認され、手で容易に除去できたものを「良好」、手では除去できなかったものを「固着」、残滓が確認されなかったものを「残滓なし」として評価した。 Those where residue was found and could be easily removed by hand were rated as "good", those that could not be removed by hand were rated as "stuck", and those where no residue was found were rated as "no residue".
<浸食>
浸食の有無は光学顕微鏡による観察(倍率50倍)と目視で確認した。
浸食が確認されたものを「あり」、確認されなかったものを「なし」として評価した。
EROSION
The presence or absence of erosion was confirmed by observation under an optical microscope (magnification: 50 times) and by visual inspection.
Cases where erosion was confirmed were rated as "present," and cases where erosion was not confirmed were rated as "absent."
各実施例の結果を表3、各比較例の結果を表4に示す。 The results for each example are shown in Table 3, and the results for each comparative example are shown in Table 4.
実施例1~35に示すように、本実施形態に係る溶浸用Cu系粉末からなる溶浸材は、比較例1~9に示す溶浸材と比較して、溶浸率が高く、溶浸後のFe系基材表面に浸食がなく、また、残滓を生成し、生成した残滓は容易に除去できることが示された。 As shown in Examples 1 to 35, the infiltration material made of the Cu-based powder for infiltration according to this embodiment has a higher infiltration rate than the infiltration materials shown in Comparative Examples 1 to 9, there is no erosion of the Fe-based substrate surface after infiltration, and the generated residue can be easily removed.
比較例5では、物質Aが含まれないため、残滓が生成されなかった。
比較例6では、物質Aが0.3質量%未満であるため、残滓が生成しなかった。
比較例7では、物質Aが1.0質量%よりも多く、溶浸材の濡れ性が低下し、溶浸率は低下した。
比較例8では、物質Aとして選択したFeOが溶浸過程で還元され、Fe系基材と反応したため、残滓が固着した。
比較例9では、物質Aとして選択したGaNが溶浸過程で一部分解し、Fe系基材と反応したため、残滓が固着した。
In Comparative Example 5, since substance A was not included, no residue was generated.
In Comparative Example 6, since the content of substance A was less than 0.3 mass %, no residue was generated.
In Comparative Example 7, the content of substance A was more than 1.0 mass %, so the wettability of the infiltrant decreased, and the infiltration rate decreased.
In Comparative Example 8, FeO selected as material A was reduced during the infiltration process and reacted with the Fe-based base material, resulting in the deposition of residue.
In Comparative Example 9, GaN selected as material A was partially decomposed during the infiltration process and reacted with the Fe-based base material, resulting in the deposition of residue.
本発明における溶浸用Cu系粉末は、溶浸率が高いため密度の高いFe系合金になるので、高強度、高靭性を備える焼結部品を製造できる。
また、溶浸処理後にFe系基材表面の浸食がない。
また、Fe系基材表面に残滓が生成されるためFe系基材を積層して溶浸処理をしてもFe系基材同士が接着することがなく、しかも、生成した残滓は容易に除去することができるので焼結部品の生産性に優れる溶浸材になる溶浸用Cu系粉末である。
したがって、本発明は産業上の利用性が高い発明である。
The Cu-based powder for infiltration in the present invention has a high infiltration rate and therefore becomes a high density Fe-based alloy, making it possible to manufacture sintered parts with high strength and toughness.
Furthermore, there is no erosion of the surface of the Fe-based base material after the infiltration treatment.
In addition, since residues are generated on the surface of the Fe-based base material, even if the Fe-based base materials are stacked and infiltrated, the Fe-based base materials do not adhere to each other, and the generated residues can be easily removed, so that the Cu-based powder for infiltration serves as an infiltration material with excellent productivity for sintered parts.
Therefore, the present invention has high industrial applicability.
Claims (8)
Fe又はCoを1.5質量%以上、かつ、4.0質量%以下と、物質Aを0.3質量%以上、かつ、1.0質量%以下とを含有し、残部がCuと不可避不純物とからなり、前記物質Aは、1373K~1423Kの温度域におけるO21mol当たりの標準生成自由エネルギーが前記温度域におけるO21mol当たりのCr2O3の標準生成自由エネルギー以下であって1423K以下の温度において固相の酸化物、又は、前記温度域におけるN21mol当たりの標準生成自由エネルギーが前記温度域におけるN21mol当たりのSi3N4の標準生成自由エネルギー以下であって1423K以下の温度において固相の窒化物である溶浸用Cu系粉末。 A Cu-based powder for infiltration, comprising:
A Cu-based powder for infiltration comprising 1.5 mass % or more and 4.0 mass % or less of Fe or Co, 0.3 mass % or more and 1.0 mass % or less of substance A, with the remainder being Cu and unavoidable impurities, said substance A being an oxide in a solid phase at a temperature of 1423 K or less, the standard free energy of formation per 1 mol of O 2 in a temperature range of 1373 K to 1423 K being equal to or less than the standard free energy of formation of Cr 2 O 3 per 1 mol of O 2 in said temperature range, or a nitride in a solid phase at a temperature of 1423 K or less, the standard free energy of formation per 1 mol of N 2 in said temperature range being equal to or less than the standard free energy of formation of Si 3 N 4 per 1 mol of N 2 in said temperature range.
3. A powder compact of the Cu-based powder for infiltration according to claim 1 or 2.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022174049A JP2024065278A (en) | 2022-10-31 | 2022-10-31 | Cu-based powder for infiltration |
CN202311061234.2A CN117943537A (en) | 2022-10-31 | 2023-08-23 | Cu-based powder for immersion |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022174049A JP2024065278A (en) | 2022-10-31 | 2022-10-31 | Cu-based powder for infiltration |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2024065278A true JP2024065278A (en) | 2024-05-15 |
Family
ID=90799323
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022174049A Pending JP2024065278A (en) | 2022-10-31 | 2022-10-31 | Cu-based powder for infiltration |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2024065278A (en) |
CN (1) | CN117943537A (en) |
-
2022
- 2022-10-31 JP JP2022174049A patent/JP2024065278A/en active Pending
-
2023
- 2023-08-23 CN CN202311061234.2A patent/CN117943537A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
CN117943537A (en) | 2024-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6788669B2 (en) | Aluminum and aluminum alloy powder molding method | |
TWI259849B (en) | Porous metal, metallic composite using it and method for manufacturing the same | |
US20110123384A1 (en) | Method of manufacturing powder injection-molded body | |
JP4857206B2 (en) | Infiltration powder | |
EP2999661A1 (en) | Process for manufacturing metal containing powder | |
JP5054854B2 (en) | Electrode for electrical discharge machining | |
JP2010095770A (en) | Ti-Al-BASED ALLOY TARGET AND METHOD FOR PRODUCING THE SAME | |
JP2006322034A (en) | Electrode for discharge surface treatment, coated film for discharge surface treatment and treatment method | |
JP2017179388A (en) | Powder for sintering and sintered body | |
JP2024065278A (en) | Cu-based powder for infiltration | |
KR20150025196A (en) | Manufacturing method of composit materials using injection molding powder | |
US5374391A (en) | Molded ceramic articles and production method thereof | |
JP6467535B1 (en) | Cu-based powder for infiltration | |
CN113199024B (en) | Ternary layered compound, metal-based composite material, and preparation method and raw materials thereof | |
JP5540225B2 (en) | Molten metal contact material and coating film | |
US5443615A (en) | Molded ceramic articles | |
KR101410490B1 (en) | Injection molding method using powder | |
CA2036043C (en) | Molded ceramic articles and production method thereof | |
JP4532793B2 (en) | Sintering aid for aluminum-containing copper-based alloy powder, and sintering alloy powder containing the same | |
JP6071154B2 (en) | Method for manufacturing metal carbide coating member | |
CA2542117A1 (en) | Inert anode for producing aluminium by igneous electrolyse and method for producing said anode | |
JP3370467B2 (en) | Ceramic deposited copper alloy and method for producing the same | |
JP2019077930A (en) | Hard phase dispersed nickel group intermetallic compound composite sintered material, manufacturing method therefor, and corrosion resistant abrasion resistant component using the material | |
KR101136570B1 (en) | Method for preparing Metal-ceramic composite improvement agent at semi-solid temperature of Sn-Cu alloy and metal material which mechanical property is improved using the same | |
JP4158015B2 (en) | Method for producing sintered body and sintered body |