JP3271844B2 - Surface treatment method for metallic materials by submerged discharge - Google Patents

Surface treatment method for metallic materials by submerged discharge

Info

Publication number
JP3271844B2
JP3271844B2 JP35422793A JP35422793A JP3271844B2 JP 3271844 B2 JP3271844 B2 JP 3271844B2 JP 35422793 A JP35422793 A JP 35422793A JP 35422793 A JP35422793 A JP 35422793A JP 3271844 B2 JP3271844 B2 JP 3271844B2
Authority
JP
Japan
Prior art keywords
metal
discharge
carbide
electrode
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35422793A
Other languages
Japanese (ja)
Other versions
JPH07197275A (en
Inventor
齋藤長男
毛利尚武
恒川好樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP35422793A priority Critical patent/JP3271844B2/en
Publication of JPH07197275A publication Critical patent/JPH07197275A/en
Application granted granted Critical
Publication of JP3271844B2 publication Critical patent/JP3271844B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は液中放電による金属材料
の処理方法に係り、より詳しくは、鉄鋼、アルミニウム
又はその合金、亜鉛又はその合金、銅又はその合金など
からなる金属材料において所定の形状を成形した表面上
に、WC、TiC等々のファインセラミックスを含む被
覆層を強固な接着力を持つように被覆する表面処理方法
に関するもので、金型、ガスタービンなどの耐摩耗性、
耐熱性等を向上させるのに適している。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating a metal material by electric discharge in a liquid, and more particularly, to a method for treating a metal material made of steel, aluminum or its alloy, zinc or its alloy, copper or its alloy, or the like. It relates to a surface treatment method in which a coating layer containing fine ceramics such as WC, TiC, etc. is coated on a surface having a shape so as to have a strong adhesive force.
Suitable for improving heat resistance and the like.

【0002】[0002]

【従来の技術】従来、ファインセラミックス等の母材へ
の被覆には、溶射、或いはPVD、CVDなどの物理的
又は化学的表面処理が行われており、またメッキも行わ
れていた。
2. Description of the Related Art Conventionally, coating of a base material such as fine ceramics has been performed by thermal spraying, physical or chemical surface treatment such as PVD or CVD, and plating has also been performed.

【0003】しかし、溶射技術は、成膜速度が高く、厚
膜が容易に得られるが、密着性が弱く、また膜が多孔質
であって、硬度等も被覆素材の本来の硬度まで到着しな
い欠点があった。PVD、CVDは、密着性は良い場合
が多いが、1000℃程度の高い温度まで上昇させて被
覆するので、素材の寸法変化が著しい。更に10μm以
下の薄膜しか生成できない欠点があった。また、メッキ
は、厚膜は不能である上に密着力が弱いという欠点があ
った。
[0003] However, the thermal spraying technique has a high film-forming speed and can easily obtain a thick film, but has poor adhesion, and the film is porous, and the hardness does not reach the original hardness of the coating material. There were drawbacks. PVD and CVD have good adhesion in many cases, but since the coating is performed by raising the temperature to a high temperature of about 1000 ° C., the dimensional change of the material is remarkable. Further, there is a disadvantage that only a thin film of 10 μm or less can be formed. In addition, plating has a drawback that a thick film cannot be formed and adhesion is weak.

【0004】更に、これらの技術では、溶射は減圧プラ
ズマのために真空装置を要し、PVD、CVDも真空槽
中で作業が行われ、メッキも電解槽中の作業であり、作
業性が悪く自動化も困難である。
Further, in these techniques, thermal spraying requires a vacuum device for low-pressure plasma, and PVD and CVD are performed in a vacuum chamber, and plating is also performed in an electrolytic chamber, resulting in poor workability. Automation is also difficult.

【0005】そこで、本発明者等は、これらの溶射、P
VD、CVDなどの欠点を解消する技術として、先に特
願平3−329499号にて放電被覆法を提案した。こ
の方法は、金属材料からなる母材表面に金属又は非金属
材料を被覆した後、液中、気体中又は真空中でパルス放
電加工によって堆積物を微小領域ごとに再溶融させるこ
とにより、母材と被覆材料を拡散、混合し、母材表面に
緻密な被覆層を形成する方法である。
Therefore, the present inventors have developed these thermal sprays, P
As a technique for solving the disadvantages such as VD and CVD, a discharge coating method was previously proposed in Japanese Patent Application No. 3-329499. In this method, after coating a metal or non-metal material on the surface of a base material made of a metal material, the deposit is remelted for each minute region by pulsed discharge machining in a liquid, a gas, or a vacuum. And a coating material are diffused and mixed to form a dense coating layer on the surface of the base material.

【0006】この放電被覆法は、上記の従来技術に比べ
ると、被覆層の密着性が著しく高く、10〜100μm
程度の厚膜も可能であり、寸法精度や形状精度は放電加
工の加工精度と同等であり、作業性が著しく良く、自動
化も容易である。上記の従来技術と放電被覆法の比較を
図1、表1に示す。
In this discharge coating method, the adhesion of the coating layer is extremely high,
A thick film of about the same thickness is possible, the dimensional accuracy and the shape accuracy are equivalent to the machining accuracy of electric discharge machining, workability is remarkably good, and automation is easy. FIG. 1 and Table 1 show a comparison between the above conventional technique and the discharge coating method.

【0007】[0007]

【表1】 [Table 1]

【0008】[0008]

【発明が解決しようとする課題】しかし、前記の放電被
覆法は、従来の溶射法やPVD、CVD、メッキに比べ
て非常に優れた表面処理技術ではあるが、一方、事前の
被覆法(1次処理)として液中での放電析出法(消耗し易
い電極使用)を行った場合、放電によって加工液の鉱物
油等が分解して生じる炭素分が、そのまま被覆層の中に
炭素単位として残留する場合がある。勿論、2次処理
(パルス放電加工による再溶融)によって被覆層成分中に
大部分固溶するが、それでもなお、微細な塊として被覆
層中に存在する場合があることが判明した。
However, the above-mentioned discharge coating method is a surface treatment technique which is much superior to the conventional thermal spraying method, PVD, CVD, and plating. When the discharge deposition method (using easily consumable electrodes) in the liquid is performed as the next treatment), the carbon content generated by the decomposition of the mineral oil etc. of the machining liquid by the discharge remains as a carbon unit in the coating layer as it is. May be. Of course, secondary processing
(Re-melting by pulsed electric discharge machining) caused most of the solid solution to form a solid solution in the coating layer components. However, it was found that there was still a case where fine solids were present in the coating layer.

【0009】本発明は、上記の放電被覆法の欠点を解消
して、放電によって生じる分解炭素が被覆層中に塊とし
て残留するのを減少させ、より高品位の被覆層を金属材
料表面に形成する金属材料の表面処理方法を提供するこ
とを目的とするものである。
The present invention solves the above-mentioned disadvantages of the discharge coating method, reduces the amount of decomposed carbon generated by electric discharge as a lump in the coating layer, and forms a higher quality coating layer on the surface of the metal material. It is an object of the present invention to provide a method for surface treatment of a metallic material.

【0010】[0010]

【課題を解決するための手段】前記課題を解決するため
の手段として、本発明は、導電性のファインセラミック
スに、炭化物を作り易い金属又は半金属(非金属)と、結
合剤として、被処理金属又は前記ファインセラミックス
を融合し易い金属とを、それぞれ粉末状態で混合し、圧
縮成形を行って所望の形状としたものを放電電極として
用い、加工液として放電の発生により炭素を分解生成す
る加工液を用いて、加工液中において被処理金属を一方
の電極として放電加工を行うことにより、前記の炭化物
を作り易い金属又は半金属の一部を炭化物として反応生
成せしめ、被処理金属表面に導電性ファインセラミック
スと炭化物と、一部炭化物にならなかった金属と結合金
属とからなる表面層を形成することを特徴とする液中放
電による金属材料の表面処理方法を要旨としている。
As a means for solving the above-mentioned problems, the present invention relates to a method for producing a conductive fine ceramic by adding a metal or semi-metal (non-metal) which is easy to form a carbide and a binder as a binder. A process in which a metal or a metal which is easy to fuse the fine ceramics is mixed in a powder state, and compression-molded into a desired shape is used as a discharge electrode. By performing electrical discharge machining with the metal to be treated as one electrode in a machining fluid using a liquid, a part of the metal or metalloid which is easy to form the carbide is reacted and produced as a carbide, and the surface of the metal to be treated is electrically conductive. Material by discharge in liquid characterized by forming a surface layer composed of conductive fine ceramics, carbide, metal not converted to carbide, and bonding metal The surface treatment method is the gist.

【0011】また、他の本発明は、非導電性のファイン
セラミックスに、炭化物を作り易い金属又は半金属と、
結合材として、被処理金属と融合し易い金属とを、それ
ぞれ粉末状態で混合し、圧縮成形を行って所望の形状と
したものを放電電極として用い、加工液として放電の発
生により炭素を分解生成する加工液を用い、加工液中に
おいて被処理金属の一方を電極として放電加工を行うこ
とにより、前記の炭化物を作り易い金属又は半金属の一
部を炭化物として反応生成せしめ、被処理金属表面に非
導電性ファインセラミックスと炭化物と、一部炭化物に
ならなかった金属と結合材金属とからなる表面層を形成
することを特徴とする液中放電による金属材料の表面処
理方法を要旨としている。
Another object of the present invention is to provide a non-conductive fine ceramic with a metal or semi-metal which easily forms carbide.
As a binder, a metal to be treated and a metal that is easy to fuse are mixed in powder form, and compression-molded to form a desired shape is used as a discharge electrode. Using a machining fluid to perform, by performing electrical discharge machining using one of the metal to be treated in the machining fluid as an electrode, a part of the metal or metalloid that easily forms the carbide is reacted as a carbide, and the surface of the metal to be treated is formed. The gist of the invention is to provide a method for surface treatment of a metal material by in-liquid discharge, which comprises forming a surface layer composed of a non-conductive fine ceramic, a carbide, a metal that has not partially turned into a carbide, and a binder metal.

【0012】更に、他の本発明は、上記の方法により表
面層を形成した後、消耗しにくい電極を一方の電極とし
て液中若しくは気中にて放電加工を行い、表面層を再溶
融・凝固させることを特徴としている。
Further, in another aspect of the present invention, after a surface layer is formed by the above-described method, electric discharge machining is performed in liquid or air using an electrode which is not easily consumed as one electrode, and the surface layer is re-melted and solidified. It is characterized by having

【0013】[0013]

【作用】以下に本発明を更に詳細に説明する。The present invention will be described below in more detail.

【0014】本発明は、鉄鋼などの鉄材料、アルミニウ
ム、亜鉛、銅など又はそれらの合金の非鉄材料の表面
に、他の金属やファインセラミックスなどを含む放電電
極を用い、液中放電により、被覆材の溶融、拡散を行っ
て強固で緻密な表面処理層を形成することにより、金属
材料の表面コーティングを行う方法である。つまり、放
電エネルギーを利用して表面に形成した被覆層を再溶融
し、母材中に拡散させて、緻密で密着性の高い被覆層を
形成するものである。
The present invention uses a discharge electrode containing another metal or fine ceramics on the surface of a non-ferrous material such as iron, steel, aluminum, zinc, copper, or an alloy thereof, and performs coating by discharging in a liquid. This is a method of performing surface coating of a metal material by melting and diffusing a material to form a strong and dense surface treatment layer. In other words, the coating layer formed on the surface is re-melted using the discharge energy and diffused into the base material to form a dense and highly adherent coating layer.

【0015】これまで、溶射法などによって形成した被
覆層にレーザ光や電子ビームを照射し、表面を溶融・拡
散させることにより、被覆層の緻密性や密着性を向上さ
せることが試みられている。しかし、表面にビームの条
痕が残る問題や、任意の形状の物体への適用が困難であ
るという問題があり、実用化に至らなかった。
Heretofore, attempts have been made to improve the denseness and adhesion of the coating layer by irradiating the coating layer formed by thermal spraying or the like with a laser beam or an electron beam to melt and diffuse the surface. . However, there is a problem that a streak of a beam remains on the surface and a problem that it is difficult to apply the method to an object having an arbitrary shape.

【0016】本発明者等は、従来の加工技術として利用
されていたパルス放電に着目し、放電のエネルギーによ
り被覆材の再溶融・拡散を促し、緻密で強固な表面コー
ティングを行うことが可能であることを見出したもので
ある。
The present inventors have paid attention to pulse discharge which has been used as a conventional processing technique, promote remelting and diffusion of the coating material by the energy of the discharge, and can perform a dense and strong surface coating. I found something.

【0017】本発明による表面処理工程は以下の機構に
よるものである。 圧粉体電極による放電コーティング法により、母材の
表面に金属、炭化物、窒化物などの被覆層を形成する。 次いで、液中又は気中放電により被覆層の再溶融・拡
散を行う。 必要に応じて、その後、消耗しにくい電極を一方の電
極として液中放電加工を行い、所期の寸法及び仕上面粗
さに仕上げる。
The surface treatment step according to the present invention is based on the following mechanism. A coating layer of metal, carbide, nitride or the like is formed on the surface of the base material by a discharge coating method using a green compact electrode. Next, the coating layer is re-melted and diffused by liquid or air discharge. If necessary, thereafter, submerged electrical discharge machining is performed using the electrode that is not easily consumed as one of the electrodes to finish the electrode to the desired dimensions and finished surface roughness.

【0018】最初の工程で表面に被覆層を形成するに
は、まず、電極として、形成する被覆層の材料の粉末を
圧縮成形したものや焼結体を用い、母材との間で放電を
起こさせる。すると、放電のエネルギーにより電極側の
材料が溶融・飛散し、母材表面に堆積する。次に、と
して、で被覆層が形成された母材を一方の電極とし
て、銅などの非消耗性電極を用いて、灯油などの液中若
しくは気中でパルス放電を起こさせる。パルス放電のエ
ネルギーにより、被覆層表面近傍の微小な領域が瞬間的
に高温・高圧になるため、被覆層が再溶融し、母材中に
拡散する。この結果、緻密で密着性の高い表面被覆層が
形成される。気中放電の意味は再溶融の目的ならば、気
中の方が液中よりも冷却されにくいために、有効な場合
があるからである。必要に応じて、その後、工程によ
り、電極を銅などの消耗しにくい材料で再度液中放電を
行い、所期の寸法、厚み、仕上粗さに仕上げる。これは
気中放電よりも衝撃力が強いために、鍛造のような効果
を生じ強固な被覆層を形成することになる。
In order to form a coating layer on the surface in the first step, first, a material obtained by compression-molding a powder of the material of the coating layer to be formed or a sintered body is used as an electrode. Wake up. Then, the material on the electrode side is melted and scattered by the energy of the discharge, and is deposited on the surface of the base material. Next, pulse discharge is caused in a liquid such as kerosene or in air using a non-consumable electrode such as copper, using the base material on which the coating layer is formed as one electrode. The minute area near the surface of the coating layer instantaneously becomes high temperature and high pressure due to the energy of the pulse discharge, so that the coating layer remelts and diffuses into the base material. As a result, a dense and highly adherent surface coating layer is formed. The meaning of aerial discharge is effective for the purpose of re-melting because air is harder to cool than liquid. If necessary, after that, in the process, the electrode is again subjected to submerged discharge with a material such as copper which is not easily consumed, so that the electrode is finished to the desired dimensions, thickness and finish roughness. Since the impact force is stronger than the air discharge, an effect such as forging is produced and a strong coating layer is formed.

【0019】但し、従来の放電被覆法では、WCにCo
を単に混合したように、炭化物に結合材を加えたのみで
あるから、加工油の分解炭素を炭化物として吸収結合す
るには不充分であったことに鑑みて、本発明では、放電
電極として用いる圧粉成形体に、その他の成分として炭
化物を作り易い金属を適当量加えて混合して圧粉体とす
るものである。これにより、添加金属は、放電時に加工
油の分解によって生ずる炭素と化合し、炭化物となるた
め、塊としての炭素の介在は殆ど発生しなくなる。更に
工程を加えると、炭素が更に存在しない被覆層とする
ことができる。
However, according to the conventional discharge coating method, Co is set to Co.
In the present invention, it is used as a discharge electrode in view of the fact that it was not sufficient to absorb and bond the decomposed carbon of the processing oil as a carbide, since the binder was only added to the carbide, just as a mixture of An appropriate amount of a metal that easily forms carbide is added to the green compact as another component and mixed to obtain a green compact. As a result, the added metal is combined with carbon generated by the decomposition of the processing oil at the time of electric discharge and becomes a carbide, so that the inclusion of carbon as a lump hardly occurs. If a further step is added, a coating layer in which no further carbon is present can be obtained.

【0020】以下に本発明における製造条件の限定理由
を説明する。
The reasons for limiting the manufacturing conditions in the present invention will be described below.

【0021】放電電極:放電電極としては、導電性又は
非導電性のファインセラミックスに、炭化物を作り易い
金属又は半金属(非金属)と、結合剤として、被処理金属
又は前記ファインセラミックスを融合し易い金属とを、
それぞれ粉末状態で混合し、圧縮成形を行って所望の形
状としたものを用いる。
Discharge electrode: The discharge electrode is formed by fusing a metal or semi-metal (non-metal) that easily forms carbide with a conductive or non-conductive fine ceramic and a metal to be treated or the fine ceramic as a binder. Easy metal and
Each of them is mixed in a powder state and subjected to compression molding to obtain a desired shape.

【0022】導電性ファインセラミックスとしては、例
えば、WC、TiC、TaC、ZrC、VC、TiB2、Ti
Nの1種又は2種以上が挙げられる。また、非導電性フ
ァインセラミックスとしては、例えば、Al23、Si3
4、ZrO2の1種又は2種以上が挙げられる。
Examples of conductive fine ceramics include WC, TiC, TaC, ZrC, VC, TiB 2 , and Ti.
One or more kinds of N are mentioned. Non-conductive fine ceramics include, for example, Al 2 O 3 , Si 3
One or more of N 4 and ZrO 2 are mentioned.

【0023】炭化物を作り易い金属としては、例えば、
Ti、Nb、W、V、Zr、Ta、Cr、Mo、Mnの1種又
は2種以上が挙げられる。また、炭化物を作り易い半金
属(非金属)としてはBが挙げられる。特にNbは被覆表
面層の靭性を向上させるために有効な成分であり、1〜
10%添加するのが推奨される。他の成分も概ね、この
添加量を目安として添加される。
Examples of the metal which easily forms carbide include, for example,
One, two or more of Ti, Nb, W, V, Zr, Ta, Cr, Mo, and Mn. B is an example of a semimetal (nonmetal) that easily forms carbide. In particular, Nb is an effective component for improving the toughness of the coating surface layer.
It is recommended to add 10%. Other components are generally added using this amount as a guide.

【0024】結合剤としては、被処理金属又は前記ファ
インセラミックスを融合し易い金属であればよく、被処
理金属の材質によって適当なものを選定する。例えば、
被処理金属が鉄鋼の場合はFe、Co又はNiから、アル
ミニウム材の場合はAl、Zn又はCuから、亜鉛材の場
合はCu、Al又はSnから選定する。
The binder may be a metal to be treated or a metal which is easy to fuse the fine ceramics, and an appropriate one is selected according to the material of the metal to be treated. For example,
When the metal to be treated is iron or steel, it is selected from Fe, Co or Ni, when it is an aluminum material it is selected from Al, Zn or Cu, and when it is a zinc material it is selected from Cu, Al or Sn.

【0025】放電加工液:放電加工に使用する加工液と
しては、放電の発生により炭素を分解する液を用いる。
例えば、石油、油脂等である。油は炭化水素(CnHm)で
あるから、熱分解すればC、Hと中間帯のCn_x、Hm_y
を生ずる。炭化し易い金属が放電によって高温状態で加
工間隙を通して被処理金属表面に射突する極短時間にお
いて、分解した炭素と化学反応を起こす。高温度のため
著しく活性化されているので、この金属の数10%が炭
化物となる。
Electric discharge machining fluid: As a machining fluid used for electric discharge machining, a liquid which decomposes carbon by generation of electric discharge is used.
For example, petroleum, fats and oils and the like. Since oil is hydrocarbon (CnHm), if it is thermally decomposed, C, H and Cn_x, Hm_y in the middle zone
Is generated. In a very short time in which the easily carbonized metal collides with the surface of the metal to be processed through the machining gap in a high temperature state by electric discharge, a chemical reaction occurs with the decomposed carbon. Because of the high temperature, it is significantly activated, so that several tens of percent of this metal becomes carbide.

【0026】M1+M2+M3→M1+M2C+M2+M3 ここで、M1:ファインセラミックス M2:炭化物を作り易い金属又は半金属 M3:結合材金属 M2C:炭化物を作り易い金属又は半金属の炭化物M 1 + M 2 + M 3 → M 1 + M 2 C + M 2 + M 3 Here, M 1 : Fine ceramics M 2 : Metal or semi-metal easy to form carbide M 3 : Binder metal M 2 C: Carbide Easy metal or metalloid carbide

【0027】他の放電加工条件:液中放電の他の条件
は、先に提案した放電被覆法と同様でよく、パルス放電
加工が望ましい。例えば、放電は、1秒間に数百回から
数万回程度で発生させると、加工面は小さい微視的な放
電痕の累積した表面であり、放電痕電流密度は微小な面
積であるが、数万A/cm2と高く、高温高圧を数10μs
〜1000μs程度の短時間で生じる。放電点の表面温
度は、その材料の沸点温度となり、その点の圧力は数1
000kgf/cm2となり、溶解した一部分は飛散するもの
があるが、残った部分は再溶融し、母材に拡散する。放
電時間が短時間のため、放電点が直ちに冷却され、母材
の平均温度は上昇することはない。
Other electric discharge machining conditions: Other conditions of electric discharge in liquid may be the same as those of the previously proposed electric discharge coating method, and pulse electric discharge machining is desirable. For example, when a discharge is generated at about several hundreds to several tens of thousands of times per second, the processed surface is a surface on which small microscopic discharge marks are accumulated, and the discharge mark current density is a small area. High tens of thousands A / cm 2 , high temperature and high pressure several tens μs
It occurs in a short time of about 1000 μs. The surface temperature at the discharge point is the boiling point temperature of the material, and the pressure at that point is
000 kgf / cm 2 , and some of the melted part is scattered, but the remaining part is re-melted and diffused into the base material. Since the discharge time is short, the discharge point is immediately cooled, and the average temperature of the base material does not increase.

【0028】パルス放電加工の好ましい条件は、電源電
圧:60〜100V、パルス放電電流値(Ip):1〜1
00A、パルス幅(τp):5〜2000μs、休止時間
(τr):5〜2000μsである。一般的に、パルス放電
電流値Ipが小さい時、例えば、Ip=3Aなどではτp
=16μs、Ipが大きい時、Ip=50Aなどではτp=
2000τsのように、Ipの小さい時はτpも短かく、
Ipの大きい時はτpを長くとる。
The preferred conditions of the pulse discharge machining are as follows: power supply voltage: 60 to 100 V, pulse discharge current value (Ip): 1 to 1
00A, pulse width (τp): 5-2000 μs, pause time
(τr): 5 to 2000 μs. Generally, when the pulse discharge current value Ip is small, for example, when Ip = 3 A, τp
= 16 μs, when Ip is large, τp =
When Ip is small, τp is short, like 2000τs,
When Ip is large, τp is lengthened.

【0029】なお、工程にて消耗しにくい電極を一方
の電極として液中放電加工を行う場合は、電極として銅
などの消耗しにくい材質のものを用いるだけで、他の放
電加工条件は前記の液中放電条件と殆ど同じでよい。
しかし、の工程は、基本的に被覆層厚み及び仕上面粗
さを所期の値に加工するのが目的なので、加工は必ず液
中で加工することになる。また電気条件も所期の仕上面
粗さにより定まるものもあることに関し留意する。
When performing submerged electrical discharge machining using an electrode that is not easily consumed in the process as one electrode, only an electrode made of a material that is not easily consumed such as copper is used as the electrode. It may be almost the same as the in-liquid discharge condition.
However, since the purpose of this step is to basically process the thickness of the coating layer and the roughness of the finished surface to desired values, the processing is necessarily performed in a liquid. Also note that some electrical conditions are determined by the expected roughness of the finished surface.

【0030】本発明の実施に用いられる装置の一例を図
2に示す。放電の発生により炭素を分解生成する加工液
を収容した加工槽の中に、所定の形状にされた表面を持
った被処理金属(母材)を置き、一方、粉末を圧縮成形し
た放電電極を数10〜100μm程度の微小間隙で母材
上方に保持する。母材及び放電電極はそれぞれ移動機構
によって上下左右に移動可能となっている。放電電極を
マイナス極として放電加工が行われる。この放電電極を
消耗しにくい電極に交換するために電極交換機構が設け
られている。
FIG. 2 shows an example of an apparatus used for carrying out the present invention. A metal to be treated (base material) having a surface having a predetermined shape is placed in a processing tank containing a processing fluid that decomposes and generates carbon by generation of electric discharge, and a discharge electrode obtained by compression-molding powder is used. It is held above the base material with a small gap of about several tens to 100 μm. The base material and the discharge electrode can be moved up, down, left, and right by a moving mechanism. Electric discharge machining is performed using the discharge electrode as a negative electrode. An electrode replacement mechanism is provided to replace the discharge electrode with an electrode that is less likely to be consumed.

【0031】[0031]

【実施例】次に本発明の実施例を示す。Next, examples of the present invention will be described.

【0032】[0032]

【試験例1】WC粉(平均粒径3μm)と純鉄からなるFe
粉(平均粒径9.8μm)を1:1の重量比に混合し、圧縮
圧力4ton/cm2で圧縮したものを粉体電極とし、一方、
被処理金属を炭素鋼として、放電加工油(灯油)の中で放
電処理(1次加工)を行った。この時の放電条件は、放電
電流Ip=20A、放電電流パルス幅τp=16μsと
し、粉体電極をマイナス極とした。
[Test Example 1] Fe composed of WC powder (average particle size: 3 μm) and pure iron
Powder (average particle size: 9.8 μm) was mixed at a weight ratio of 1: 1 and compressed at a compression pressure of 4 ton / cm 2 to obtain a powder electrode.
Discharge treatment (primary machining) was performed in electric discharge machining oil (kerosene) using carbon steel as the metal to be treated. The discharge conditions at this time were a discharge current Ip = 20 A, a discharge current pulse width τp = 16 μs, and a negative electrode for the powder electrode.

【0033】この1次加工の後、粉体電極を非消耗性電
極(銅)に換えて、同じ放電加工液中で放電処理(2次処
理)を行った。この時の放電条件は、放電電流Ip=10
A、τp=1024μsとした。
After this primary machining, the powder electrode was replaced with a non-consumable electrode (copper), and a discharge treatment (secondary treatment) was performed in the same electric discharge machining liquid. The discharge condition at this time is as follows: discharge current Ip = 10
A, τp = 1024 μs.

【0034】図3に、1次加工及び2次加工を行った被
覆層のEPMAによる面分析結果の断面を示す。(1)
は2次電子像で、(2)はW、(3)はC、(4)はF
eの面分析結果であり、(1)の2次電子像の中に小孔
が見られ、これは(3)のCの面分析結果からカーボン
の塊であることが判る。上記の1次加工条件に示すよう
に、純鉄のFe粉を混入しているにも拘らずカーボンの
塊が存在している。鉄鋼は含有炭素が多くなると黒鉛を
析出して黒鉛鋳鉄となるように、炭化物を作りにくい性
質がある。勿論、一部はセメンタイトとなるが、それで
もなお、炭素を塊として残している。
FIG. 3 shows a cross-section of the surface analysis result by EPMA of the coating layer subjected to the primary processing and the secondary processing. (1)
Is a secondary electron image, (2) is W, (3) is C, and (4) is F
This is the surface analysis result of e, and small holes are seen in the secondary electron image of (1), and it is understood from the surface analysis result of C of (3) that it is a lump of carbon. As shown in the above primary processing conditions, there is a lump of carbon in spite of mixing Fe powder of pure iron. Iron and steel have the property of not easily forming carbides, such that when the content of carbon increases, graphite precipitates and becomes graphite cast iron. Of course, some will be cementite, but still leave the carbon in clumps.

【0035】炭素塊が残留する理由は以下のように考え
られる。純鉄のFe粉と同様、Coも炭化物を作りにく
い。したがって、WC+Coの混合物の圧粉体において
も同様である。一般的に炭化物を作り易い傾向を示すと
次のようになり、左側の元素ほど炭化物を作り易い。特
にFeよりも右側に有るNi、Co、Siは固有の炭化物を
形成せず、むしろ黒鉛化を促進する。 Nb>Ti>V>W>Mo>Cr>Mn>Fe>Ni>Co>S
i
The reason why the carbon lump remains is considered as follows. Like pure iron Fe powder, Co is also difficult to form carbides. Therefore, the same applies to the green compact of the mixture of WC + Co. Generally, the tendency to form carbides is as follows, with the elements on the left being more likely to form carbides. In particular, Ni, Co, and Si located on the right side of Fe do not form an intrinsic carbide, but rather promote graphitization. Nb>Ti>V>W>Mo>Cr>Mn>Fe>Ni>Co> S
i

【0036】炭化物を作り易い元素を周期表で示すと、
以下のとおり。 IVB族:Ti、Zr、Hf VB族:V、Nb、Ta、 VIB族:Cr、Mo、W VIIB族:Mn、Tc、Re 実用的には、このうちHf、Tc、Reを除いたものが入
手し易い材料である。
The elements that easily form carbides are shown in the periodic table as follows:
as below. IVB group: Ti, Zr, Hf VB group: V, Nb, Ta, VIB group: Cr, Mo, W VIIB group: Mn, Tc, Re Practically, those excluding Hf, Tc, Re It is an easily available material.

【0037】[0037]

【試験例2】そこで、試験例1の結果に基づいて、炭化
物を作り易い元素を粉体電極の構成成分要素として加
え、この粉体電極を用いて液中放電を行った。すなわ
ち、炭化物を作り易い元素としてTiを選び、Tiが炭化
したかどうかを明確に示すため、炭化することの可能性
のないAlも併用し、TiとAlからなる圧粉体電極を作
り、被処理金属(母材)もAl材(アルミダイカスト材AD
C12)とした。その際、鉱物油分解による炭素の化合
体がTiの炭化物以外には存在しないようにし、分析が
明確になるように配慮した実験を行った。また、TiC
の表面における存在割合を定量的に分析できるようにし
た。この時のTiとAlの混合比、放電加工条件等は次の
とおりである。
Test Example 2 Therefore, based on the results of Test Example 1, an element which easily forms a carbide was added as a constituent element of a powder electrode, and submerged discharge was performed using the powder electrode. That is, Ti is selected as an element that easily forms carbide, and in order to clearly show whether or not Ti has been carbonized, Al that is unlikely to be carbonized is also used, and a green compact electrode composed of Ti and Al is formed. The treated metal (base material) is also Al material (aluminum die-cast material AD)
C12). At that time, an experiment was conducted in which carbon compounds due to mineral oil cracking were not present except for Ti carbides, and consideration was given to clarify the analysis. Also, TiC
It was made possible to quantitatively analyze the ratio of abundance on the surface. At this time, the mixing ratio of Ti and Al, the electric discharge machining conditions, and the like are as follows.

【0038】電極材料: Ti:Al=36:64(重量%) 但し、Tiの純度を99.5%、Alの純度を99.7%と
し、Ti及びAlとも粉末粒度44μm以下で、成形圧力
は441MPaとした。 加工油:放電加工用灯油 放電加工条件:放電電流Ip=20A、 放電電流パルス幅τp=512μs 有効パルス幅Rp(デューティファクター)=33% ここで、休止時間をτrとすると、 Rp=D={τp/(τp+τr)}×100(%)
Electrode material: Ti: Al = 36: 64 (% by weight) However, the purity of Ti is 99.5%, the purity of Al is 99.7%, the powder particle size of both Ti and Al is 44 μm or less, and the molding pressure is Was set to 441 MPa. Machining oil: Kerosene for electric discharge machining Electric discharge machining conditions: Discharge current Ip = 20 A, discharge current pulse width τp = 512 μs Effective pulse width Rp (duty factor) = 33% Here, if the downtime is τr, Rp = D = { τp / (τp + τr)} × 100 (%)

【0039】図4は得られた母材表面被覆層のX線回折
図形であり、母材のAl材の表面に生成されたものはTi
CとTiAl3であることがわかる。
FIG. 4 is an X-ray diffraction pattern of the obtained base material surface coating layer, wherein Ti formed on the surface of the base material Al is Ti.
It can be seen that the C and TiAl 3.

【0040】更に、放電加工条件のうち、放電電流パル
ス幅τpを変えて被覆層の厚み及びTiCの体積比を調べ
た結果を図5に示す。また、加工時間twを変えて被覆
層の厚み及びTiCの体積比を調べた結果を図6に示
す。これらの試験結果より、被覆層中のTiCの体積割
合は50%以上で、70%程度にも達していることがわ
かる。
FIG. 5 shows the results of examining the thickness of the coating layer and the volume ratio of TiC by changing the discharge current pulse width τp among the electric discharge machining conditions. FIG. 6 shows the results of examining the thickness of the coating layer and the volume ratio of TiC while changing the processing time tw. From these test results, it is understood that the volume ratio of TiC in the coating layer is 50% or more and reaches about 70%.

【0041】このように、大部分のTiがTiCになって
いることは、被覆層組織中の炭素が充分炭化物となり、
遊離の炭素を生じさせない強力な作用を有していること
を示している。かくして生じた炭化物は、硬度も充分に
高く、マイクロビッカース硬度が500〜1000以上
を示す。既に実用化されているバイト材料においても、
WCとCoの他にTiCを加えると高温耐摩耗性の優れた
特性を示すと同様に、この被覆層も優れた特性を有して
いる。
As described above, the fact that most of Ti is TiC means that the carbon in the coating layer structure is sufficiently carbided,
This indicates that the compound has a strong action that does not generate free carbon. The carbide thus produced has a sufficiently high hardness and a micro Vickers hardness of 500 to 1,000 or more. Even with bite materials already in practical use,
This coating layer also has excellent properties, as well as excellent properties of high-temperature wear resistance when TiC is added in addition to WC and Co.

【0042】[0042]

【試験例3】WCとCoとTiの各粉末をそれぞれWC:
Co:Ti=60:20:20(重量%)の割合で混合した
圧粉体電極を作り、これを放電電極とし、加工油(灯油)
中にて放電加工(1次加工)を行った。被処理金属には炭
素鋼(S55C)を用いた。この時の放電加工条件は、放
電電流Ip=20A、放電電流パルス幅τp=16μsと
し、粉体電極をマイナス極とした。
Test Example 3 Each powder of WC, Co and Ti was used for WC:
A green compact electrode mixed at a ratio of Co: Ti = 60: 20: 20 (% by weight) was prepared, and this was used as a discharge electrode, and processing oil (kerosene) was used.
Electric discharge machining (primary machining) was performed inside. Carbon steel (S55C) was used as the metal to be treated. The electric discharge machining conditions at this time were a discharge current Ip = 20 A, a discharge current pulse width τp = 16 μs, and the powder electrode was a negative pole.

【0043】この1次加工の後、粉体電極を非消耗性電
極(銅)に換えて、同じ放電加工液中で放電処理(2次処
理)を行った。この時の放電条件は、放電電流Ip=10
A、τp=1024μsとした。
After this primary machining, the powder electrode was replaced with a non-consumable electrode (copper), and a discharge treatment (secondary treatment) was performed in the same electric discharge machining fluid. The discharge condition at this time is as follows: discharge current Ip = 10
A, τp = 1024 μs.

【0044】1次及び2次加工で得られた母材表面被覆
層のX線回折結果により、試験例2と同様、TiCが生
成されていた。また、断面のSEM像(電子顕微鏡写真)
では空洞が見られず、残留炭素が存在していないことが
確認された。この被覆層は、Tiを添加せずにWC:Co
=80:20の割合で形成した被覆層よりも、切削工具
としての耐摩耗性が10倍程度も高い結果が得られた。
この時の切削試験条件は、相手材として炭素鋼(S55
C)の丸棒を用い、切り込み0.5mm、送り0.1mm/mi
n、切削速度100m/minとした。
According to the result of X-ray diffraction of the base material surface coating layer obtained by the primary and secondary processing, TiC was generated as in Test Example 2. Also, SEM image of the cross section (electron micrograph)
No cavity was observed, and it was confirmed that no residual carbon was present. This coating layer is made of WC: Co without adding Ti.
= Abrasion resistance as a cutting tool was about 10 times higher than the coating layer formed at a ratio of 80:20.
The cutting test conditions at this time were as follows: carbon steel (S55
Using the round bar of C), cut 0.5mm, feed 0.1mm / mi
n, the cutting speed was 100 m / min.

【0045】[0045]

【発明の効果】以上詳述したように、本発明によれば、
放電によって生じる分解炭素が被覆層中に塊として残留
するのを減少させることができるので、より高品位の被
覆層を金属材料表面に形成することができる。金型、ガ
スタービンなどの耐摩耗性、耐熱性等を向上させるのに
適している。
As described in detail above, according to the present invention,
Since the decomposition carbon generated by the discharge can be reduced from remaining as a lump in the coating layer, a higher-quality coating layer can be formed on the surface of the metal material. It is suitable for improving the wear resistance, heat resistance, etc. of molds, gas turbines, and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】放電被覆法と他の被覆法の膜厚及び密着力を比
較して示す図である。
FIG. 1 is a diagram showing a comparison of film thickness and adhesion between a discharge coating method and another coating method.

【図2】本発明の実施に用いる装置の一例を説明する図
である。
FIG. 2 is a diagram illustrating an example of an apparatus used for carrying out the present invention.

【図3】試験例1で得られた被覆層のEPMAによる面
分析結果の断面(粒子構造)を示す写真で、(1)は2次
電子像で、(2)はW、(3)はC、(4)はFeの面
分析結果である。
3 is a photograph showing a cross section (particle structure) of a surface analysis result of the coating layer obtained in Test Example 1 by EPMA, (1) is a secondary electron image, (2) is W, and (3) is C and (4) are the results of the surface analysis of Fe.

【図4】試験例2で得られたアルミダイカスト材表面の
X線回折図形である。
4 is an X-ray diffraction pattern of the surface of an aluminum die-cast material obtained in Test Example 2. FIG.

【図5】試験例2でパルス幅の変化と被覆層の平均厚み
及びTiCの体積比の関係を示す図である。
FIG. 5 is a diagram showing a relationship between a change in pulse width, an average thickness of a coating layer, and a volume ratio of TiC in Test Example 2.

【図6】試験例2で加工時間の変化と被覆層の平均厚み
及びTiCの体積比の関係を示す図である。
FIG. 6 is a diagram showing a relationship between a change in processing time and an average thickness of a coating layer and a volume ratio of TiC in Test Example 2.

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 導電性のファインセラミックスに、炭化
物を作り易い金属又は半金属(非金属)と、結合剤とし
て、被処理金属又は前記ファインセラミックスを融合し
易い金属とを、それぞれ粉末状態で混合し、圧縮成形を
行って所望の形状としたものを放電電極として用い、加
工液として放電の発生により炭素を分解生成する加工液
を用いて、加工液中において被処理金属を一方の電極と
して放電加工を行うことにより、前記の炭化物を作り易
い金属又は半金属の一部を炭化物として反応生成せし
め、被処理金属表面に導電性ファインセラミックスと炭
化物と、一部炭化物にならなかった金属と結合金属とか
らなる表面層を形成することを特徴とする液中放電によ
る金属材料の表面処理方法。
1. A metal or semi-metal (non-metal) that easily forms a carbide and a metal to be treated or a metal that easily fuses the fine ceramic as a binder are mixed in a powder state with conductive fine ceramics. Then, a material having a desired shape by compression molding is used as a discharge electrode, a working fluid that decomposes and generates carbon by generating a discharge as a working fluid, and a metal to be treated is discharged as one electrode in the working fluid. By performing the processing, a part of the metal or metalloid that easily forms the above-mentioned carbide is reacted and generated as a carbide, and on the surface of the metal to be treated, the conductive fine ceramics and the carbide, and the metal that did not partially become the carbide and the bonding metal A surface treatment method for a metal material by discharge in a liquid, characterized by forming a surface layer comprising:
【請求項2】 導電性ファインセラミックスが、WC、
TiC、TaC、ZrC、VC、TiB2、TiN、Ti2Nの
1種又は2種以上からなる請求項1に記載の方法。
2. The method according to claim 1, wherein the conductive fine ceramic is WC,
TiC, TaC, ZrC, VC, TiB 2, TiN, The method of claim 1 comprising one or two or more of Ti 2 N.
【請求項3】 非導電性のファインセラミックスに、炭
化物を作り易い金属又は半金属と、結合材として、被処
理金属と融合し易い金属とを、それぞれ粉末状態で混合
し、圧縮成形を行って所望の形状としたものを放電電極
として用い、加工液として放電の発生により炭素を分解
生成する加工液を用い、加工液中において被処理金属の
一方を電極として放電加工を行うことにより、前記の炭
化物を作り易い金属又は半金属の一部を炭化物として反
応生成せしめ、被処理金属表面に非導電性ファインセラ
ミックスと炭化物と、一部炭化物にならなかった金属と
結合材金属とからなる表面層を形成することを特徴とす
る液中放電による金属材料の表面処理方法。
3. A non-conductive fine ceramic is mixed with a metal or semi-metal which is easy to form a carbide and a metal which is easy to fuse with the metal to be treated as a binder in a powder state, and compression-molded. By using a material having a desired shape as a discharge electrode, using a machining fluid that decomposes and generates carbon by generating a discharge as a machining fluid, and performing electrical discharge machining using one of the metals to be treated in the machining fluid as an electrode, A part of a metal or metalloid that easily forms carbide is reacted and produced as a carbide, and a surface layer made of non-conductive fine ceramics and carbide, a metal that has not been partially carbided, and a binder metal is formed on the surface of the metal to be treated. A surface treatment method for a metal material by discharging in a liquid, characterized in that the metal material is formed.
【請求項4】 非導電性ファインセラミックスが、Al2
3、Si34、ZrO2の1種又は2種以上からなる請求
項3に記載の方法。
4. A non-conductive fine ceramic comprising Al 2
O 3, Si 3 N 4, The method of claim 3 consisting of ZrO 2 1 kind or 2 or more.
【請求項5】 炭化物を作り易い金属が、Ti、Nb、
W、V、Zr、Ta、Cr、Mo、Mnの1種又は2種以上
からなり、半金属(非金属)がBからなる請求項1又は3
に記載の方法。
5. The metal which easily forms carbide is Ti, Nb,
4. The method according to claim 1, wherein the metalloid (non-metallic) is B, and is composed of one or more of W, V, Zr, Ta, Cr, Mo, and Mn.
The method described in.
【請求項6】 被処理金属又は前記ファインセラミック
スを融合し易い金属が、被処理金属が鉄鋼の場合はF
e、Co又はNiからなり、アルミニウム材の場合はAl、
Zn又はCuからなり、亜鉛材の場合はCu、Al又はSn
からなる請求項1又は3に記載の方法。
6. When the metal to be treated or the metal which is easy to fuse the fine ceramics is steel, the metal to be treated is iron or steel.
e, Co or Ni, and aluminum, Al,
It is made of Zn or Cu. In the case of zinc material, it is made of Cu, Al or Sn.
The method according to claim 1, comprising:
【請求項7】 炭化物を作り易い金属としてNbを1〜
10%添加する請求項1又は3に記載の方法。
7. Nb is used as a metal which easily forms carbide.
The method according to claim 1 or 3, wherein 10% is added.
【請求項8】 請求項1又は3に記載の方法により表面
層を形成した後、消耗しにくい電極を一方の電極として
液中若しくは気中にて放電加工を行い、表面層を再溶融
・凝固させることを特徴とする放電による金属材料の表
面処理方法。
8. After forming a surface layer by the method according to claim 1 or 2, a discharge process is performed in liquid or air using an electrode that is not easily consumed as one electrode, and the surface layer is re-melted and solidified. A method for treating a surface of a metal material by electric discharge.
JP35422793A 1993-12-31 1993-12-31 Surface treatment method for metallic materials by submerged discharge Expired - Fee Related JP3271844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35422793A JP3271844B2 (en) 1993-12-31 1993-12-31 Surface treatment method for metallic materials by submerged discharge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35422793A JP3271844B2 (en) 1993-12-31 1993-12-31 Surface treatment method for metallic materials by submerged discharge

Publications (2)

Publication Number Publication Date
JPH07197275A JPH07197275A (en) 1995-08-01
JP3271844B2 true JP3271844B2 (en) 2002-04-08

Family

ID=18436137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35422793A Expired - Fee Related JP3271844B2 (en) 1993-12-31 1993-12-31 Surface treatment method for metallic materials by submerged discharge

Country Status (1)

Country Link
JP (1) JP3271844B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7537808B2 (en) 2002-07-30 2009-05-26 Mitsubishi Denki Kabushiki Kaisha Electrode for electric discharge surface treatment, electric discharge surface treatment method and electric discharge surface treatment apparatus

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100398764B1 (en) * 1998-03-11 2003-09-19 미쓰비시덴키 가부시키가이샤 Compact electrode for discharge surface treatment and method of manufacturing discharge surface treatment compact electrode
JP3409032B2 (en) * 1998-05-08 2003-05-19 三菱電機株式会社 Power supply for discharge surface treatment
DE19882576B4 (en) 1998-05-13 2007-09-27 Mitsubishi Denki K.K. Grinder electrode for spark discharge treatment, related manufacturing method, and method for recycling a green body electrode
WO1999058744A1 (en) * 1998-05-13 1999-11-18 Mitsubishi Denki Kabushiki Kaisha Electrode for discharge surface treatment and manufacturing method thereof and discharge surface treatment method and device
DE19882661T1 (en) * 1998-09-18 2001-01-18 Mitsubishi Electric Corp A roller, a roller surface treatment method, and a roller surface treatment device
WO2001023641A1 (en) * 1999-09-30 2001-04-05 Mitsubishi Denki Kabushiki Kaisha Electric discharge surface treating electrode and production method thereof and electric discharge surface treating method
WO2001023640A1 (en) * 1999-09-30 2001-04-05 Mitsubishi Denki Kabushiki Kaisha Electric discharge surface treating electrode and production method thereof and electric discharge surface treating method
US9284647B2 (en) 2002-09-24 2016-03-15 Mitsubishi Denki Kabushiki Kaisha Method for coating sliding surface of high-temperature member, high-temperature member and electrode for electro-discharge surface treatment
KR101063575B1 (en) 2002-09-24 2011-09-07 미츠비시덴키 가부시키가이샤 Sliding surface coating method of high temperature member and electrode for high temperature member and discharge surface treatment
CN1692179B (en) 2002-10-09 2011-07-13 石川岛播磨重工业株式会社 Rotor and coating method therefor
KR100790657B1 (en) * 2003-05-29 2008-01-02 미쓰비시덴키 가부시키가이샤 Electrode for discharge surface treatment, discharge surface treatment method and discharge surface treatment apparatus
CA2525761A1 (en) * 2003-06-04 2004-12-16 Mitsubishi Denki Kabushiki Kaisha Electrode for electric discharge surface treatment, method for manufacturing the same, and method for storing the same
RU2318638C2 (en) 2003-06-10 2008-03-10 Мицубиси Денки Кабусики Кайся Electrode for electro-discharge treatment of the surface, mode of estimation of the electrode and the mode of electro-discharge treatment of the surface
RU2311995C2 (en) * 2003-06-11 2007-12-10 Мицубиси Денки Кабусики Кайся Method and apparatus for electric-discharge applying of coating
CN102126063A (en) * 2003-06-11 2011-07-20 株式会社Ihi Metal product producing method, metal product, metal component connecting method, and connection structure
WO2004111304A1 (en) * 2003-06-11 2004-12-23 Ishikawajima-Harima Heavy Industries Co., Ltd. Method for repairing machine part, method for forming restored machine part, method for manufacturing machine part, gas turbine engine, electric discharge machine, method for repairing turbine component, and method for forming restored turbine component
RU2319789C2 (en) 2003-06-11 2008-03-20 Мицубиси Денки Кабусики Кайся Method for treating surface with use of electric discharge
JP2005201079A (en) * 2004-01-13 2005-07-28 Ishikawajima Harima Heavy Ind Co Ltd Turbine blade and its manufacturing method
JP4895477B2 (en) * 2004-01-29 2012-03-14 三菱電機株式会社 Discharge surface treatment method and discharge surface treatment apparatus.
JP4504691B2 (en) * 2004-01-29 2010-07-14 三菱電機株式会社 Turbine parts and gas turbines
JP4608220B2 (en) * 2004-01-29 2011-01-12 三菱電機株式会社 Discharge surface treatment electrode and discharge surface treatment method
JP4534633B2 (en) * 2004-07-02 2010-09-01 三菱電機株式会社 Discharge surface treatment method and surface-treated mold
CN101595246B (en) 2006-12-27 2012-06-13 三菱电机株式会社 Electrode for discharge surface treatment and method for manufacturing the same
WO2009099239A1 (en) 2008-02-05 2009-08-13 Suzuki Motor Corporation Electric discharge coating method and green compact electrode used therefor
JP2009226439A (en) * 2008-03-21 2009-10-08 Ihi Corp Forging die unit and forging-formation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7537808B2 (en) 2002-07-30 2009-05-26 Mitsubishi Denki Kabushiki Kaisha Electrode for electric discharge surface treatment, electric discharge surface treatment method and electric discharge surface treatment apparatus
US8377339B2 (en) 2002-07-30 2013-02-19 Mitsubishi Denki Kabushiki Kaisha Electrode for electric discharge surface treatment, method of electric discharge surface treatment, and apparatus for electric discharge surface treatment

Also Published As

Publication number Publication date
JPH07197275A (en) 1995-08-01

Similar Documents

Publication Publication Date Title
JP3271844B2 (en) Surface treatment method for metallic materials by submerged discharge
JP3537939B2 (en) Surface treatment by submerged discharge
JP3093846B2 (en) Surface treatment method for metal materials
US8377339B2 (en) Electrode for electric discharge surface treatment, method of electric discharge surface treatment, and apparatus for electric discharge surface treatment
EP1035231B1 (en) Electrode rod for spark deposition, process for the production thereof, and process for covering with superabrasive-containing layer
TW457154B (en) Electrode for surface treatment by electric discharge, process for making the same, method and apparatus for surface treatment by electric discharge
US20060021868A1 (en) Electrode for discharge surface treatment, a method of manufacturing the electrode for discharge surface treatment, and a discharge surface treatment method
JP2006322034A (en) Electrode for discharge surface treatment, coated film for discharge surface treatment and treatment method
Tijo et al. Hard and wear resistance TiC-composite coating on AISI 1020 steel using powder metallurgy tool by electro-discharge coating process
WO2008014801A1 (en) A method for deposition of dispersion-strengthened coatings and composite electrode material for deposition of such coatings
CN113795603B (en) Ni-based alloy, ni-based alloy powder, ni-based alloy member, and product provided with Ni-based alloy member
KR20010041903A (en) Method for discharge surface treatment, and device and electrode for conducting the method
JP3627088B2 (en) Discharge surface treatment method and object to be processed formed by the method
Kumari Study of TiC coating on different type steel by electro discharge coating
JP5408349B2 (en) Discharge surface treatment electrode and discharge surface treatment film
JPH06280044A (en) Surface treatment method and device by electric discharge machining
Zhidovich et al. Making Ceramic protective coatings on titanium boride base by electric arc surfacing with SHS electrodes in an argon atmosphere
Ramesh et al. ELECTRICAL DISCHARGE MACHINING ANALYSIS OF ZIRCONIUM POWDER MIXED DIELECTRIC ON PERFORMANCE OF HIGH CARBON HIGH CHROMIUM STEEL.
Richhariya Surface Modification of AISI 1020 Mild Steel by Electrical Discharge Coating with Tungsten and Copper Mixed Powder Green Compact Electrodes
JP4123529B2 (en) Ultrafine particle dispersion film
JP4984015B1 (en) Discharge surface treatment electrode and method for producing discharge surface treatment electrode
Meena et al. Parametric Effects during Nonconventional Machining of PRALSICMMC by EDM
JPWO2006057053A1 (en) Discharge surface treatment electrode, discharge surface treatment method, and discharge surface treatment apparatus
Elaiyarasan et al. International Journal of Trend in Scientific Research and Development (IJTSRD)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees