JP2006322034A - Electrode for discharge surface treatment, coated film for discharge surface treatment and treatment method - Google Patents

Electrode for discharge surface treatment, coated film for discharge surface treatment and treatment method Download PDF

Info

Publication number
JP2006322034A
JP2006322034A JP2005145348A JP2005145348A JP2006322034A JP 2006322034 A JP2006322034 A JP 2006322034A JP 2005145348 A JP2005145348 A JP 2005145348A JP 2005145348 A JP2005145348 A JP 2005145348A JP 2006322034 A JP2006322034 A JP 2006322034A
Authority
JP
Japan
Prior art keywords
electrode
discharge
film
alloy
surface treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005145348A
Other languages
Japanese (ja)
Inventor
Masao Akiyoshi
雅夫 秋吉
Akihiro Goto
昭弘 後藤
Kazuji Nakamura
和司 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005145348A priority Critical patent/JP2006322034A/en
Publication of JP2006322034A publication Critical patent/JP2006322034A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To form a coated film so as to contain more materials having a solid lubrication effect, and to establish an electrode for discharge surface treatment for forming the coated film and a discharge surface treatment method. <P>SOLUTION: The electrode is used for the discharge surface treatment which forms the film coated with a substance formed by a reaction of a coating film of an electrode material or the electrode material due to the discharge energy, on the surface of an article to be treated, which has been generated by the steps of; preparing a compact formed from a metallic powder or a powder of a metallic compound, or a heated compact formed of the above compact which has been further heat-treated; using the compact as the electrode; placing it in oil; and applying pulsed voltage between the electrode and the article to be treated. The electrode includes any material selected from among MoS<SB>2</SB>, WS<SB>2</SB>, NbS<SB>2</SB>, MoSe<SB>2</SB>, WSe<SB>2</SB>, NbSe<SB>2</SB>, hBN, graphite, fluorinated graphite or the like, which have a solid lubricating function, in an amount of 2 to 40 wt.%, and any material selected from among Mo, W, Ti, Fe, Mo alloy, W alloy, Ti alloy, Fe alloy or the like, which easily react with carbon, with respect to the material having the solid lubricating function. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、金属粉末あるいは金属の化合物の粉末を成形した成形体、もしくは、該粉末の成形体を加熱処理した粉末成形体を電極として、油の加工液中において電極と被加工物の間にパルス状の放電を発生させ、そのエネルギーにより、被加工物表面に電極材料あるいは電極材料が放電エネルギーにより反応した物質からなる被膜を形成する放電表面処理に関するものである。   The present invention provides a molded body obtained by molding a metal powder or a metal compound powder, or a powder molded body obtained by heat-treating a molded body of the powder as an electrode between an electrode and a workpiece in an oil processing liquid. The present invention relates to a discharge surface treatment in which a pulsed discharge is generated, and a film made of an electrode material or a material obtained by reacting the electrode material with the discharge energy is formed on the surface of the workpiece by the energy.

放電を利用して固体潤滑材の被膜を形成する技術としては、例えば国際公開WO00/29157号公報に示されるように、炭素を含まない水等の加工液中において、放電電極と被加工物表面との間にパルス状の放電を発生させ、その放電エネルギーによって生じる放電電極の電極消耗溶融物質を被加工物表面に付着堆積させ、潤滑作用がある被膜を形成していた。
すなわち、炭素成分を含まない加工液中で処理するため、固体潤滑作用を含む放電電極の材料が、炭素等との化合物に変化することなく、固体潤滑作用を有する材質のまま処理対象表面に付着堆積し、被加工物表面に潤滑性がある被膜を形成することができていた。
また、固体潤滑剤としてMo、Cr、hBNを電極に混入し、油中で放電を発生させ、上記材料を含む被膜の製法について特許第3227454号公報に示されている。
As a technique for forming a coating film of a solid lubricant by using electric discharge, for example, as shown in International Publication WO00 / 29157, in a working fluid such as water not containing carbon, a discharge electrode and a workpiece surface In this manner, a pulsed discharge is generated, and an electrode consumable molten material of the discharge electrode generated by the discharge energy is deposited and deposited on the surface of the workpiece to form a film having a lubricating action.
In other words, since the treatment is performed in a machining fluid that does not contain a carbon component, the material of the discharge electrode that has a solid lubrication action does not change into a compound with carbon or the like, and remains attached to the surface to be treated as a material having a solid lubrication action It was deposited and a film having lubricity could be formed on the surface of the workpiece.
Japanese Patent No. 3227454 discloses a method for producing a coating containing the above materials by mixing Mo, Cr, and hBN as solid lubricants in an electrode and generating discharge in oil.

国際公開WO00/29157号公報International Publication WO00 / 29157 日本国特許第3227474号公報Japanese Patent No. 3227474

特許文献1で示される被膜処理では、水中で放電を発生させるため、電極と被加工物の間に電圧を印可すると、水が電気分解され、陽極に酸素、陰極に水素が発生する。
そのため、電気分解によって現れた酸素に、放電による高いエネルギー状態の電極溶融物質が曝されると表面が酸化されてしまと共に、酸化の発熱反応で電極消耗溶融物質の高エネルギー状態が持続されることから、電極消耗溶融物質内部にまで酸化が進んでしまう。
そのため、その酸化物を多量に含んだ電極消耗溶融物質が、被加工物に付着堆積するが、酸化物は所望の潤滑性を持たないため、潤滑性が不十分な被膜となってしまう。
特許文献2で示される自己潤滑機能を含む被膜は680℃を越える高温においてその効果を発揮するが、常温から300℃程度の温度域においては低摩擦にならず、相手材がビッカース硬度30HV〜300HV程度の場合は激しく摩耗させてしまう。
In the coating treatment shown in Patent Document 1, since electric discharge is generated in water, when voltage is applied between the electrode and the workpiece, water is electrolyzed to generate oxygen at the anode and hydrogen at the cathode.
Therefore, when the electrode melted substance in a high energy state due to discharge is exposed to oxygen generated by electrolysis, the surface is oxidized, and the high energy state of the electrode consumable molten substance is maintained by the exothermic reaction of oxidation. Then, oxidation proceeds to the inside of the electrode consumable molten material.
Therefore, the electrode consumable molten material containing a large amount of the oxide adheres to and deposits on the workpiece. However, since the oxide does not have the desired lubricity, the film has insufficient lubricity.
The film including the self-lubricating function shown in Patent Document 2 exhibits its effect at a high temperature exceeding 680 ° C., but does not exhibit low friction in a temperature range from room temperature to about 300 ° C., and the counterpart material has a Vickers hardness of 30 HV to 300 HV. If it is about, it will be severely worn.

本発明は、固体潤滑作用を有する物質をより多く含む被膜を形成することを目的とし、その被膜形成のための放電表面処理用電極と放電表面処理方法を確立するものである。   The present invention aims to form a film containing a larger amount of a substance having a solid lubricating action, and establishes a discharge surface treatment electrode and a discharge surface treatment method for forming the film.

この発明に係る放電表面処理用電極は、金属粉末もしくは金属の化合物の粉末を成形した成形体、またはこの成形体を加熱処理した加熱済み成形体を電極とし、油中において、上記電極と被加工物との間にパルス状の放電を発生させ、その放電のエネルギーにより電極材料の被膜或いは放電のエネルギーにより電極材料が反応した物質の被膜を上記被加工物表面に形成する放電表面処理において使用される電極であって、固体潤滑作用のあるMoS、WS、NbS、MoSe、WSe、NbSe、hBN、グラファイト、フッ化グラファイト等の何れかの材料を2〜40wt%含有し、上記固体潤滑作用のある材料に対して炭素と反応しやすいMo、W、Ti、Fe、Mo合金、W合金、Ti合金、Fe合金等の何れかの材料を含有するものである。 An electrode for discharge surface treatment according to the present invention uses a molded body obtained by molding a metal powder or a metal compound powder, or a heated molded body obtained by heat-treating this molded body as an electrode. It is used in the discharge surface treatment in which a pulsed discharge is generated between the workpiece and the surface of the workpiece is formed with a coating of the electrode material by the energy of the discharge or a coating of the material with which the electrode material has reacted by the energy of the discharge. 2-40 wt% of any material such as MoS 2 , WS 2 , NbS 2 , MoSe 2 , WSe 2 , NbSe 2 , hBN, graphite, graphite fluoride and the like having a solid lubricating action, Any of Mo, W, Ti, Fe, Mo alloy, W alloy, Ti alloy, Fe alloy and the like that easily reacts with carbon with respect to the material having the above solid lubricating action It is those that contain the material.

本発明に係わる放電表面処理用電極は、固体潤滑作用を有する物質をより多く含み、摩耗量、摩擦係数ともに低い被膜を形成させることができる。   The electrode for electrical discharge surface treatment according to the present invention can form a film containing a larger amount of a substance having a solid lubricating action and having a low wear amount and a low friction coefficient.

実施の形態1.
まず、放電表面処理の原理について説明する。
金属、金属の合金の粉末と固体潤滑作用を有する物質の粉末との混合粉末を成形したもの、もしくは、成形した後、加熱処理したものを電極として用い、石油系の加工液で満たされた加工漕に設置した母材(被加工物)と所定間隙離間して配置し、電極を陰極、被加工物を陽極とし、両者が接触しないように主軸はサーボを取りつつ、両間で放電を発生させる。
放電の熱により被加工物及び電極は溶融・気化され、気化により発生する爆風や静電気力によって、溶融した電極の一部(溶融粒子)を被加工物表面に輸送する。
そして、溶融した電極の一部が被加工物表面に到達すると、再凝固し被膜となる。
Embodiment 1 FIG.
First, the principle of the discharge surface treatment will be described.
Molded powder of metal, alloy of metal alloy and powder of substance having solid lubricating action, or molded and heat-treated and used as electrode, processing filled with petroleum processing fluid Disposed between the base material (workpiece) placed on the cage and spaced apart by a predetermined gap, the electrode is the cathode, the work piece is the anode, and the spindle is servoed so that they do not come into contact with each other, and a discharge occurs between them. Let
The workpiece and the electrode are melted and vaporized by the heat of discharge, and a part of the melted electrode (molten particles) is transported to the workpiece surface by the blast and electrostatic force generated by the vaporization.
When a part of the melted electrode reaches the surface of the workpiece, it resolidifies and becomes a coating.

次に、本実施の形態における放電表面処理用電極製造のためのプロセスについて、図1を用いて説明する。
本実施の形態では、平均粒径1μmのMo(モリブデン)粉末を重量比で80wt%と、重量比で20%の平均粒径4μmのMoS(二硫化モリブデン)の粉末を電極材料として使用する。
まず、金属粉末であるMo粉末と固体潤滑作用を有するMoS2粉末とを、粉末と粉末の凝集を抑制するため、粉末体積の2倍以上の揮発性の高い有機溶媒にあわせて円筒容器に密閉して混入し、その円筒容器を数時間から数十時間回転させることで、Mo粉末及びMoS粉末を均一に混合する。
ここで、混合時間が短すぎる場合、固体潤滑作用を有する粉末が存在する部分と存在しない部分が生じてしまい、その粉末を用いて形成される被膜にも、固体潤滑作用を有しない箇所ができ、そこを基点に摩耗が進行するという問題があるため、混合後の粉末が斑状に見えない程度となるように混合する必要がある。
Next, the process for manufacturing the electrode for discharge surface treatment in the present embodiment will be described with reference to FIG.
In the present embodiment, Mo (molybdenum) powder having an average particle diameter of 1 μm is used as an electrode material by weight ratio of 80 wt% and 20% by weight of MoS 2 (molybdenum disulfide) powder having an average particle diameter of 4 μm. .
First, in order to suppress agglomeration of the powder and the powder, the Mo powder that is a metal powder and the MoS2 powder having a solid lubricating action are sealed in a cylindrical container in accordance with a highly volatile organic solvent that is at least twice the powder volume. Then, the cylindrical container is rotated for several hours to several tens of hours to uniformly mix the Mo powder and the MoS 2 powder.
Here, if the mixing time is too short, a portion where a powder having a solid lubricating action is present and a portion where the powder having a solid lubricating action is present are generated, and a portion having no solid lubricating action is also formed in a film formed using the powder. Since there is a problem that wear proceeds from there, it is necessary to mix so that the powder after mixing does not appear patchy.

混合を終了すると、しばらく放置することで混合粉末を容器底部に沈降させる。
そして、その沈降した粉末が舞い上がらないように、上澄みの液を別の容器に静かに取り除き、わずかに有機溶媒を含んだ混合粉末のみを取り出す。
その後、その混合粉末を真空炉または常温雰囲気で乾燥させ、有機溶媒を揮発させる。
更に、乾燥した粉末は凝集して大きな塊を形成しているため、メッシュサイズ100μmから300μmの篩にかけ、凝集してできていた塊を分解する。
このメッシュサイズは、後の工程でのプレスの成形性と、処理中に電極と母材の間に脱落したときに放電の爆発力で粉砕できるサイズから決定されている。
When mixing is completed, the mixed powder is allowed to settle at the bottom of the container by allowing it to stand for a while.
Then, the supernatant liquid is gently removed into another container so that the settled powder does not rise, and only the mixed powder slightly containing the organic solvent is taken out.
Thereafter, the mixed powder is dried in a vacuum furnace or a normal temperature atmosphere to volatilize the organic solvent.
Furthermore, since the dried powder is aggregated to form a large mass, it is passed through a sieve having a mesh size of 100 μm to 300 μm to decompose the aggregated mass.
This mesh size is determined from the formability of the press in the subsequent process and the size that can be pulverized by the explosive force of discharge when it falls between the electrode and the base material during processing.

次に混合粉末を所定の金型にいれ、パンチにより圧力を負荷しプレスすることで混合粉末は固まり、圧粉体となる。
ここで、粉末にパラフィンなどのワックスを重量比で1%から10%程度混入すると、プレスの際に混合粉末内部へのプレス圧力の伝わりを良くなり、成形性を改善できることから、重量比3%混合し、プレス圧200MPaで圧縮成形した。
Next, the mixed powder is put in a predetermined mold, and pressure is applied by a punch and pressing is performed, whereby the mixed powder is hardened and becomes a green compact.
Here, if wax such as paraffin is mixed in the powder by about 1% to 10% by weight, the pressure of the mixed powder can be transmitted to the inside of the mixed powder during pressing, and the moldability can be improved. The mixture was mixed and compression molded at a press pressure of 200 MPa.

圧縮成形された圧粉体は、圧縮により所定の硬さが得られていればそのまま放電表面処理用の電極として使用できるが、抵抗が大きく、通電性がない場合は、被膜を生成させることができないため、加熱し粒子と粒子の結合を進め、通電性を向上させる必要がある。
また、プレス時にワックスを使用した場合、圧粉体中よりワックスを除去する必要があり、ワックスの融点より高い温度に加熱し、ワックスを除去する。
なお、本実施の形態では、圧縮成形後、約860℃の真空炉内で一時間保持して、50×16×3の電極を成形した。
The compression-molded green compact can be used as it is as an electrode for discharge surface treatment as long as a predetermined hardness is obtained by compression, but if it has high resistance and is not conductive, it can produce a coating. Therefore, it is necessary to improve the electrical conductivity by heating and promoting the bonding between the particles.
Further, when wax is used during pressing, it is necessary to remove the wax from the green compact, and the wax is removed by heating to a temperature higher than the melting point of the wax.
In the present embodiment, after compression molding, a 50 × 16 × 3 electrode was molded by holding in a vacuum furnace at about 860 ° C. for one hour.

次に、この電極を用い、被加工物としてAl合金(A5052)上に被膜を形成させるための加工条件について説明する。
図2は、本実施の形態における電流波形を示す図である。
図に示されるように、放電開始直後に15Aから60A程度の大きな電流を2μs以下の間に供給することで、放電によって発生する爆発力や熱を非常に大きくし、急加熱することで、電極材料を溶融させて被加工物側に供給すると共に、被加工物上にも被加工物表面が溶けた溶融域を形成する。
Alのような熱電導率の大きな被加工物に対しては、放電発生による熱は被加工物内部に逃げてしまうことから、本電流波形のような加工条件が好ましい。
なお、被加工物上に溶融域を形成させることができない場合、被膜の密着強度が減少し、簡単に剥離する被膜となってしまう。
Next, processing conditions for forming a film on an Al alloy (A5052) as a workpiece using this electrode will be described.
FIG. 2 is a diagram showing a current waveform in the present embodiment.
As shown in the figure, by supplying a large current of about 15 A to 60 A within 2 μs immediately after the start of discharge, the explosive force and heat generated by the discharge are greatly increased, and the electrode is heated rapidly. The material is melted and supplied to the workpiece side, and a melted area where the workpiece surface is melted is also formed on the workpiece.
For workpieces with a high thermal conductivity such as Al, the processing conditions such as this current waveform are preferred because the heat generated by the discharge escapes into the workpiece.
In addition, when a fusion zone cannot be formed on a to-be-processed object, the adhesive strength of a film will reduce and it will become a film which peels easily.

次に電流を2Aから15A程度まで急減少させた電流で数μsから数十μs放電を持続させ、この放電電流による熱で溶融域を維持すると共に、その小さい電流で電極の材料を溶融させ、被加工物上に移動・堆積させる。
なお、電流値を20A以上に大きくしても被膜を形成できるが、大きな電流値で形成される被膜の表面粗さは、Ryで50μmを越え、研磨等の後工程が困難になるため、15A以下の電流値を使用しなければならない。
Next, the discharge is continued for several μs to several tens of μs with the current rapidly reduced from about 2 A to about 15 A, and the melting region is maintained with the heat generated by the discharge current, and the electrode material is melted with the small current, Move and deposit on the workpiece.
Although the film can be formed even if the current value is increased to 20 A or more, the surface roughness of the film formed with a large current value exceeds 50 μm in Ry, and post-processing such as polishing becomes difficult. The following current values must be used:

MoとMoSの混合電極を用いた本実施の形態では、ピーク電流50A、放電時間1.5μs供給した後、電流を11Aに落とした放電持続時間64μs、休止時間1024μsの放電条件で加工を行った。
被加工物の処理面を、電極を移動させながら灯油を主成分とする加工液中で約60分間処理することで、50×15×0.1の被膜を形成させた。
In this embodiment using a mixed electrode of Mo and MoS 2 , after supplying a peak current of 50 A and a discharge time of 1.5 μs, processing is performed under a discharge condition of a discharge duration of 64 μs and a rest time of 1024 μs with the current dropped to 11 A. It was.
The treated surface of the workpiece was treated for about 60 minutes in a machining liquid mainly composed of kerosene while moving the electrode, thereby forming a 50 × 15 × 0.1 coating.

被膜の断面写真を図3に示す。
断面の作製は、樹脂埋めせず、切断機で二つに切断した後、研磨紙600番、1000番、1500番の順で研磨し、最後に2μmのダイヤモンドペーストで仕上げたものである。
図から考察すると、被加工物と被膜に明確な境界が存在せず、被膜と被加工物が拡散接合していると考えられる。
また、被膜の内部には、二値化による画像処理の結果、空隙率が30%程度の空隙が存在している。
A cross-sectional photograph of the coating is shown in FIG.
The cross section was not filled with resin, but was cut into two parts with a cutting machine, polished in the order of polishing paper Nos. 600, 1000 and 1500, and finally finished with a diamond paste of 2 μm.
Considering from the figure, it is considered that there is no clear boundary between the workpiece and the coating, and the coating and the workpiece are diffusion bonded.
Further, as a result of binarization image processing, voids with a porosity of about 30% are present inside the coating.

次に、被膜の摩擦係数と摩耗量の試験結果について説明する。
摩擦係数と摩耗量の試験においては、R18の合金工具鋼SKS製のピンを、試験荷重30MPa、最大速度3m/s、振幅40mmで被膜上を往復摺動させ、摩擦係数と摩耗量を求めた。
約二時間の摺動試験結果、摩擦係数は0.2、摩耗量は5μmであり、摩耗量、摩擦係数ともに低い値を得た。
金属同士が接触する固体潤滑の摩擦係数は1以上であり、上記のような摺動条件で固体潤滑状態になると、焼き付きを起こし、ピンや被膜が数mm以上も摩耗される。
しかし、摩擦係数が0.2程度であれば、焼き付きを生じず、ほとんど摩耗しない。
このような摩耗量、摩擦係数を有する被膜は、潤滑油の使用環境で局所的に大きな負荷が加わり、潤滑油の膜を破断させ焼き付きを起こすような部位や潤滑油が使用できない部位の摩耗を抑制することができる。
そのような部位は、軸受けやカムによる往復運動機構のカムとの接触部の分野に適用することがよい。
Next, the test results of the friction coefficient and the wear amount of the coating will be described.
In the test of the friction coefficient and the amount of wear, a pin made of R18 alloy tool steel SKS was reciprocated on the coating with a test load of 30 MPa, a maximum speed of 3 m / s, and an amplitude of 40 mm to obtain the coefficient of friction and the amount of wear. .
As a result of the sliding test for about 2 hours, the friction coefficient was 0.2 and the wear amount was 5 μm, and both the wear amount and the friction coefficient were low.
The friction coefficient of solid lubrication in which metals are in contact with each other is 1 or more. When solid lubrication occurs under the above sliding conditions, seizure occurs and pins and coatings are worn by several mm or more.
However, if the friction coefficient is about 0.2, seizure does not occur and wear hardly occurs.
A film with such a wear amount and coefficient of friction is subject to wear in areas where a large load is applied locally in the environment where the lubricant is used, causing the lubricant film to break and cause seizure, or where the lubricant cannot be used. Can be suppressed.
Such a part is preferably applied to the field of a contact portion with a cam of a reciprocating mechanism using a bearing or a cam.

次に、X線分析により被膜表面にある物質同定結果を図4に示す。
被膜表面には、電極に含まれていたMoとMoSの他にMoC(炭化モリブデン)の小さいピークあり、MoCがわずかに存在していたことがわかる。
MoSの存在理由について考察すると、油などの有機物からなる加工液中で放電を発生させることにより放電の熱で油が分解され、電極と被加工物の間にメタンや炭素が発生する。
そして、その炭素やメタン中の炭素と放電によって溶かされた電極消耗溶融物質中の炭化しやすいMoが反応してMoCを形成していると推察される。
なお、同じ電極材料であるMoSの一部も分解され、そのMoが炭化されるが、MoSの場合は、S(硫黄)と分解するエネルギーをさらに必要とするため、Moの単体金属が炭化するよりもより多くのエネルギーを必要とする結果、Mo炭化が優先され、固体潤滑作用を有するMoSの炭化を抑制することができる。
また、物質同定の結果現れたMoCは、ビッカース硬度1500HVを越える強度を有する物質である。
そのため、被膜中にMoCが存在すると、その硬度により被膜の耐摩耗性の向上に貢献することができる。
Next, the identification result of the substance on the surface of the film by X-ray analysis is shown in FIG.
On the surface of the film, there is a small peak of Mo 2 C (molybdenum carbide) in addition to Mo and MoS 2 contained in the electrode, and it can be seen that Mo 2 C was slightly present.
Considering the reason for the presence of MoS 2 , the oil is decomposed by the heat of the discharge by generating a discharge in a working fluid made of an organic substance such as oil, and methane and carbon are generated between the electrode and the workpiece.
And it is guessed that Mo in the electrode consumable molten material melted by discharge reacts with carbon in the carbon or methane and Mo 2 C is formed by reaction.
In addition, a part of MoS 2 which is the same electrode material is also decomposed, and the Mo is carbonized. However, in the case of MoS 2 , since energy for decomposition with S (sulfur) is further required, the single metal of Mo is As a result of requiring more energy than carbonization, Mo carbonization is prioritized and the carbonization of MoS 2 having a solid lubricating action can be suppressed.
Further, Mo 2 C appearing as a result of the substance identification is a substance having a strength exceeding Vickers hardness of 1500 HV.
Therefore, if Mo 2 C is present in the coating, its hardness can contribute to an improvement in the wear resistance of the coating.

次に、電極中に含まれるMoSの含有量の割合について説明する。
MoSは固体潤滑作用を有する物質であるため、電極中のMoSの含有量を多くすると、被膜中のMoSの含有量が多くなり摩擦係数は0.2程度まで低下する。
しかし、MoSは昇華型材料であるため、溶けて被膜になることはできない。
本実施の形態における実験の結果、MoやWなどの金属とMoSやWSなどの固体潤滑作用を有する物質の混合電極において、固体潤滑作用を有する物質の割合が、40wt%を越えると、形成される被膜中での体積ではMoS量が80%程度となり、被膜を形成する粒子と粒子が結合できず、手で簡単に剥離する被膜となることがわかった。
また電極のMoSやWS等の固体潤滑作用を有する物質の割合を2wt%より少なくすると、被膜中に含まれるMoSやWS等の固体潤滑作用を有する物質の割合も少なくなり、摩擦係数が0.7程度になってしまう。
摩擦係数が更に大きくなると、焼き付きを起こしてしまう可能性があるため、焼き付きを抑制する被膜を形成するには、電極に含まれる固体中かつ作用を有する物質の割合は2wt%以上、40wt%以下とする必要がある。
Next, the ratio of the content of MoS 2 contained in the electrode will be described.
MoS 2 is because it is a material having a solid lubricating effect, when the content of MoS 2 in the electrode, the coefficient of friction increases the content of MoS 2 in the film is reduced to about 0.2.
However, since MoS 2 is a sublimation type material, it cannot melt and become a film.
As a result of the experiment in the present embodiment, when the ratio of the substance having the solid lubricating action exceeds 40 wt% in the mixed electrode of the metal such as Mo or W and the substance having the solid lubricating action such as MoS 2 or WS 2 , It was found that the amount of MoS 2 was about 80% in the volume of the formed film, and the particles forming the film could not be bonded to each other and the film was easily peeled off by hand.
Further, if the ratio of the material having a solid lubricating action such as MoS 2 or WS 2 of the electrode is less than 2 wt%, the ratio of the substance having a solid lubricating action such as MoS 2 or WS 2 contained in the film is also reduced, and the friction is reduced. The coefficient becomes about 0.7.
If the friction coefficient is further increased, seizure may occur. Therefore, in order to form a film that suppresses seizure, the ratio of the substance having an action in the solid contained in the electrode is 2 wt% or more and 40 wt% or less. It is necessary to.

また、電極の固体潤滑作用を有する物質の割合が多くなるほど、同じ放電条件で形成される被膜の空隙率が大きくなる。
MoSやWSの固体潤滑作用を有する物質は、MoやWなどの金属に周囲を囲まれた状態で被膜中に存在する。
ここで、被膜を構成する粒子の結合強度を決定しているのは、MoやWの金属結合状態であり、溶けた金属にMoSは浮いた状態で存在しているため、MoSやWSがたくさん存在すると、MoやWの結合面積が減少し、結合強度が低下する。
この結合強度の低下が、被膜の断面を観察するための切断工程において、被膜から離脱される部分を多く発生させ、空隙率の大きな被膜となる。
MoS量を40wt%にした場合と5wt%にした場合の被膜断面写真を図5,6に示す。
実験より、固体潤滑作用を有する物質の割合を40wt%程度にすると被膜の空隙率は80%程度になり、固体潤滑作用を有する物質の割合を2wt%にすると空隙率は5%程度になる。
Moreover, the porosity of the film formed on the same discharge conditions becomes large, so that the ratio of the substance which has a solid lubrication effect | action of an electrode increases.
A substance having a solid lubricating action such as MoS 2 or WS 2 is present in the coating in a state surrounded by a metal such as Mo or W.
Here, the bonding strength of the particles constituting the coating is determined by the metal bonding state of Mo or W, and MoS 2 is present in a floating state in the molten metal, so MoS 2 or WS If a large amount of 2 exists, the bonding area of Mo and W decreases, and the bonding strength decreases.
This decrease in bond strength generates many portions that are detached from the coating in the cutting process for observing the cross section of the coating, resulting in a coating with a large porosity.
FIGS. 5 and 6 show cross-sectional photographs of the film when the amount of MoS 2 is 40 wt% and when it is 5 wt%.
From experiments, the porosity of the coating is about 80% when the ratio of the substance having a solid lubricating action is about 40 wt%, and the porosity is about 5% when the ratio of the substance having a solid lubricating action is 2 wt%.

一般に、空隙率の高い被膜は、被膜のせん断力が小さく、摩擦係数を小さくできるが、大きな摩擦力が作用すると崩れてしまう。
反対に空隙率の低い被膜は、せん断力が大きく、摩擦係数は大きくなるが、大きな摩擦力でも崩れない。
さらに、空隙率に作用するMoS等の被膜への含有量に応じて摩擦係数が左右され、摩擦係数が1程度となると焼き付きを起こしやすい。
それらのことから、軸受けなどに用いられる摩擦係数0.1〜0.5、摩耗量数μmの被膜としては、電極におけるMoS、WS等の固体潤滑作用を有する物質を20Wt%にし、MoやWの金属物質を80wt%にするのが良い。
In general, a coating film with a high porosity has a small shearing force and can reduce the friction coefficient, but it collapses when a large frictional force acts.
On the other hand, a film with a low porosity has a large shearing force and a high friction coefficient, but it does not collapse even with a large frictional force.
Further, the friction coefficient depends on the content of MoS 2 or the like acting on the porosity, and when the friction coefficient is about 1, seizure tends to occur.
Therefore, as a coating having a friction coefficient of 0.1 to 0.5 and a wear amount of several μm used for a bearing or the like, a material having a solid lubricating action such as MoS 2 and WS 2 in the electrode is made 20 Wt%, Mo It is preferable that the metallic substance of W or W is 80 wt%.

以上の関係を下表に示す。
なお、本関係は、平均粒径1μmのMo粉末と平均粒径4μmのMoS粉末からなる圧粉体電極を用い、Al合金の被加工物に対して上述した加工条件で被膜を成形したときの実験データである。
The above relationship is shown in the table below.
This relationship is obtained when a coating is formed under the above-described processing conditions on an Al alloy workpiece using a green compact electrode made of Mo powder having an average particle diameter of 1 μm and MoS 2 powder having an average particle diameter of 4 μm. This is experimental data.

Figure 2006322034
なお、本実験では、Mo粉末とMoS粉末の圧粉体電極についてのデータであるが、固体潤滑作用を有する材料としては、WS(二硫化タングステン)粉末とW粉末との混合粉末の圧粉体電極においても同様の実験データを得た。
Figure 2006322034
In this experiment, it is data on the green compact electrode of Mo powder and MoS 2 powder. As a material having a solid lubricating action, the pressure of the mixed powder of WS 2 (tungsten disulfide) powder and W powder is used. Similar experimental data were obtained for the powder electrode.

本発明の実施の形態によれば、固体潤滑作用を有する物質を放電表面処理電極中に含有させることにより、被膜に該固体潤滑作用を有する物質の被膜を形成させる際に、固体潤滑作用を有する材料よりもより炭化しやすい物質を電極中に含ませることで、固体潤滑作用を有する物質の炭化を抑制でき、かつ、固体潤滑作用を有する物質を十分に含む被膜を形成することができる。
また、固体潤滑作用を有する物質の炭化を抑制するための金属は、炭化し高強度化され、被膜の耐摩耗性を向上することができる。
また、放電開始直後に高ピークになり、その後小さな電流が持続する放電波形を用いることで、Alなどの高熱伝導率を持つ被加工物上にも、固体潤滑作用を有する物質を含む被膜を形成できる。
According to the embodiment of the present invention, when a substance having a solid lubricating action is formed in the coating film by including a substance having a solid lubricating action in the discharge surface treatment electrode, the solid lubricating action is obtained. By including in the electrode a substance that is more easily carbonized than the material, carbonization of the substance having a solid lubricating action can be suppressed, and a film sufficiently including the substance having a solid lubricating action can be formed.
In addition, the metal for suppressing carbonization of the substance having a solid lubricating action is carbonized to increase the strength, and the wear resistance of the coating can be improved.
Also, by using a discharge waveform that becomes a high peak immediately after the start of discharge and then continues a small current, a film containing a substance having a solid lubricating action is formed on a workpiece having a high thermal conductivity such as Al. it can.

そして、固体潤滑作用を有する物質と、該固体潤滑作用を有する物質より炭化しやすい物質の割合を変更することで、摩擦係数、摩耗量を調整することが可能となり、被膜に作用される摩擦力が大きい場合には空隙率が低い被膜を、摩擦力が小さい場合は空隙率の高い被膜を選択することで、要求仕様に合致する低摩擦・低摩耗の被膜を実現できる。   By changing the ratio of the substance having a solid lubricating action and the substance that is more easily carbonized than the substance having the solid lubricating action, the friction coefficient and the amount of wear can be adjusted, and the frictional force acting on the film By selecting a coating film with a low porosity when the frictional force is large and selecting a coating film with a high porosity when the frictional force is small, a coating with low friction and low wear that meets the required specifications can be realized.

上述した実施の形態では、固体潤滑作用を有する物質は、MoSの場合について説明したが、同じ層状格子構造を有するWS、NbS、MoSe、WSe、NbSe、グラファイト、フッ化グラファイトでも、同様な摩擦形態となるため、低摩擦被膜を形成できる。
そして、炭素との生成エントロピーが小さく炭化しやすい金属としては、MoやWの他に、TiやFe、またはMo合金、W合金、Ti合金、Fe合金でもよい。
In the embodiment described above, the substance having a solid lubricating action has been described in the case of MoS 2 , but WS 2 , NbS 2 , MoSe 2 , WSe 2 , NbSe 2 , graphite, and graphite fluoride having the same layered lattice structure. However, since the friction form is the same, a low friction film can be formed.
In addition to Mo and W, Ti, Fe, Mo alloy, W alloy, Ti alloy, and Fe alloy may be used as the metal that has a small generation entropy with carbon and is easily carbonized.

実施の形態2.
上述した実施の形態1では、固体潤滑作用を有する材料と、該固体潤滑作用を有する材料より炭化しやすい材料を混合した圧粉体電極とすることにより、炭化しやすい材料が固体潤滑作用を有する材料の炭化を抑える化学変化を利用したものであるが、本実施の形態は、固体潤滑作用を有する材料と、炭素を多量に固容する材料とを混合することにより、炭素の固体潤滑作用を有する材料への供給を防止するものである。
Embodiment 2. FIG.
In the first embodiment described above, by forming a green compact electrode in which a material having a solid lubricating action and a material that is more easily carbonized than the material having the solid lubricating action are mixed, the material that is easily carbonized has a solid lubricating action. This embodiment uses a chemical change that suppresses carbonization of the material. In this embodiment, the solid lubricating action of carbon is achieved by mixing a material having a solid lubricating action and a material that solidifies a large amount of carbon. The supply to the material which has is prevented.

本実施の形態では、平均粒径1μmのCo(コバルト)粉末と、重量比で20%MoSの粉末を混合し、乾燥させた後、ワックスを重量3%混合して200MPaで圧縮成形し、約300℃の真空炉内で一時間保持して、50×16×3の電極を成形した。
そして、Co粉末とMoS粉末の混合電極を用い、アルミ4032上にピーク電流50A、放電時間1.5μs供給した後、電流を11Aに落とした放電持続時間8μsの放電条件で加工を行った。
被加工物の処理面を50×3とし、処理面で電極を移動させながら、灯油を主成分とする加工液中で約60分間処理することで、Al合金(A5052)上に厚さ0.1mmの被膜を形成させた。
本実施の形態では、Moと比較して、Coは融点・溶解熱いずれも低いため、より短い放電持続時間で電極を溶融させることができる。
そのため、放電持続時間を実施の形態1よりも短くできる。
In the present embodiment, a Co (cobalt) powder having an average particle diameter of 1 μm and a 20% MoS 2 powder in a weight ratio are mixed and dried, and then a wax is mixed by 3% by weight and compression-molded at 200 MPa. Holding in a vacuum furnace at about 300 ° C. for 1 hour, a 50 × 16 × 3 electrode was formed.
Then, using a mixed electrode of Co powder and MoS 2 powder, a peak current of 50 A and a discharge time of 1.5 μs were supplied onto aluminum 4032, and then processing was performed under a discharge condition of a discharge duration of 8 μs with the current dropped to 11 A.
The processing surface of the work piece is 50 × 3, and the electrode is moved on the processing surface, and is processed for about 60 minutes in a processing liquid mainly composed of kerosene, so that the thickness of the Al alloy (A5052) is 0. A 1 mm film was formed.
In this embodiment, since Co has a lower melting point and lower heat of melting than Mo, the electrode can be melted in a shorter discharge duration.
Therefore, the discharge duration can be made shorter than in the first embodiment.

Coは炭素と反応しないが、炭素を多量に固溶することができる。
すなわち、油などの有機物からなる加工液中で放電を発生させると、放電の熱で油が分解され、電極と被加工物の間にメタンや炭素が発生するが、その炭素をCoが多く固溶するため、固体潤滑作用を有する物質と反応する炭素量を減少させ、固体潤滑作用を有する物質であるMoSやWSの炭化を抑制することが本実施の形態の趣旨である。
Co does not react with carbon, but can dissolve carbon in a large amount.
In other words, when a discharge is generated in a machining fluid composed of an organic substance such as oil, the oil is decomposed by the heat of the discharge, and methane and carbon are generated between the electrode and the workpiece. The purpose of the present embodiment is to reduce the amount of carbon that reacts with a substance having a solid lubricating action and to suppress carbonization of MoS 2 and WS 2 that are substances having a solid lubricating action.

形成された被膜の断面写真を図7に示す。
断面の作製は、樹脂埋めせず、切断機で二つに切断した後、研磨紙600番、1000番、1500番の順で研磨し、最後に2μmのダイヤモンドペーストで仕上げたものである。
図から考察すると、被加工物と被膜に明確な境界が存在せず、被膜と被加工物が拡散接合していると考えられる.
また、被膜の内部には、二値化による画像処理の結果、空隙率が20%程度の空隙が存在している。
A cross-sectional photograph of the formed film is shown in FIG.
The cross section was not filled with resin, but was cut into two parts with a cutting machine, polished in the order of polishing paper Nos. 600, 1000 and 1500, and finally finished with a diamond paste of 2 μm.
Considering the figure, there is no clear boundary between the workpiece and the coating, and it is considered that the coating and the workpiece are diffusion bonded.
Further, as a result of image processing by binarization, voids with a porosity of about 20% are present inside the coating.

MoやWを使用した実施の形態1と比較して、炭素と反応しないCo粉末を用いたほうが、わずかに空隙率が減少した。
MoやWは炭素と反応し、MoCやWCなどの炭化物を形成する。
これらの炭化物は、融点が4000K近くと非常に高く、被膜が凝固する過程において、MoやWなどの金属よりも先に析出し、MoSやWSと同様に、金属に周囲を囲まれた状態で被膜中に存在することになる。
そのため、炭化物が被膜中に含まれると、炭化物は高強度であるため、摩耗量を抑制する効果を持つが、被膜を構成している粒子の結合強度を低下させてしまい、断面作製時に脱落部分を発生しやすくなり、空隙率が大きくなる。
それに対し、Coは炭化物を形成しないため、被膜を構成する粒子と粒子の結合強度を大きくすることができ、MoやWよりも空隙率を小さくすることができる。
すなわち、MoとMoSからなる被膜よりも、より大きな摩擦力が作用する環境で使用する被膜に本技術を適用することが有効である。
Compared with Embodiment 1 using Mo or W, the porosity decreased slightly when Co powder that did not react with carbon was used.
Mo and W react with carbon to form carbides such as Mo 2 C and WC.
These carbides have a very high melting point of about 4000 K, and in the process of solidifying the film, they are precipitated before the metal such as Mo and W, and the surroundings are surrounded by the metal like MoS 2 and WS 2 . It will be present in the film in a state.
Therefore, if carbide is included in the coating, the carbide has a high strength and thus has an effect of suppressing the amount of wear, but it reduces the bond strength of the particles constituting the coating, and is a part that falls off during cross-section preparation. Is likely to occur, and the porosity is increased.
On the other hand, since Co does not form carbides, it is possible to increase the bond strength between the particles constituting the coating and to reduce the porosity as compared to Mo and W.
That is, it is effective to apply the present technology to a coating used in an environment where a larger frictional force acts than a coating made of Mo and MoS 2 .

次に、被膜の摩擦係数と摩耗量の試験結果について説明する。
摩擦係数と摩耗量の試験においては、R18の合金工具鋼SKS製ピンを、試験荷重100MPa、最大速度6m/s、振幅40mmで被膜上を往復摺動させ、摩擦係数と摩耗量を求めた。
約二時間の摺動試験結果、摩擦係数は0.2、摩耗量は7μmであり、金属と金属の固体潤滑の場合と比較して、摩耗量、摩擦係数ともに低い値、焼き付きを抑制できる被膜を得た。
このような摩耗量、摩擦係数を有する被膜は、軸受けやカムによる往復運動機構のカムとの接触部の分野に適用することがよい。
Next, the test results of the friction coefficient and the wear amount of the coating will be described.
In the test of the friction coefficient and the wear amount, an R18 alloy tool steel SKS pin was slid back and forth on the coating with a test load of 100 MPa, a maximum speed of 6 m / s, and an amplitude of 40 mm to obtain the friction coefficient and the wear amount.
As a result of the sliding test for about 2 hours, the friction coefficient is 0.2 and the wear amount is 7 μm. Compared to the case of solid lubrication of metal and metal, both the wear amount and the friction coefficient are low, and the coating can suppress seizure. Got.
A film having such a wear amount and a friction coefficient is preferably applied to the field of a contact portion with a cam of a reciprocating mechanism using a bearing or a cam.

本発明の実施の形態によれば、固体潤滑作用を有する物質を放電表面処理電極中に含有させることにより、被膜に該固体潤滑作用を有する物質の被膜を形成させる際に、炭素を固溶しやすい物質を電極中に含ませることで、固体潤滑作用を有する物質の炭化を抑制でき、かつ、固体潤滑作用を有する物質を十分に含む被膜を形成することができる。
また、被膜を構成する粒子と粒子の結合強度をより大きくできるため、高い摩擦力が作用する環境で使用可能な被膜を提供できる。
また、放電開始直後に高ピークになり、その後小さな電流が持続する放電波形を用いることで、Alなどの高熱伝導率を持つ被加工物上にも、固体潤滑作用を有する物質を含む被膜を形成できる。
According to the embodiment of the present invention, when a substance having a solid lubricating action is included in the discharge surface treatment electrode, a carbon having a solid solution is formed when the film of the substance having the solid lubricating action is formed on the film. By including an easy-to-use substance in the electrode, carbonization of the substance having a solid lubricating action can be suppressed, and a film sufficiently containing the substance having a solid lubricating action can be formed.
Moreover, since the bond strength between the particles constituting the coating can be increased, it is possible to provide a coating that can be used in an environment where a high frictional force acts.
Also, by using a discharge waveform that becomes a high peak immediately after the start of discharge and then continues a small current, a film containing a substance having a solid lubricating action is formed on a workpiece having a high thermal conductivity such as Al. it can.

なお、本実施の形態において、固体潤滑作用を有する物質よりも炭素を固容しやすい材料として、Co粉末について説明したが、Ni、Co合金、Ni合金な出でも良く、それら固体潤滑作用を有する物質よりも炭素を固溶しやすい材料は、30wt%以上含有すればよい。
しかし、MoSの割合を40wt%以上にすると形成される被膜中での体積ではMoS量が80%程度となり、被膜を形成する粒子と粒子が結合できず、簡単に剥離してしまうため、炭素を固溶しやすい材料を60wt%以上にする必要がある。
In the present embodiment, Co powder has been described as a material that can more easily solidify carbon than a substance having a solid lubricating action. However, Ni, Co alloy, Ni alloy may be used, and these solid lubricating actions are provided. A material that dissolves carbon more easily than a substance may be contained in an amount of 30 wt% or more.
However, if the ratio of MoS 2 is 40 wt% or more, the amount of MoS 2 is about 80% in the volume in the formed film, and the particles forming the film cannot be bonded to each other and easily peeled off. It is necessary to make the material that easily dissolves carbon into 60 wt% or more.

放電表面処理用電極製造のためのプロセスである。This is a process for manufacturing an electrode for discharge surface treatment. 本実施の形態における電流波形を示す図である。It is a figure which shows the current waveform in this Embodiment. 被膜の断面写真を示す図である。It is a figure which shows the cross-sectional photograph of a film. X線分析により被膜表面にある物質同定結果を示す図である。It is a figure which shows the substance identification result in a film surface by X-ray analysis. MoS量を40wt%にした場合の被膜断面写真を示す図である。Is a diagram showing a film cross-sectional photograph of the case of the MoS 2 content to 40 wt%. MoS量を5wt%にした場合の被膜断面写真を示す図である。The MoS 2 content is a diagram showing a film cross-sectional photograph of the case of the 5 wt%. 被膜の断面写真を示す図である。It is a figure which shows the cross-sectional photograph of a film.

Claims (8)

金属粉末もしくは金属の化合物の粉末を成形した成形体、またはこの成形体を加熱処理した加熱済み成形体を電極とし、油中において、上記電極と被加工物との間にパルス状の放電を発生させ、その放電のエネルギーにより電極材料の被膜或いは放電のエネルギーにより電極材料が反応した物質の被膜を上記被加工物表面に形成する放電表面処理において使用される電極であって、
固体潤滑作用のあるMoS、WS、NbS、MoSe、WSe、NbSe、グラファイト、フッ化グラファイト等の何れかの材料を2〜40wt%含有し、
上記固体潤滑作用のある材料に対して炭素と反応しやすいMo、W、Ti、Fe、Mo合金、W合金、Ti合金、Fe合金等の何れかの材料を含有する放電表面処理用電極。
A molded body formed by molding a metal powder or a metal compound powder, or a heated molded body obtained by heat-treating this molded body is used as an electrode, and a pulsed discharge is generated between the electrode and the workpiece in oil. An electrode used in a discharge surface treatment that forms a film of an electrode material on the surface of the workpiece by the energy of the discharge or a film of a substance that the electrode material reacts on the surface of the discharge,
2-40 wt% of any material such as MoS 2 , WS 2 , NbS 2 , MoSe 2 , WSe 2 , NbSe 2 , graphite, and fluorinated graphite having a solid lubricating action,
An electrode for discharge surface treatment containing any material such as Mo, W, Ti, Fe, Mo alloy, W alloy, Ti alloy, and Fe alloy that easily reacts with carbon with respect to the material having a solid lubricating action.
金属粉末もしくは金属の化合物の粉末を成形した成形体、またはこの成形体を加熱処理した加熱済み成形体を電極とし、油中において、上記電極と被加工物との間にパルス状の放電を発生させ、その放電のエネルギーにより電極材料の被膜或いは放電のエネルギーにより電極材料が反応した物質の被膜を上記被加工物表面に形成する放電表面処理において使用される電極であって、
固体潤滑作用のあるMoS、WS、NbS、MoSe、WSe、NbSe、グラファイト、フッ化グラファイト等の何れかの材料を2〜40wt%含有し、
炭素を固容しやすいCo、Ni、Co合金、Ni合金等の何れかの材料を含有する放電表面処理用電極。
A molded body formed by molding a metal powder or a metal compound powder, or a heated molded body obtained by heat-treating this molded body is used as an electrode, and a pulsed discharge is generated between the electrode and the workpiece in oil. An electrode used in a discharge surface treatment that forms a film of an electrode material on the surface of the workpiece by the energy of the discharge or a film of a substance that the electrode material reacts on the surface of the discharge,
2-40 wt% of any material such as MoS 2 , WS 2 , NbS 2 , MoSe 2 , WSe 2 , NbSe 2 , graphite, and fluorinated graphite having a solid lubricating action,
An electrode for discharge surface treatment containing any material such as Co, Ni, Co alloy, Ni alloy and the like that easily solidify carbon.
固体潤滑作用のあるMoS、WS、NbS、MoSe、WSe、NbSe、グラファイト、フッ化グラファイト等の材料は、平均粒径2μm以上10μm以下の粉末材料を用いることを特徴とする請求項1又は2に記載の放電表面処理用電極。 A material such as MoS 2 , WS 2 , NbS 2 , MoSe 2 , WSe 2 , NbSe 2 , graphite, and graphite fluoride having a solid lubricating action is characterized by using a powder material having an average particle diameter of 2 μm to 10 μm. The electrode for discharge surface treatment according to claim 1 or 2. 金属粉末もしくは金属の化合物の粉末を成形した成形体、またはこの成形体を加熱処理した加熱済み成形体を電極として、油中において、上記電極と被加工物の間にパルス状の放電を発生させ、その放電のエネルギーにより電極材料の被膜或いは放電のエネルギーにより電極材料が反応した物質の被膜を上記被加工物表面に形成する放電表面処理において形成される被膜であって、
固体潤滑作用のあるMoS、WS、NbS、MoSe、WSe、NbSe、グラファイト、フッ化グラファイト等を2%〜40%含み、空隙率が5%以上70%以下であることを特徴とする放電表面処理被膜。
Using a molded body obtained by molding a metal powder or metal compound powder, or a heated molded body obtained by heat-treating this molded body as an electrode, a pulsed discharge is generated between the electrode and the workpiece in oil. A film formed in the discharge surface treatment for forming a film of the electrode material by the energy of the discharge or a film of a substance reacted with the electrode material by the energy of the discharge on the surface of the workpiece,
MoS 2 , WS 2 , NbS 2 , MoSe 2 , WSe 2 , NbSe 2 , graphite, graphite fluoride, etc. having a solid lubricating action are contained 2% to 40%, and the porosity is 5% to 70%. Discharge surface treatment coating characterized.
被膜の硬度は、ビッカース硬度500HV〜1500HVとすることを特徴とする請求項4に記載の放電表面処理被膜。   The discharge surface-treated film according to claim 4, wherein the film has a Vickers hardness of 500 HV to 1500 HV. 金属または金属の化合物と、固体潤滑作用のあるMoS、WS、NbS、MoSe、WSe、NbSe、グラファイト、フッ化グラファイト等の粉末とを成形した成形体、またはこの成形体を加熱処理した加熱済み成形体を電極として、油中において、上記電極と被加工物の間にパルス状の放電を発生させ、その放電のエネルギーにより電極材料の被膜或いは放電のエネルギーにより電極材料が反応した物質の被膜を上記被加工物表面に形成する放電表面処理において、
アルミや銅からなる100W/mK以上の熱伝導率を有する材料を被加工物に用い、放電開始直後は三角波形の電流を供給し、その後、その三角波形のピークよりも低い電流で放電を持続させ、被膜を形成することを特徴とする放電表面処理方法。
A molded body obtained by molding a metal or a compound of metal and a powder such as MoS 2 , WS 2 , NbS 2 , MoSe 2 , WSe 2 , NbSe 2 , graphite, and graphite fluoride having a solid lubricating action, or this molded body Using the heated molded body that has been heat-treated as an electrode, in the oil, a pulsed discharge is generated between the electrode and the workpiece, and the electrode material reacts due to the coating of the electrode material or the energy of the discharge. In discharge surface treatment to form a coating of the material on the workpiece surface,
A material with a thermal conductivity of 100 W / mK or more made of aluminum or copper is used for the work piece, a triangular waveform current is supplied immediately after the start of discharge, and then the discharge is maintained at a current lower than the peak of the triangular waveform. A discharge surface treatment method comprising forming a film.
三角波形の電流は、15Aから60A程度で2μs以下供給し、その後の電流は、2Aから15A程度で数μsから数十μs供給することを特徴とする請求項6に記載の放電表面処理方法。   7. The discharge surface treatment method according to claim 6, wherein a current having a triangular waveform is supplied at about 15 A to 60 A for 2 μs or less, and a subsequent current is supplied at about 2 A to about 15 A for several μs to several tens of μs. 固体潤滑作用のある粉末と混合する金属または金属の化合物は、上記固体潤滑作用のある材料に対して炭素と反応しやすいMo、W、Ti、Fe、Mo合金、W合金、Ti合金、Fe合金等の何れかの材料、或いは、炭素を固容しやすいCo、Ni、Co合金、Ni合金とすることを特徴とする放電表面処理方法。   The metal or compound of the metal mixed with the powder having a solid lubricating action is Mo, W, Ti, Fe, Mo alloy, W alloy, Ti alloy, Fe alloy which easily reacts with carbon with respect to the material having the solid lubricating action. A discharge surface treatment method characterized by using any material such as Co, Ni, Co alloy, or Ni alloy that easily solidifies carbon.
JP2005145348A 2005-05-18 2005-05-18 Electrode for discharge surface treatment, coated film for discharge surface treatment and treatment method Pending JP2006322034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005145348A JP2006322034A (en) 2005-05-18 2005-05-18 Electrode for discharge surface treatment, coated film for discharge surface treatment and treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005145348A JP2006322034A (en) 2005-05-18 2005-05-18 Electrode for discharge surface treatment, coated film for discharge surface treatment and treatment method

Publications (1)

Publication Number Publication Date
JP2006322034A true JP2006322034A (en) 2006-11-30

Family

ID=37541925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005145348A Pending JP2006322034A (en) 2005-05-18 2005-05-18 Electrode for discharge surface treatment, coated film for discharge surface treatment and treatment method

Country Status (1)

Country Link
JP (1) JP2006322034A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010082702A (en) * 2008-09-29 2010-04-15 Tsugami Corp Guide bush
JP2010082701A (en) * 2008-09-29 2010-04-15 Tsugami Corp Collet chuck
JP2013540886A (en) * 2010-07-09 2013-11-07 クライマックス・エンジニアード・マテリアルズ・エルエルシー Low friction surface coating and method for producing the same
CN103436883A (en) * 2013-08-07 2013-12-11 青岛科技大学 Self-lubricating coated cutting tool prepared based on electric spark deposition and preparation method thereof
CN103952692A (en) * 2014-04-24 2014-07-30 镇江市高等专科学校 Preparation method of tungsten disulfide self-lubricating composite coating and self-lubricating track
CN105514446A (en) * 2015-12-12 2016-04-20 清华大学 Method for preparing self-supporting transition-metal disulfide/carbon composite film
CN108962623A (en) * 2018-08-23 2018-12-07 大同新成新材料股份有限公司 A kind of graphene composite material and preparation method thereof and device
US10577695B2 (en) 2016-12-28 2020-03-03 Mitsubishi Electric Corporation Method for manufacturing discharge surface treatment electrode and method for manufacturing film body
CN112483626A (en) * 2020-12-02 2021-03-12 东南大学 Self-lubricating gear based on additive manufacturing and preparation method thereof
CN113241425A (en) * 2021-06-03 2021-08-10 贵州民族大学 Molybdenite electrode and preparation method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010082701A (en) * 2008-09-29 2010-04-15 Tsugami Corp Collet chuck
JP2010082702A (en) * 2008-09-29 2010-04-15 Tsugami Corp Guide bush
JP2013540886A (en) * 2010-07-09 2013-11-07 クライマックス・エンジニアード・マテリアルズ・エルエルシー Low friction surface coating and method for producing the same
CN103436883A (en) * 2013-08-07 2013-12-11 青岛科技大学 Self-lubricating coated cutting tool prepared based on electric spark deposition and preparation method thereof
CN103952692A (en) * 2014-04-24 2014-07-30 镇江市高等专科学校 Preparation method of tungsten disulfide self-lubricating composite coating and self-lubricating track
CN105514446A (en) * 2015-12-12 2016-04-20 清华大学 Method for preparing self-supporting transition-metal disulfide/carbon composite film
US10577695B2 (en) 2016-12-28 2020-03-03 Mitsubishi Electric Corporation Method for manufacturing discharge surface treatment electrode and method for manufacturing film body
DE112016002010B4 (en) 2016-12-28 2021-12-23 Mitsubishi Electric Corporation Method of manufacturing an electrode for surface treatment by discharge and method of manufacturing a film body
CN108962623A (en) * 2018-08-23 2018-12-07 大同新成新材料股份有限公司 A kind of graphene composite material and preparation method thereof and device
CN108962623B (en) * 2018-08-23 2020-02-28 大同新成新材料股份有限公司 Graphene composite material and preparation method and device thereof
CN112483626A (en) * 2020-12-02 2021-03-12 东南大学 Self-lubricating gear based on additive manufacturing and preparation method thereof
CN112483626B (en) * 2020-12-02 2022-03-08 东南大学 Self-lubricating gear based on additive manufacturing and preparation method thereof
CN113241425A (en) * 2021-06-03 2021-08-10 贵州民族大学 Molybdenite electrode and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2006322034A (en) Electrode for discharge surface treatment, coated film for discharge surface treatment and treatment method
JP3271844B2 (en) Surface treatment method for metallic materials by submerged discharge
US8377339B2 (en) Electrode for electric discharge surface treatment, method of electric discharge surface treatment, and apparatus for electric discharge surface treatment
RU2228824C2 (en) Electrode rod for electric spark surfacing, method for making it and method for applying coating containing superabrasive
JP5904792B2 (en) Metallurgical composition of particulate material, self-lubricating sintered body, and method for obtaining self-lubricating sintered body
JP6760807B2 (en) Copper-based sintered alloy oil-impregnated bearing
JP2016222964A (en) Sintered friction material for high speed railway vehicle and manufacturing method therefor
Nadia et al. Understanding the effects of addition of copper nanoparticles to Sn‐3.5 Ag solder
JP4563318B2 (en) Discharge surface treatment electrode, discharge surface treatment apparatus, and discharge surface treatment method
JP4641260B2 (en) Discharge surface treatment electrode and method for producing the same
CN1798871A (en) Electrode for electric discharge surface treatment, and method and apparatus for electric discharge surface treatment
JP3627088B2 (en) Discharge surface treatment method and object to be processed formed by the method
CN102497948A (en) Composition of particulate materials for forming self- lubricating products in sintered steel, product in self- lubricating sintered steel and process for obtaining self-lubricating products in sintered steel
JP5408349B2 (en) Discharge surface treatment electrode and discharge surface treatment film
JP4369398B2 (en) Cu-W alloy electrode material for electric discharge machining and method for producing the same
JP2005002375A (en) Electrode for discharging surface treatment and discharging surface treatment method
JP5092742B2 (en) Discharge surface treatment method and coating
JP6966728B1 (en) Carbon-based metal composite material and its manufacturing method
Selvan et al. Ti-SiC composite and TiC ceramic layer formation on Ti6Al4V surface by laser alloying of pre-placed SiC coating
JP4984015B1 (en) Discharge surface treatment electrode and method for producing discharge surface treatment electrode
JPWO2006057053A1 (en) Discharge surface treatment electrode, discharge surface treatment method, and discharge surface treatment apparatus
JP2024065278A (en) Cu-based powder for infiltration
JP2010037598A (en) Method for manufacturing member having wear resistant inner peripheral surface
JP2005213558A (en) Electrode for electrical discharge surface treatment and manufacturing method therefor
Das et al. MANUFACTURING PROCESS OF METAL POWDERS