JPH07197275A - Surface treating method of metallic material by submerged discharge - Google Patents

Surface treating method of metallic material by submerged discharge

Info

Publication number
JPH07197275A
JPH07197275A JP35422793A JP35422793A JPH07197275A JP H07197275 A JPH07197275 A JP H07197275A JP 35422793 A JP35422793 A JP 35422793A JP 35422793 A JP35422793 A JP 35422793A JP H07197275 A JPH07197275 A JP H07197275A
Authority
JP
Japan
Prior art keywords
metal
carbide
discharge
treated
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35422793A
Other languages
Japanese (ja)
Other versions
JP3271844B2 (en
Inventor
Nagao Saito
齋藤長男
Naotake Mori
毛利尚武
Yoshiki Tsunekawa
恒川好樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP35422793A priority Critical patent/JP3271844B2/en
Publication of JPH07197275A publication Critical patent/JPH07197275A/en
Application granted granted Critical
Publication of JP3271844B2 publication Critical patent/JP3271844B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To form a high quality covering layer on the surface of a metallic material by preventing a decomposed carbon generated by electric discharge from remaining a lumps in the covering layer. CONSTITUTION:An electroconductive fine ceramic such as WC, TiB2, TiN is mixed with a metal or metalloid(nonmetal) easy to form a carbide such as Ti or B and a metal to be treated or a metal easy to fuse with the fine ceramic as a binder respectively in a powdery state and the mixture is compression molded to form into a prescribed shape. The metal to be treated is electric discharge machined as one of electrodes in the machining solution, where the molding is used as a discharge electrode and a machining solution for forming carbon by decomposition caused by the generation of discharge is used as the machining solution. As a result, the surface layer composed of the electroconductive fine ceramic, the carbide, an uncarbonized part of the metal and a bonded metal is formed on the surface of the metal to be treated by allowing a part of the metal or metalloid easy to form the carbide to react to form the carbide.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は液中放電による金属材料
の処理方法に係り、より詳しくは、鉄鋼、アルミニウム
又はその合金、亜鉛又はその合金、銅又はその合金など
からなる金属材料において所定の形状を成形した表面上
に、WC、TiC等々のファインセラミックスを含む被
覆層を強固な接着力を持つように被覆する表面処理方法
に関するもので、金型、ガスタービンなどの耐摩耗性、
耐熱性等を向上させるのに適している。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating a metallic material by submerged discharge, and more specifically, a method for treating a metallic material made of steel, aluminum or an alloy thereof, zinc or an alloy thereof, copper or an alloy thereof, etc. The present invention relates to a surface treatment method in which a coating layer containing fine ceramics such as WC and TiC is coated on a surface having a shaped shape so as to have a strong adhesive force, and wear resistance of a mold, a gas turbine, etc.,
Suitable for improving heat resistance.

【0002】[0002]

【従来の技術】従来、ファインセラミックス等の母材へ
の被覆には、溶射、或いはPVD、CVDなどの物理的
又は化学的表面処理が行われており、またメッキも行わ
れていた。
2. Description of the Related Art Conventionally, a base material such as fine ceramics has been subjected to thermal spraying, physical or chemical surface treatment such as PVD or CVD, and plating.

【0003】しかし、溶射技術は、成膜速度が高く、厚
膜が容易に得られるが、密着性が弱く、また膜が多孔質
であって、硬度等も被覆素材の本来の硬度まで到着しな
い欠点があった。PVD、CVDは、密着性は良い場合
が多いが、1000℃程度の高い温度まで上昇させて被
覆するので、素材の寸法変化が著しい。更に10μm以
下の薄膜しか生成できない欠点があった。また、メッキ
は、厚膜は不能である上に密着力が弱いという欠点があ
った。
However, the thermal spraying technique has a high film-forming rate and can easily obtain a thick film, but has poor adhesion, and the film is porous so that the hardness does not reach the original hardness of the coating material. There was a flaw. In many cases, PVD and CVD have good adhesion, but since the coating is performed by raising the temperature to a high temperature of about 1000 ° C., the dimensional change of the material is remarkable. Further, there is a drawback that only a thin film of 10 μm or less can be formed. Further, the plating has a drawback that a thick film is impossible and the adhesion is weak.

【0004】更に、これらの技術では、溶射は減圧プラ
ズマのために真空装置を要し、PVD、CVDも真空槽
中で作業が行われ、メッキも電解槽中の作業であり、作
業性が悪く自動化も困難である。
Further, in these techniques, the thermal spraying requires a vacuum device for low-pressure plasma, and PVD and CVD are performed in a vacuum tank, and plating is also performed in an electrolytic tank, resulting in poor workability. Automation is also difficult.

【0005】そこで、本発明者等は、これらの溶射、P
VD、CVDなどの欠点を解消する技術として、先に特
願平3−329499号にて放電被覆法を提案した。こ
の方法は、金属材料からなる母材表面に金属又は非金属
材料を被覆した後、液中、気体中又は真空中でパルス放
電加工によって堆積物を微小領域ごとに再溶融させるこ
とにより、母材と被覆材料を拡散、混合し、母材表面に
緻密な被覆層を形成する方法である。
Therefore, the inventors of the present invention have proposed that these thermal spraying, P
As a technique for eliminating defects such as VD and CVD, Japanese Patent Application No. 3-329499 has proposed a discharge coating method. This method consists of coating the surface of a base material made of a metal material with a metal or non-metal material, and then remelting the deposits in minute regions by pulse electric discharge machining in a liquid, a gas, or a vacuum. And a coating material are diffused and mixed to form a dense coating layer on the surface of the base material.

【0006】この放電被覆法は、上記の従来技術に比べ
ると、被覆層の密着性が著しく高く、10〜100μm
程度の厚膜も可能であり、寸法精度や形状精度は放電加
工の加工精度と同等であり、作業性が著しく良く、自動
化も容易である。上記の従来技術と放電被覆法の比較を
図1、表1に示す。
This discharge coating method has a remarkably high adhesion of the coating layer as compared with the above-mentioned prior art, and is 10 to 100 μm.
It is possible to form a thick film, the dimensional accuracy and shape accuracy are equivalent to the machining accuracy of electrical discharge machining, the workability is remarkably good, and automation is easy. A comparison between the above conventional technique and the discharge coating method is shown in FIG. 1 and Table 1.

【0007】[0007]

【表1】 [Table 1]

【0008】[0008]

【発明が解決しようとする課題】しかし、前記の放電被
覆法は、従来の溶射法やPVD、CVD、メッキに比べ
て非常に優れた表面処理技術ではあるが、一方、事前の
被覆法(1次処理)として液中での放電析出法(消耗し易
い電極使用)を行った場合、放電によって加工液の鉱物
油等が分解して生じる炭素分が、そのまま被覆層の中に
炭素単位として残留する場合がある。勿論、2次処理
(パルス放電加工による再溶融)によって被覆層成分中に
大部分固溶するが、それでもなお、微細な塊として被覆
層中に存在する場合があることが判明した。
However, the above-mentioned discharge coating method is a surface treatment technology which is very superior to the conventional thermal spraying method, PVD, CVD and plating, but on the other hand, the prior coating method (1 When the discharge deposition method in liquid (using an electrode that easily wears out) is performed as the next treatment), the carbon content generated by the decomposition of mineral oil in the working fluid due to discharge remains as carbon units in the coating layer. There is a case. Of course, secondary processing
It was found that although it was mostly solid-dissolved in the coating layer components by (remelting by pulse electric discharge machining), it could still be present in the coating layer as a fine lump.

【0009】本発明は、上記の放電被覆法の欠点を解消
して、放電によって生じる分解炭素が被覆層中に塊とし
て残留するのを減少させ、より高品位の被覆層を金属材
料表面に形成する金属材料の表面処理方法を提供するこ
とを目的とするものである。
The present invention eliminates the above-mentioned drawbacks of the discharge coating method, reduces the amount of decomposed carbon generated by discharge remaining in the coating layer as a lump, and forms a higher quality coating layer on the surface of a metal material. An object of the present invention is to provide a surface treatment method for a metallic material.

【0010】[0010]

【課題を解決するための手段】前記課題を解決するため
の手段として、本発明は、導電性のファインセラミック
スに、炭化物を作り易い金属又は半金属(非金属)と、結
合剤として、被処理金属又は前記ファインセラミックス
を融合し易い金属とを、それぞれ粉末状態で混合し、圧
縮成形を行って所望の形状としたものを放電電極として
用い、加工液として放電の発生により炭素を分解生成す
る加工液を用いて、加工液中において被処理金属を一方
の電極として放電加工を行うことにより、前記の炭化物
を作り易い金属又は半金属の一部を炭化物として反応生
成せしめ、被処理金属表面に導電性ファインセラミック
スと炭化物と、一部炭化物にならなかった金属と結合金
属とからなる表面層を形成することを特徴とする液中放
電による金属材料の表面処理方法を要旨としている。
Means for Solving the Problems As a means for solving the above problems, the present invention is to provide conductive fine ceramics with a metal or a semimetal (nonmetal) that easily forms a carbide, and as a binder to be treated. A process in which a metal or a metal in which the fine ceramics is easily fused is mixed in a powder state, compression-molded into a desired shape as an electric discharge electrode, and carbon is decomposed and generated by generating an electric discharge as a working liquid. By using a liquid to perform electric discharge machining with the metal to be treated as one electrode in the machining liquid, a portion of the metal or semimetal that easily forms the above-mentioned carbide is reacted and produced as the carbide, and the metal surface to be treated is electrically conductive. Metal material by electric discharge in liquid, characterized by forming a surface layer consisting of a porous fine ceramics, a carbide, a metal not partially converted to a carbide, and a binding metal The surface treatment method is the gist.

【0011】また、他の本発明は、非導電性のファイン
セラミックスに、炭化物を作り易い金属又は半金属と、
結合材として、被処理金属と融合し易い金属とを、それ
ぞれ粉末状態で混合し、圧縮成形を行って所望の形状と
したものを放電電極として用い、加工液として放電の発
生により炭素を分解生成する加工液を用い、加工液中に
おいて被処理金属の一方を電極として放電加工を行うこ
とにより、前記の炭化物を作り易い金属又は半金属の一
部を炭化物として反応生成せしめ、被処理金属表面に非
導電性ファインセラミックスと炭化物と、一部炭化物に
ならなかった金属と結合材金属とからなる表面層を形成
することを特徴とする液中放電による金属材料の表面処
理方法を要旨としている。
Another aspect of the present invention is that a non-conductive fine ceramic is provided with a metal or a semi-metal that easily forms carbide.
As the binding material, the metal to be treated and the metal that is easy to fuse are mixed in powder form, compression-molded into the desired shape, and used as the discharge electrode. By using a machining fluid to perform electric discharge machining using one of the metal to be treated as an electrode in the machining fluid, a part of the metal or semimetal that easily forms the above-mentioned carbide is reacted and produced as a carbide, and the metal surface is treated. A gist is a surface treatment method for a metal material by in-liquid discharge, which is characterized in that a surface layer composed of a non-conductive fine ceramics, a carbide, a metal not partially converted to a carbide, and a binder metal is formed.

【0012】更に、他の本発明は、上記の方法により表
面層を形成した後、消耗しにくい電極を一方の電極とし
て液中若しくは気中にて放電加工を行い、表面層を再溶
融・凝固させることを特徴としている。
Further, according to another aspect of the present invention, after the surface layer is formed by the above method, electric discharge machining is performed in liquid or air by using the electrode which is less likely to wear as one electrode, and the surface layer is remelted and solidified. The feature is to let.

【0013】[0013]

【作用】以下に本発明を更に詳細に説明する。The present invention will be described in more detail below.

【0014】本発明は、鉄鋼などの鉄材料、アルミニウ
ム、亜鉛、銅など又はそれらの合金の非鉄材料の表面
に、他の金属やファインセラミックスなどを含む放電電
極を用い、液中放電により、被覆材の溶融、拡散を行っ
て強固で緻密な表面処理層を形成することにより、金属
材料の表面コーティングを行う方法である。つまり、放
電エネルギーを利用して表面に形成した被覆層を再溶融
し、母材中に拡散させて、緻密で密着性の高い被覆層を
形成するものである。
The present invention uses a discharge electrode containing another metal, fine ceramics or the like on the surface of a ferrous material such as steel, a non-ferrous material such as aluminum, zinc, copper or the like or an alloy thereof, and coating the same by in-liquid discharge. This is a method of performing surface coating of a metal material by melting and diffusing the material to form a strong and dense surface treatment layer. That is, the coating layer formed on the surface is remelted by utilizing the discharge energy and diffused in the base material to form a dense and highly adhesive coating layer.

【0015】これまで、溶射法などによって形成した被
覆層にレーザ光や電子ビームを照射し、表面を溶融・拡
散させることにより、被覆層の緻密性や密着性を向上さ
せることが試みられている。しかし、表面にビームの条
痕が残る問題や、任意の形状の物体への適用が困難であ
るという問題があり、実用化に至らなかった。
Up to now, attempts have been made to improve the denseness and adhesion of the coating layer by irradiating the coating layer formed by the thermal spraying method with a laser beam or an electron beam to melt and diffuse the surface. . However, it has not been put to practical use due to the problems that beam streaks remain on the surface and the problem that it is difficult to apply it to an object of any shape.

【0016】本発明者等は、従来の加工技術として利用
されていたパルス放電に着目し、放電のエネルギーによ
り被覆材の再溶融・拡散を促し、緻密で強固な表面コー
ティングを行うことが可能であることを見出したもので
ある。
The inventors of the present invention focused on pulsed discharge, which has been used as a conventional processing technique, and promote the remelting / diffusion of the coating material by the energy of the discharge, and it is possible to perform a dense and strong surface coating. It was found that there is.

【0017】本発明による表面処理工程は以下の機構に
よるものである。 圧粉体電極による放電コーティング法により、母材の
表面に金属、炭化物、窒化物などの被覆層を形成する。 次いで、液中又は気中放電により被覆層の再溶融・拡
散を行う。 必要に応じて、その後、消耗しにくい電極を一方の電
極として液中放電加工を行い、所期の寸法及び仕上面粗
さに仕上げる。
The surface treatment process according to the present invention is based on the following mechanism. A coating layer of metal, carbide, nitride or the like is formed on the surface of the base material by a discharge coating method using a powder compact electrode. Next, the coating layer is remelted and diffused by discharge in liquid or air. If necessary, an electrode that is less likely to be consumed is then used as one of the electrodes for electrical discharge machining in liquid to finish it to the desired dimensions and finished surface roughness.

【0018】最初の工程で表面に被覆層を形成するに
は、まず、電極として、形成する被覆層の材料の粉末を
圧縮成形したものや焼結体を用い、母材との間で放電を
起こさせる。すると、放電のエネルギーにより電極側の
材料が溶融・飛散し、母材表面に堆積する。次に、と
して、で被覆層が形成された母材を一方の電極とし
て、銅などの非消耗性電極を用いて、灯油などの液中若
しくは気中でパルス放電を起こさせる。パルス放電のエ
ネルギーにより、被覆層表面近傍の微小な領域が瞬間的
に高温・高圧になるため、被覆層が再溶融し、母材中に
拡散する。この結果、緻密で密着性の高い表面被覆層が
形成される。気中放電の意味は再溶融の目的ならば、気
中の方が液中よりも冷却されにくいために、有効な場合
があるからである。必要に応じて、その後、工程によ
り、電極を銅などの消耗しにくい材料で再度液中放電を
行い、所期の寸法、厚み、仕上粗さに仕上げる。これは
気中放電よりも衝撃力が強いために、鍛造のような効果
を生じ強固な被覆層を形成することになる。
In order to form the coating layer on the surface in the first step, first, as the electrode, a material obtained by compression-molding the powder of the material of the coating layer to be formed or a sintered body is used, and an electric discharge is generated between the electrode and the base material. Wake up. Then, the material on the electrode side is melted and scattered by the energy of the discharge, and is deposited on the surface of the base material. Next, a pulse discharge is generated in a liquid such as kerosene or in air using a non-consumable electrode such as copper with the base material on which the coating layer is formed as one electrode. Due to the energy of the pulse discharge, a minute area near the surface of the coating layer momentarily becomes high temperature and high pressure, so that the coating layer is remelted and diffused into the base material. As a result, a dense and highly adherent surface coating layer is formed. The meaning of the air discharge is that it may be effective for the purpose of remelting, because it is more difficult to cool the air in the liquid than in the liquid. If necessary, in the subsequent process, the electrode is again subjected to in-liquid discharge using a material that does not easily wear out, such as copper, and finished to the desired dimensions, thickness, and finish roughness. Since this has a stronger impact force than the air discharge, it produces an effect like forging and forms a strong coating layer.

【0019】但し、従来の放電被覆法では、WCにCo
を単に混合したように、炭化物に結合材を加えたのみで
あるから、加工油の分解炭素を炭化物として吸収結合す
るには不充分であったことに鑑みて、本発明では、放電
電極として用いる圧粉成形体に、その他の成分として炭
化物を作り易い金属を適当量加えて混合して圧粉体とす
るものである。これにより、添加金属は、放電時に加工
油の分解によって生ずる炭素と化合し、炭化物となるた
め、塊としての炭素の介在は殆ど発生しなくなる。更に
工程を加えると、炭素が更に存在しない被覆層とする
ことができる。
However, in the conventional discharge coating method, Co
In the present invention, it is used as a discharge electrode in view of the fact that it was insufficient to absorb and bond the decomposed carbon of the processing oil as a carbide because the binder was only added to the carbide as if they were simply mixed. A powder compact is obtained by adding an appropriate amount of a metal, which easily forms a carbide, as another component to the powder compact and mixing them. As a result, the added metal combines with the carbon generated by the decomposition of the processing oil at the time of discharge to form a carbide, so that the inclusion of carbon as a lump hardly occurs. By adding more steps, it is possible to obtain a coating layer in which carbon is not further present.

【0020】以下に本発明における製造条件の限定理由
を説明する。
The reasons for limiting the manufacturing conditions in the present invention will be described below.

【0021】放電電極:放電電極としては、導電性又は
非導電性のファインセラミックスに、炭化物を作り易い
金属又は半金属(非金属)と、結合剤として、被処理金属
又は前記ファインセラミックスを融合し易い金属とを、
それぞれ粉末状態で混合し、圧縮成形を行って所望の形
状としたものを用いる。
Discharge electrode: As the discharge electrode, a conductive or non-conductive fine ceramic is fused with a metal or semi-metal (non-metal) that easily forms a carbide and a metal to be treated or the fine ceramic as a binder. Easy metal,
The powders are mixed in a powder state and subjected to compression molding to obtain a desired shape.

【0022】導電性ファインセラミックスとしては、例
えば、WC、TiC、TaC、ZrC、VC、TiB2、Ti
Nの1種又は2種以上が挙げられる。また、非導電性フ
ァインセラミックスとしては、例えば、Al23、Si3
4、ZrO2の1種又は2種以上が挙げられる。
Examples of the conductive fine ceramics include WC, TiC, TaC, ZrC, VC, TiB 2 and Ti.
1 type (s) or 2 or more types of N are mentioned. Examples of non-conductive fine ceramics include Al 2 O 3 and Si 3
One or more of N 4 and ZrO 2 may be mentioned.

【0023】炭化物を作り易い金属としては、例えば、
Ti、Nb、W、V、Zr、Ta、Cr、Mo、Mnの1種又
は2種以上が挙げられる。また、炭化物を作り易い半金
属(非金属)としてはBが挙げられる。特にNbは被覆表
面層の靭性を向上させるために有効な成分であり、1〜
10%添加するのが推奨される。他の成分も概ね、この
添加量を目安として添加される。
Examples of metals that easily form carbides include:
One or more of Ti, Nb, W, V, Zr, Ta, Cr, Mo and Mn may be mentioned. Further, B is mentioned as a semimetal (nonmetal) that easily forms a carbide. In particular, Nb is an effective component for improving the toughness of the coating surface layer, and
It is recommended to add 10%. Other components are generally added with this added amount as a guide.

【0024】結合剤としては、被処理金属又は前記ファ
インセラミックスを融合し易い金属であればよく、被処
理金属の材質によって適当なものを選定する。例えば、
被処理金属が鉄鋼の場合はFe、Co又はNiから、アル
ミニウム材の場合はAl、Zn又はCuから、亜鉛材の場
合はCu、Al又はSnから選定する。
The binder may be a metal to be treated or a metal that easily fuses the fine ceramics, and an appropriate binder is selected depending on the material of the metal to be treated. For example,
When the metal to be treated is steel, it is selected from Fe, Co or Ni, when it is an aluminum material, it is selected from Al, Zn or Cu, and when it is a zinc material, it is selected from Cu, Al or Sn.

【0025】放電加工液:放電加工に使用する加工液と
しては、放電の発生により炭素を分解する液を用いる。
例えば、石油、油脂等である。油は炭化水素(CnHm)で
あるから、熱分解すればC、Hと中間帯のCn_x、Hm_y
を生ずる。炭化し易い金属が放電によって高温状態で加
工間隙を通して被処理金属表面に射突する極短時間にお
いて、分解した炭素と化学反応を起こす。高温度のため
著しく活性化されているので、この金属の数10%が炭
化物となる。
Electric discharge machining liquid: As a machining liquid used for electric discharge machining, a liquid that decomposes carbon by the generation of electric discharge is used.
For example, petroleum, fats and oils. Oil is a hydrocarbon (CnHm), so if pyrolyzed, C, H and Cn_x, Hm_y in the intermediate zone
Cause In a very short period of time, the metal that easily carbonizes collides with the decomposed carbon in a high temperature state through the machining gap and collides with the surface of the metal to be treated due to electric discharge. Since it is significantly activated due to the high temperature, 10% of this metal becomes carbide.

【0026】M1+M2+M3→M1+M2C+M2+M3 ここで、M1:ファインセラミックス M2:炭化物を作り易い金属又は半金属 M3:結合材金属 M2C:炭化物を作り易い金属又は半金属の炭化物M 1 + M 2 + M 3 → M 1 + M 2 C + M 2 + M 3 where M 1 is a fine ceramic M 2 is a metal or semimetal which easily forms a carbide M 3 is a binder metal M 2 C is a carbide Easy metal or semi-metal carbide

【0027】他の放電加工条件:液中放電の他の条件
は、先に提案した放電被覆法と同様でよく、パルス放電
加工が望ましい。例えば、放電は、1秒間に数百回から
数万回程度で発生させると、加工面は小さい微視的な放
電痕の累積した表面であり、放電痕電流密度は微小な面
積であるが、数万A/cm2と高く、高温高圧を数10μs
〜1000μs程度の短時間で生じる。放電点の表面温
度は、その材料の沸点温度となり、その点の圧力は数1
000kgf/cm2となり、溶解した一部分は飛散するもの
があるが、残った部分は再溶融し、母材に拡散する。放
電時間が短時間のため、放電点が直ちに冷却され、母材
の平均温度は上昇することはない。
Other electrical discharge machining conditions: Other electrical discharge machining conditions may be the same as in the previously proposed electrical discharge coating method, and pulse electrical discharge machining is desirable. For example, when electric discharge is generated several hundreds to tens of thousands times per second, the processed surface is a surface where small microscopic discharge marks are accumulated, and the discharge mark current density is a minute area. As high as tens of thousands of amperes / cm 2 , high temperature and high pressure of tens of μs
It occurs in a short time of about 1000 μs. The surface temperature at the discharge point is the boiling temperature of the material, and the pressure at that point is several 1
It becomes 000 kgf / cm 2 , and some of the melted part is scattered, but the remaining part is remelted and diffused into the base material. Since the discharge time is short, the discharge point is immediately cooled and the average temperature of the base material does not rise.

【0028】パルス放電加工の好ましい条件は、電源電
圧:60〜100V、パルス放電電流値(Ip):1〜1
00A、パルス幅(τp):5〜2000μs、休止時間
(τr):5〜2000μsである。一般的に、パルス放電
電流値Ipが小さい時、例えば、Ip=3Aなどではτp
=16μs、Ipが大きい時、Ip=50Aなどではτp=
2000τsのように、Ipの小さい時はτpも短かく、
Ipの大きい時はτpを長くとる。
Preferable conditions of pulse electric discharge machining are power supply voltage: 60 to 100 V, pulse discharge current value (Ip): 1 to 1
00A, pulse width (τp): 5 to 2000 μs, rest time
(τr): 5 to 2000 μs. Generally, when the pulse discharge current value Ip is small, for example, Ip = 3A, τp
= 16 μs, when Ip is large, τp = when Ip = 50 A
When Ip is small like 2000τs, τp is short,
When Ip is large, τp is long.

【0029】なお、工程にて消耗しにくい電極を一方
の電極として液中放電加工を行う場合は、電極として銅
などの消耗しにくい材質のものを用いるだけで、他の放
電加工条件は前記の液中放電条件と殆ど同じでよい。
しかし、の工程は、基本的に被覆層厚み及び仕上面粗
さを所期の値に加工するのが目的なので、加工は必ず液
中で加工することになる。また電気条件も所期の仕上面
粗さにより定まるものもあることに関し留意する。
In the case of performing the electrical discharge machining in liquid with one electrode which is less likely to be consumed in the process as the other electrode, only an electrode made of a material which is less likely to be consumed such as copper is used as the electrode. It may be almost the same as the in-liquid discharge condition.
However, since the purpose of the process is basically to process the coating layer thickness and the finished surface roughness to desired values, the process is always performed in liquid. Also note that some electrical conditions are also determined by the desired surface finish roughness.

【0030】本発明の実施に用いられる装置の一例を図
2に示す。放電の発生により炭素を分解生成する加工液
を収容した加工槽の中に、所定の形状にされた表面を持
った被処理金属(母材)を置き、一方、粉末を圧縮成形し
た放電電極を数10〜100μm程度の微小間隙で母材
上方に保持する。母材及び放電電極はそれぞれ移動機構
によって上下左右に移動可能となっている。放電電極を
マイナス極として放電加工が行われる。この放電電極を
消耗しにくい電極に交換するために電極交換機構が設け
られている。
An example of an apparatus used to carry out the present invention is shown in FIG. Place a metal to be treated (base metal) with a predetermined shaped surface in a processing tank containing a processing liquid that decomposes and produces carbon by the generation of electric discharge, while discharging a powder compression molded discharge electrode. It is held above the base material with a minute gap of several tens to 100 μm. The base material and the discharge electrode can be moved vertically and horizontally by a moving mechanism. Electric discharge machining is performed using the discharge electrode as a negative electrode. An electrode replacement mechanism is provided to replace the discharge electrode with an electrode that is less likely to wear.

【0031】[0031]

【実施例】次に本発明の実施例を示す。EXAMPLES Examples of the present invention will be described below.

【0032】[0032]

【試験例1】WC粉(平均粒径3μm)と純鉄からなるFe
粉(平均粒径9.8μm)を1:1の重量比に混合し、圧縮
圧力4ton/cm2で圧縮したものを粉体電極とし、一方、
被処理金属を炭素鋼として、放電加工油(灯油)の中で放
電処理(1次加工)を行った。この時の放電条件は、放電
電流Ip=20A、放電電流パルス幅τp=16μsと
し、粉体電極をマイナス極とした。
[Test Example 1] Fe consisting of WC powder (average particle size 3 μm) and pure iron
Powder (average particle size 9.8 μm) was mixed in a weight ratio of 1: 1 and compressed with a compression pressure of 4 ton / cm 2 to obtain a powder electrode, while
The metal to be treated was carbon steel, and the electric discharge treatment (primary machining) was performed in an electric discharge machining oil (kerosene). The discharge conditions at this time were discharge current Ip = 20 A, discharge current pulse width τp = 16 μs, and the powder electrode was a negative electrode.

【0033】この1次加工の後、粉体電極を非消耗性電
極(銅)に換えて、同じ放電加工液中で放電処理(2次処
理)を行った。この時の放電条件は、放電電流Ip=10
A、τp=1024μsとした。
After this primary machining, the powder electrode was replaced with a non-consumable electrode (copper), and an electric discharge treatment (secondary treatment) was performed in the same electric discharge machining liquid. The discharge condition at this time is discharge current Ip = 10
A, τp = 1024 μs.

【0034】図3に、1次加工及び2次加工を行った被
覆層のEPMAによる面分析結果の断面を示す。(1)
は2次電子像で、(2)はW、(3)はC、(4)はF
eの面分析結果であり、(1)の2次電子像の中に小孔
が見られ、これは(3)のCの面分析結果からカーボン
の塊であることが判る。上記の1次加工条件に示すよう
に、純鉄のFe粉を混入しているにも拘らずカーボンの
塊が存在している。鉄鋼は含有炭素が多くなると黒鉛を
析出して黒鉛鋳鉄となるように、炭化物を作りにくい性
質がある。勿論、一部はセメンタイトとなるが、それで
もなお、炭素を塊として残している。
FIG. 3 shows a cross section of the surface analysis result by EPMA of the coating layer subjected to the primary processing and the secondary processing. (1)
Is a secondary electron image, (2) is W, (3) is C, and (4) is F.
It is the surface analysis result of e, and small holes are seen in the secondary electron image of (1), and it can be seen from the surface analysis result of C of (3) that it is a lump of carbon. As shown in the above-mentioned primary processing conditions, carbon lumps are present even though pure iron Fe powder is mixed. Iron and steel has a property that it is difficult to form carbides such that graphite is precipitated when the content of carbon is increased to form graphite cast iron. Of course, some will be cementite, but nonetheless it will leave the carbon as a lump.

【0035】炭素塊が残留する理由は以下のように考え
られる。純鉄のFe粉と同様、Coも炭化物を作りにく
い。したがって、WC+Coの混合物の圧粉体において
も同様である。一般的に炭化物を作り易い傾向を示すと
次のようになり、左側の元素ほど炭化物を作り易い。特
にFeよりも右側に有るNi、Co、Siは固有の炭化物を
形成せず、むしろ黒鉛化を促進する。 Nb>Ti>V>W>Mo>Cr>Mn>Fe>Ni>Co>S
i
The reason why the carbon lump remains is considered as follows. Like pure iron Fe powder, Co does not easily form carbide. Therefore, the same applies to the green compact of the mixture of WC + Co. Generally, the tendency to easily form carbides is as follows, and the elements on the left side are easier to form carbides. In particular, Ni, Co, and Si on the right side of Fe do not form an intrinsic carbide, but rather promote graphitization. Nb>Ti>V>W>Mo>Cr>Mn>Fe>Ni>Co> S
i

【0036】炭化物を作り易い元素を周期表で示すと、
以下のとおり。 IVB族:Ti、Zr、Hf VB族:V、Nb、Ta、 VIB族:Cr、Mo、W VIIB族:Mn、Tc、Re 実用的には、このうちHf、Tc、Reを除いたものが入
手し易い材料である。
When the elements which easily form carbides are shown in the periodic table,
as below. IVB group: Ti, Zr, Hf VB group: V, Nb, Ta, VIB group: Cr, Mo, W VIIB group: Mn, Tc, Re Practically, those except Hf, Tc, Re It is an easily available material.

【0037】[0037]

【試験例2】そこで、試験例1の結果に基づいて、炭化
物を作り易い元素を粉体電極の構成成分要素として加
え、この粉体電極を用いて液中放電を行った。すなわ
ち、炭化物を作り易い元素としてTiを選び、Tiが炭化
したかどうかを明確に示すため、炭化することの可能性
のないAlも併用し、TiとAlからなる圧粉体電極を作
り、被処理金属(母材)もAl材(アルミダイカスト材AD
C12)とした。その際、鉱物油分解による炭素の化合
体がTiの炭化物以外には存在しないようにし、分析が
明確になるように配慮した実験を行った。また、TiC
の表面における存在割合を定量的に分析できるようにし
た。この時のTiとAlの混合比、放電加工条件等は次の
とおりである。
[Test Example 2] Based on the results of Test Example 1, an element that easily forms a carbide was added as a constituent element of the powder electrode, and this powder electrode was used to perform in-liquid discharge. That is, in order to clearly indicate whether Ti is carbonized or not, Ti is selected as an element that easily forms a carbide, and Al which has no possibility of carbonization is also used to form a powder compact electrode composed of Ti and Al. The treated metal (base material) is also an Al material (aluminum die cast material AD
C12). At that time, an experiment was carried out so that the combination of carbon due to the decomposition of mineral oil was present only in the Ti carbide and the analysis was made clear. Also, TiC
It was made possible to analyze quantitatively the abundance ratio on the surface of. At this time, the mixing ratio of Ti and Al, the electric discharge machining conditions, etc. are as follows.

【0038】電極材料: Ti:Al=36:64(重量%) 但し、Tiの純度を99.5%、Alの純度を99.7%と
し、Ti及びAlとも粉末粒度44μm以下で、成形圧力
は441MPaとした。 加工油:放電加工用灯油 放電加工条件:放電電流Ip=20A、 放電電流パルス幅τp=512μs 有効パルス幅Rp(デューティファクター)=33% ここで、休止時間をτrとすると、 Rp=D={τp/(τp+τr)}×100(%)
Electrode material: Ti: Al = 36: 64 (weight%) However, the purity of Ti is 99.5%, the purity of Al is 99.7%, both Ti and Al have a particle size of 44 μm or less and a molding pressure. Was 441 MPa. Machining oil: Kerosene for electric discharge machining Electric discharge machining condition: Discharge current Ip = 20A, Discharge current pulse width τp = 512μs Effective pulse width Rp (Duty factor) = 33% Here, when the rest time is τr, Rp = D = { τp / (τp + τr)} × 100 (%)

【0039】図4は得られた母材表面被覆層のX線回折
図形であり、母材のAl材の表面に生成されたものはTi
CとTiAl3であることがわかる。
FIG. 4 is an X-ray diffraction pattern of the obtained base material surface coating layer, and the one generated on the surface of the base material Al material is Ti.
It can be seen that they are C and TiAl 3 .

【0040】更に、放電加工条件のうち、放電電流パル
ス幅τpを変えて被覆層の厚み及びTiCの体積比を調べ
た結果を図5に示す。また、加工時間twを変えて被覆
層の厚み及びTiCの体積比を調べた結果を図6に示
す。これらの試験結果より、被覆層中のTiCの体積割
合は50%以上で、70%程度にも達していることがわ
かる。
Further, of the electric discharge machining conditions, the discharge current pulse width τp was changed to examine the thickness of the coating layer and the volume ratio of TiC. The results are shown in FIG. Further, the results of examining the thickness of the coating layer and the volume ratio of TiC by changing the processing time tw are shown in FIG. From these test results, it is understood that the volume ratio of TiC in the coating layer is 50% or more, reaching about 70%.

【0041】このように、大部分のTiがTiCになって
いることは、被覆層組織中の炭素が充分炭化物となり、
遊離の炭素を生じさせない強力な作用を有していること
を示している。かくして生じた炭化物は、硬度も充分に
高く、マイクロビッカース硬度が500〜1000以上
を示す。既に実用化されているバイト材料においても、
WCとCoの他にTiCを加えると高温耐摩耗性の優れた
特性を示すと同様に、この被覆層も優れた特性を有して
いる。
As described above, the fact that most of Ti is TiC means that the carbon in the coating layer structure is sufficiently carbide,
It shows that it has a strong action that does not generate free carbon. The carbide thus produced has a sufficiently high hardness and a micro Vickers hardness of 500 to 1000 or more. Even with the bite materials already in practical use,
When TiC is added in addition to WC and Co, it exhibits excellent high-temperature wear resistance, and this coating layer also has excellent properties.

【0042】[0042]

【試験例3】WCとCoとTiの各粉末をそれぞれWC:
Co:Ti=60:20:20(重量%)の割合で混合した
圧粉体電極を作り、これを放電電極とし、加工油(灯油)
中にて放電加工(1次加工)を行った。被処理金属には炭
素鋼(S55C)を用いた。この時の放電加工条件は、放
電電流Ip=20A、放電電流パルス幅τp=16μsと
し、粉体電極をマイナス極とした。
[Test Example 3] Each powder of WC, Co and Ti was WC:
Co: Ti = 60: 20: 20 (wt%) was mixed to make a powder compact electrode, and this was used as a discharge electrode, and processing oil (kerosene) was used.
Electric discharge machining (primary machining) was performed inside. Carbon steel (S55C) was used as the metal to be treated. The electric discharge machining conditions at this time were a discharge current Ip = 20 A, a discharge current pulse width τp = 16 μs, and the powder electrode was a negative electrode.

【0043】この1次加工の後、粉体電極を非消耗性電
極(銅)に換えて、同じ放電加工液中で放電処理(2次処
理)を行った。この時の放電条件は、放電電流Ip=10
A、τp=1024μsとした。
After this primary machining, the powder electrode was replaced with a non-consumable electrode (copper), and an electric discharge treatment (secondary treatment) was performed in the same electric discharge machining liquid. The discharge condition at this time is discharge current Ip = 10
A, τp = 1024 μs.

【0044】1次及び2次加工で得られた母材表面被覆
層のX線回折結果により、試験例2と同様、TiCが生
成されていた。また、断面のSEM像(電子顕微鏡写真)
では空洞が見られず、残留炭素が存在していないことが
確認された。この被覆層は、Tiを添加せずにWC:Co
=80:20の割合で形成した被覆層よりも、切削工具
としての耐摩耗性が10倍程度も高い結果が得られた。
この時の切削試験条件は、相手材として炭素鋼(S55
C)の丸棒を用い、切り込み0.5mm、送り0.1mm/mi
n、切削速度100m/minとした。
From the result of X-ray diffraction of the base material surface coating layer obtained by the primary and secondary processing, TiC was generated as in Test Example 2. In addition, SEM image of the cross section (electron micrograph)
It was confirmed that no cavities were observed and no residual carbon was present. This coating layer is WC: Co without the addition of Ti.
The result was that the wear resistance of the cutting tool was about 10 times higher than that of the coating layer formed at a ratio of 80:20.
The cutting test condition at this time is that carbon steel (S55
Using the round bar of C), notch 0.5mm, feed 0.1mm / mi
The cutting speed was 100 m / min.

【0045】[0045]

【発明の効果】以上詳述したように、本発明によれば、
放電によって生じる分解炭素が被覆層中に塊として残留
するのを減少させることができるので、より高品位の被
覆層を金属材料表面に形成することができる。金型、ガ
スタービンなどの耐摩耗性、耐熱性等を向上させるのに
適している。
As described in detail above, according to the present invention,
Since it is possible to reduce the amount of decomposed carbon generated by the discharge remaining as a lump in the coating layer, it is possible to form a higher quality coating layer on the surface of the metal material. It is suitable for improving the wear resistance and heat resistance of dies and gas turbines.

【図面の簡単な説明】[Brief description of drawings]

【図1】放電被覆法と他の被覆法の膜厚及び密着力を比
較して示す図である。
FIG. 1 is a diagram showing a comparison of a film thickness and an adhesive force between a discharge coating method and another coating method.

【図2】本発明の実施に用いる装置の一例を説明する図
である。
FIG. 2 is a diagram illustrating an example of an apparatus used for implementing the present invention.

【図3】試験例1で得られた被覆層のEPMAによる面
分析結果の断面(粒子構造)を示す写真で、(1)は2次
電子像で、(2)はW、(3)はC、(4)はFeの面
分析結果である。
FIG. 3 is a photograph showing a cross section (particle structure) of the surface analysis result by EPMA of the coating layer obtained in Test Example 1, in which (1) is a secondary electron image, (2) is W, and (3) is C and (4) are Fe surface analysis results.

【図4】試験例2で得られたアルミダイカスト材表面の
X線回折図形である。
4 is an X-ray diffraction pattern of the surface of the aluminum die cast material obtained in Test Example 2. FIG.

【図5】試験例2でパルス幅の変化と被覆層の平均厚み
及びTiCの体積比の関係を示す図である。
FIG. 5 is a diagram showing the relationship between the change in pulse width and the average thickness of the coating layer and the volume ratio of TiC in Test Example 2.

【図6】試験例2で加工時間の変化と被覆層の平均厚み
及びTiCの体積比の関係を示す図である。
FIG. 6 is a diagram showing a relationship between a change in processing time and an average thickness of a coating layer and a volume ratio of TiC in Test Example 2.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 導電性のファインセラミックスに、炭化
物を作り易い金属又は半金属(非金属)と、結合剤とし
て、被処理金属又は前記ファインセラミックスを融合し
易い金属とを、それぞれ粉末状態で混合し、圧縮成形を
行って所望の形状としたものを放電電極として用い、加
工液として放電の発生により炭素を分解生成する加工液
を用いて、加工液中において被処理金属を一方の電極と
して放電加工を行うことにより、前記の炭化物を作り易
い金属又は半金属の一部を炭化物として反応生成せし
め、被処理金属表面に導電性ファインセラミックスと炭
化物と、一部炭化物にならなかった金属と結合金属とか
らなる表面層を形成することを特徴とする液中放電によ
る金属材料の表面処理方法。
1. A conductive fine ceramic is mixed with a metal or a semimetal (nonmetal) that easily forms a carbide and a metal to be treated or a metal that easily fuses the fine ceramic in a powder state as a binder. Then, by using a machining electrode that has been formed into a desired shape by compression molding as a discharge electrode, and using a machining liquid that decomposes and produces carbon as a result of electric discharge, the metal to be treated is discharged as one electrode in the machining liquid. By processing, a part of the metal or semimetal that easily forms the above-mentioned carbide is reacted and generated as a carbide, and the conductive fine ceramics and the carbide are formed on the surface of the metal to be treated, and the metal not partially turned into the carbide and the bonding metal A surface treatment method for a metal material by in-liquid discharge, which comprises forming a surface layer comprising
【請求項2】 導電性ファインセラミックスが、WC、
TiC、TaC、ZrC、VC、TiB2、TiN、Ti2Nの
1種又は2種以上からなる請求項1に記載の方法。
2. The conductive fine ceramics is WC,
The method according to claim 1, comprising one or more of TiC, TaC, ZrC, VC, TiB 2 , TiN, and Ti 2 N.
【請求項3】 非導電性のファインセラミックスに、炭
化物を作り易い金属又は半金属と、結合材として、被処
理金属と融合し易い金属とを、それぞれ粉末状態で混合
し、圧縮成形を行って所望の形状としたものを放電電極
として用い、加工液として放電の発生により炭素を分解
生成する加工液を用い、加工液中において被処理金属の
一方を電極として放電加工を行うことにより、前記の炭
化物を作り易い金属又は半金属の一部を炭化物として反
応生成せしめ、被処理金属表面に非導電性ファインセラ
ミックスと炭化物と、一部炭化物にならなかった金属と
結合材金属とからなる表面層を形成することを特徴とす
る液中放電による金属材料の表面処理方法。
3. A non-conductive fine ceramic is mixed with a metal or semi-metal that easily forms a carbide and a metal that easily fuses with a metal to be treated as a binder, respectively, in a powder state, and compression molding is performed. By using an electric discharge electrode having a desired shape, using a machining liquid that decomposes and produces carbon by generating an electric discharge as the machining liquid, and performing electric discharge machining with one of the metals to be treated as an electrode in the machining liquid, A part of a metal or semimetal that easily forms carbide is reacted and generated as a carbide, and a surface layer composed of non-conductive fine ceramics and carbide, a metal that has not become a carbide and a binder metal is formed on the surface of the metal to be treated. A method for treating a surface of a metal material by in-liquid discharge, the method comprising: forming.
【請求項4】 非導電性ファインセラミックスが、Al2
3、Si34、ZrO2の1種又は2種以上からなる請求
項3に記載の方法。
4. The non-conductive fine ceramics is Al 2
The method according to claim 3, comprising one or more of O 3 , Si 3 N 4 , and ZrO 2 .
【請求項5】 炭化物を作り易い金属が、Ti、Nb、
W、V、Zr、Ta、Cr、Mo、Mnの1種又は2種以上
からなり、半金属(非金属)がBからなる請求項1又は3
に記載の方法。
5. A metal which easily forms a carbide is Ti, Nb,
4. A compound of one or more selected from W, V, Zr, Ta, Cr, Mo, and Mn, wherein the semimetal (nonmetal) is B. 5.
The method described in.
【請求項6】 被処理金属又は前記ファインセラミック
スを融合し易い金属が、被処理金属が鉄鋼の場合はF
e、Co又はNiからなり、アルミニウム材の場合はAl、
Zn又はCuからなり、亜鉛材の場合はCu、Al又はSn
からなる請求項1又は3に記載の方法。
6. The metal to be treated or the metal which easily fuses the fine ceramics is F when the metal to be treated is steel.
e, Co or Ni, Al for aluminum material,
It consists of Zn or Cu, and in the case of zinc material, Cu, Al or Sn.
The method according to claim 1 or 3, comprising:
【請求項7】 炭化物を作り易い金属としてNbを1〜
10%添加する請求項1又は3に記載の方法。
7. Nb is 1 to 1 as a metal which easily forms a carbide.
The method according to claim 1 or 3, wherein 10% is added.
【請求項8】 請求項1又は3に記載の方法により表面
層を形成した後、消耗しにくい電極を一方の電極として
液中若しくは気中にて放電加工を行い、表面層を再溶融
・凝固させることを特徴とする放電による金属材料の表
面処理方法。
8. After forming the surface layer by the method according to claim 1 or 3, the electrode which is less likely to wear is used as one of the electrodes to perform electric discharge machining in liquid or in air to remelt and solidify the surface layer. A surface treatment method for a metal material by electric discharge, which comprises:
JP35422793A 1993-12-31 1993-12-31 Surface treatment method for metallic materials by submerged discharge Expired - Fee Related JP3271844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35422793A JP3271844B2 (en) 1993-12-31 1993-12-31 Surface treatment method for metallic materials by submerged discharge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35422793A JP3271844B2 (en) 1993-12-31 1993-12-31 Surface treatment method for metallic materials by submerged discharge

Publications (2)

Publication Number Publication Date
JPH07197275A true JPH07197275A (en) 1995-08-01
JP3271844B2 JP3271844B2 (en) 2002-04-08

Family

ID=18436137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35422793A Expired - Fee Related JP3271844B2 (en) 1993-12-31 1993-12-31 Surface treatment method for metallic materials by submerged discharge

Country Status (1)

Country Link
JP (1) JP3271844B2 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999046423A1 (en) * 1998-03-11 1999-09-16 Mitsubishi Denki Kabushiki Kaisha Compact electrode for discharge surface treatment and method of manufacturing discharge surface treatment compact electrode
WO1999058744A1 (en) * 1998-05-13 1999-11-18 Mitsubishi Denki Kabushiki Kaisha Electrode for discharge surface treatment and manufacturing method thereof and discharge surface treatment method and device
WO1999058743A1 (en) * 1998-05-08 1999-11-18 Mitsubishi Denki Kabushiki Kaisha Power source unit for discharge surface treatment
WO2000016918A1 (en) * 1998-09-18 2000-03-30 Mitsubishi Denki Kabushiki Kaisha Roll, method of treating the surface of roll, and apparatus for treating the surface of roll
WO2001023640A1 (en) * 1999-09-30 2001-04-05 Mitsubishi Denki Kabushiki Kaisha Electric discharge surface treating electrode and production method thereof and electric discharge surface treating method
WO2001023641A1 (en) * 1999-09-30 2001-04-05 Mitsubishi Denki Kabushiki Kaisha Electric discharge surface treating electrode and production method thereof and electric discharge surface treating method
US6793982B1 (en) 1998-05-13 2004-09-21 Mitsubishi Denki Kabushiki Kaisha Electrode of green compact for discharge surface treatment, method of producing the same, method of discarge surface treatment, apparatus therefor, and method of recycling electrode of green compact for discharge surface treatment
WO2004106586A1 (en) * 2003-05-29 2004-12-09 Mitsubishi Denki Kabushiki Kaisha Electrode for discharge surface treatment, discharge surface treatment method and discharge surface treatment apparatus
WO2004108989A1 (en) * 2003-06-04 2004-12-16 Mitsubishi Denki Kabushiki Kaisha Electrode for discharge surface treatment, and method for manufacturing and storing the same
JP2005201079A (en) * 2004-01-13 2005-07-28 Ishikawajima Harima Heavy Ind Co Ltd Turbine blade and its manufacturing method
JP2005214054A (en) * 2004-01-29 2005-08-11 Mitsubishi Electric Corp Turbine part and gas turbine
JP2005213554A (en) * 2004-01-29 2005-08-11 Mitsubishi Electric Corp Discharge surface treatment method and discharge surface treatment apparatus
JP2005213555A (en) * 2004-01-29 2005-08-11 Mitsubishi Electric Corp Electrode for discharge surface treatment and discharge surface treatment method
JP2006016672A (en) * 2004-07-02 2006-01-19 Mitsubishi Electric Corp Discharge surface treatment method and die subjected to surface treatment
JPWO2004111303A1 (en) * 2003-06-11 2006-07-20 石川島播磨重工業株式会社 Metal product manufacturing method, metal product, metal part connection method, and connection structure
KR100787275B1 (en) * 2003-06-11 2007-12-20 미쓰비시덴키 가부시키가이샤 Device for electrical discharge coating and method for electrical discharge coating
US7537809B2 (en) 2002-10-09 2009-05-26 Ihi Corporation Rotating member and method for coating the same
US7537808B2 (en) 2002-07-30 2009-05-26 Mitsubishi Denki Kabushiki Kaisha Electrode for electric discharge surface treatment, electric discharge surface treatment method and electric discharge surface treatment apparatus
JP2009226439A (en) * 2008-03-21 2009-10-08 Ihi Corp Forging die unit and forging-formation method
US7641945B2 (en) 2003-06-11 2010-01-05 Mitsubishi Denki Kabushiki Kaisha Electrical-discharge surface-treatment method
JP2010100940A (en) * 2003-06-11 2010-05-06 Ihi Corp Method for repairing machine component, method for manufacturing restored machine component, method for manufacturing machine component and gas-turbine engine
US7776409B2 (en) 2003-06-10 2010-08-17 Mitsubishi Denki Kabushiki Kaisha Electrode for discharge surface treatment and method of evaluating the same, and discharge-surface-treating method
DE112009000308T5 (en) 2008-02-05 2011-01-20 Suzuki Motor Corp., Hamamatsu Spark-erosive coating method and thereby used green compact electrode
US8440931B2 (en) 2006-12-27 2013-05-14 Mitsubishi Electric Corporation Electrode for electrical-discharge surface treatment and method of manufacturing the same
US9187831B2 (en) 2002-09-24 2015-11-17 Ishikawajima-Harima Heavy Industries Co., Ltd. Method for coating sliding surface of high-temperature member, high-temperature member and electrode for electro-discharge surface treatment
US9284647B2 (en) 2002-09-24 2016-03-15 Mitsubishi Denki Kabushiki Kaisha Method for coating sliding surface of high-temperature member, high-temperature member and electrode for electro-discharge surface treatment

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999046423A1 (en) * 1998-03-11 1999-09-16 Mitsubishi Denki Kabushiki Kaisha Compact electrode for discharge surface treatment and method of manufacturing discharge surface treatment compact electrode
DE19882983B4 (en) * 1998-03-11 2011-05-12 Mitsubishi Denki K.K. Green compact electrode for spark discharge coating and method for its production
CN100354454C (en) * 1998-03-11 2007-12-12 三菱电机株式会社 Compact electrode for discharge surface treatment and method for mfg. discharge surface treatment compact electrode
KR100398764B1 (en) * 1998-03-11 2003-09-19 미쓰비시덴키 가부시키가이샤 Compact electrode for discharge surface treatment and method of manufacturing discharge surface treatment compact electrode
US6441333B1 (en) 1998-03-11 2002-08-27 Mitsubishi Denki K.K. Green compact electrode for discharge surface treatment and method of manufacturing green compact electrode for discharge surface treatment
US6783795B2 (en) 1998-05-08 2004-08-31 Mitsubishi Denki Kabushiki Kaisha Power supply apparatus for discharge surface treatment
WO1999058743A1 (en) * 1998-05-08 1999-11-18 Mitsubishi Denki Kabushiki Kaisha Power source unit for discharge surface treatment
US7067011B2 (en) 1998-05-08 2006-06-27 Mitsubushi Denki Kabushiki Kaisha Apparatus and method for discharge surface treatment
US7323213B2 (en) 1998-05-08 2008-01-29 Mitsubishi Denki Kabushiki Kaisha Apparatus and method for discharge surface treatment
US6702896B1 (en) * 1998-05-08 2004-03-09 Mitsubishi Denki Kabushiki Kaisha Apparatus and method for discharge surface treatment
CN1309866C (en) * 1998-05-08 2007-04-11 三菱电机株式会社 Discharge surface treatment device
US6793982B1 (en) 1998-05-13 2004-09-21 Mitsubishi Denki Kabushiki Kaisha Electrode of green compact for discharge surface treatment, method of producing the same, method of discarge surface treatment, apparatus therefor, and method of recycling electrode of green compact for discharge surface treatment
WO1999058744A1 (en) * 1998-05-13 1999-11-18 Mitsubishi Denki Kabushiki Kaisha Electrode for discharge surface treatment and manufacturing method thereof and discharge surface treatment method and device
US6602561B1 (en) 1998-05-13 2003-08-05 Mitsubishi Denki Kabushiki Kaisha Electrode for discharge surface treatment and manufacturing method therefor and discharge surface treatment method and device
WO2000016918A1 (en) * 1998-09-18 2000-03-30 Mitsubishi Denki Kabushiki Kaisha Roll, method of treating the surface of roll, and apparatus for treating the surface of roll
CN1322165C (en) * 1999-09-30 2007-06-20 三菱电机株式会社 Electric discharge surface treating electrode and production method thereof and electric discharge surface treating method
WO2001023641A1 (en) * 1999-09-30 2001-04-05 Mitsubishi Denki Kabushiki Kaisha Electric discharge surface treating electrode and production method thereof and electric discharge surface treating method
WO2001023640A1 (en) * 1999-09-30 2001-04-05 Mitsubishi Denki Kabushiki Kaisha Electric discharge surface treating electrode and production method thereof and electric discharge surface treating method
US8377339B2 (en) 2002-07-30 2013-02-19 Mitsubishi Denki Kabushiki Kaisha Electrode for electric discharge surface treatment, method of electric discharge surface treatment, and apparatus for electric discharge surface treatment
US7537808B2 (en) 2002-07-30 2009-05-26 Mitsubishi Denki Kabushiki Kaisha Electrode for electric discharge surface treatment, electric discharge surface treatment method and electric discharge surface treatment apparatus
US9284647B2 (en) 2002-09-24 2016-03-15 Mitsubishi Denki Kabushiki Kaisha Method for coating sliding surface of high-temperature member, high-temperature member and electrode for electro-discharge surface treatment
US9187831B2 (en) 2002-09-24 2015-11-17 Ishikawajima-Harima Heavy Industries Co., Ltd. Method for coating sliding surface of high-temperature member, high-temperature member and electrode for electro-discharge surface treatment
US7918460B2 (en) 2002-10-09 2011-04-05 Ihi Corporation Rotating member and method for coating the same
US7537809B2 (en) 2002-10-09 2009-05-26 Ihi Corporation Rotating member and method for coating the same
WO2004106586A1 (en) * 2003-05-29 2004-12-09 Mitsubishi Denki Kabushiki Kaisha Electrode for discharge surface treatment, discharge surface treatment method and discharge surface treatment apparatus
JP4554516B2 (en) * 2003-05-29 2010-09-29 三菱電機株式会社 Discharge surface treatment electrode, discharge surface treatment method, and discharge surface treatment apparatus
JPWO2004106586A1 (en) * 2003-05-29 2006-07-20 三菱電機株式会社 Discharge surface treatment electrode, discharge surface treatment method, and discharge surface treatment apparatus
KR100790657B1 (en) * 2003-05-29 2008-01-02 미쓰비시덴키 가부시키가이샤 Electrode for discharge surface treatment, discharge surface treatment method and discharge surface treatment apparatus
US7834291B2 (en) 2003-05-29 2010-11-16 Mitsubishi Denki Kabushiki Kaisha Electrode for electric discharge surface treatment, and method and apparatus for electric discharge surface treatment
JPWO2004108989A1 (en) * 2003-06-04 2006-07-20 三菱電機株式会社 ELECTRODE FOR DISCHARGE SURFACE TREATMENT, PROCESS FOR PRODUCING THE SAME
WO2004108989A1 (en) * 2003-06-04 2004-12-16 Mitsubishi Denki Kabushiki Kaisha Electrode for discharge surface treatment, and method for manufacturing and storing the same
US7915559B2 (en) 2003-06-04 2011-03-29 Mitsubishi Denki Kabushiki Kaisha Electrode for electric discharge surface treatment, method for manufacturing electrode, and method for storing electrode
JP4641260B2 (en) * 2003-06-04 2011-03-02 三菱電機株式会社 Discharge surface treatment electrode and method for producing the same
US7776409B2 (en) 2003-06-10 2010-08-17 Mitsubishi Denki Kabushiki Kaisha Electrode for discharge surface treatment and method of evaluating the same, and discharge-surface-treating method
US7641945B2 (en) 2003-06-11 2010-01-05 Mitsubishi Denki Kabushiki Kaisha Electrical-discharge surface-treatment method
US7691454B2 (en) 2003-06-11 2010-04-06 Mitsubishi Denki Kabushiki Kaisha Electrical-discharge surface-treatment method using a metallic powder or metallic powder compound in combination with other elements as electrode
JP2010100940A (en) * 2003-06-11 2010-05-06 Ihi Corp Method for repairing machine component, method for manufacturing restored machine component, method for manufacturing machine component and gas-turbine engine
US8658005B2 (en) 2003-06-11 2014-02-25 Mitsubishi Denki Kabushiki Kaisha Electrical-discharge surface-treatment method
JPWO2004111303A1 (en) * 2003-06-11 2006-07-20 石川島播磨重工業株式会社 Metal product manufacturing method, metal product, metal part connection method, and connection structure
JP2011094235A (en) * 2003-06-11 2011-05-12 Ihi Corp Method of joining metal component and joint structure
KR100787275B1 (en) * 2003-06-11 2007-12-20 미쓰비시덴키 가부시키가이샤 Device for electrical discharge coating and method for electrical discharge coating
JP2005201079A (en) * 2004-01-13 2005-07-28 Ishikawajima Harima Heavy Ind Co Ltd Turbine blade and its manufacturing method
JP2005213555A (en) * 2004-01-29 2005-08-11 Mitsubishi Electric Corp Electrode for discharge surface treatment and discharge surface treatment method
JP2005213554A (en) * 2004-01-29 2005-08-11 Mitsubishi Electric Corp Discharge surface treatment method and discharge surface treatment apparatus
JP4608220B2 (en) * 2004-01-29 2011-01-12 三菱電機株式会社 Discharge surface treatment electrode and discharge surface treatment method
JP2005214054A (en) * 2004-01-29 2005-08-11 Mitsubishi Electric Corp Turbine part and gas turbine
JP4534633B2 (en) * 2004-07-02 2010-09-01 三菱電機株式会社 Discharge surface treatment method and surface-treated mold
JP2006016672A (en) * 2004-07-02 2006-01-19 Mitsubishi Electric Corp Discharge surface treatment method and die subjected to surface treatment
US8440931B2 (en) 2006-12-27 2013-05-14 Mitsubishi Electric Corporation Electrode for electrical-discharge surface treatment and method of manufacturing the same
DE112009000308T5 (en) 2008-02-05 2011-01-20 Suzuki Motor Corp., Hamamatsu Spark-erosive coating method and thereby used green compact electrode
JP2009226439A (en) * 2008-03-21 2009-10-08 Ihi Corp Forging die unit and forging-formation method

Also Published As

Publication number Publication date
JP3271844B2 (en) 2002-04-08

Similar Documents

Publication Publication Date Title
JP3271844B2 (en) Surface treatment method for metallic materials by submerged discharge
JP3537939B2 (en) Surface treatment by submerged discharge
JP3093846B2 (en) Surface treatment method for metal materials
US8377339B2 (en) Electrode for electric discharge surface treatment, method of electric discharge surface treatment, and apparatus for electric discharge surface treatment
TW457154B (en) Electrode for surface treatment by electric discharge, process for making the same, method and apparatus for surface treatment by electric discharge
Bleys et al. Surface and sub‐surface quality of steel after EDM
WO1999018258A1 (en) Electrode rod for spark deposition, process for the production thereof, and process for covering with superabrasive-containing layer
Kumari et al. Ceramic-metal composite coating on steel using a powder compact tool electrode by the electro-discharge coating process
JP2006322034A (en) Electrode for discharge surface treatment, coated film for discharge surface treatment and treatment method
KR100753275B1 (en) Discharge surface treating electrode, production method and evaluation method for discharge surface treating electrode, discharge surface treating device and discharge surface treating method
Tijo et al. Hard and wear resistance TiC-composite coating on AISI 1020 steel using powder metallurgy tool by electro-discharge coating process
Khan et al. A framework for surface modification by electrical discharge coating using variable density electrodes
Mohanty et al. Surface alloying using tungsten disulphide powder mixed in dielectric in micro-EDM on Ti6Al4V
CN113795603B (en) Ni-based alloy, ni-based alloy powder, ni-based alloy member, and product provided with Ni-based alloy member
Ananthi et al. Effect of WC–Cu composite electrodes on material deposition rate, microhardness and microstructure of electrical discharge coated magnesium alloy
JP3627088B2 (en) Discharge surface treatment method and object to be processed formed by the method
Kumari Study of TiC coating on different type steel by electro discharge coating
Sahu et al. Performance analysis of EDM electrode manufactured by direct metal laser sintering during machining of titanium alloy (Ti6Al4V)
WO2011148415A1 (en) Electrode for discharge surface treatment and discharge surface treatment film
Richhariya Surface Modification of AISI 1020 Mild Steel by Electrical Discharge Coating with Tungsten and Copper Mixed Powder Green Compact Electrodes
JP3857625B2 (en) Discharge surface treatment electrode and discharge surface treatment method
Ramesh et al. ELECTRICAL DISCHARGE MACHINING ANALYSIS OF ZIRCONIUM POWDER MIXED DIELECTRIC ON PERFORMANCE OF HIGH CARBON HIGH CHROMIUM STEEL.
Naik Study the Effect of Compact Pressure of P/M Tool Electrode on Electro Discharge Coating (EDC) Process
Meena et al. Parametric Effects during Nonconventional Machining of PRALSICMMC by EDM
Madhaw Surface Modification by Electro-Discharge Coating (EDC) with WC-Cu P/M Electrode Tool

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees